This case simulates the impact of a water column on a rigid rectangle shape obstacle. Pressure sensors are located at various points and results can be compared to the experiment. Warning : the mesh is fine, 8 CPUs or more are recommended for this case.
Fluid pressure fringes

*KEYWORD *TITLE *DATABASE_BINARY_D3PLOT *DEFINE_CURVE_TITLE *ICFD_BOUNDARY_FREESLIP *ICFD_BOUNDARY_NONSLIP *ICFD_CONTROL_OUTPUT *ICFD_CONTROL_TIME *ICFD_DATABASE_DRAG *ICFD_DATABASE_POINTOUT *ICFD_MAT *ICFD_PART *ICFD_PART_VOL *ICFD_SECTION *INCLUDE *LOAD_BODY_Z *MESH_INTERF *MESH_SIZE *MESH_SURFACE_ELEMENT *MESH_SURFACE_NODE *MESH_VOLUME *PARAMETER *END
$-----------------------------------------------------------------------------
$
$ Example provided by Iñaki (LSTC)
$
$ E-Mail: info@dynamore.de
$ Web: http://www.dynamore.de
$
$ Copyright, 2015 DYNAmore GmbH
$ Copying for non-commercial usage allowed if
$ copy bears this notice completely.
$
$X------------------------------------------------------------------------------
$X
$X 1. Run file as is.
$X Requires LS-DYNA MPP R8.0.0 (or higher) with double precision
$X
$X------------------------------------------------------------------------------
$# UNITS: (kg/m/s)
$X------------------------------------------------------------------------------
$X
*KEYWORD
*TITLE
ICFD Water impact on a rectangle obstacle
*INCLUDE
mesh.k
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8
$ $
$ PARAMETERS $
$ $
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8
*PARAMETER
R T_end 6.0
R dt_plot 0.05
$
$--- Fluid
$
Rrho_fluid 1000
R mu_fluid 0.001
R dt_fluid 0.000
Rcfl_fluid 1.00
Rdt_max 5e-3
R grav 9.81
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8
$ $
$ ICFD CONTROL CARDS $
$ $
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8
*ICFD_CONTROL_TIME
$# ttm dt cfl lcidsf dtmin dtmax
&T_end &dt_fluid&cfl_fluid &dt_max
*ICFD_CONTROL_OUTPUT
$# msgl
4
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8
$ $
$ ICFD PARTS/ SECTION/ MATERIAL $
$ $
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8
*ICFD_SECTION
$# sid
1
*ICFD_MAT
$# mid flg ro vis
1 1&rho_fluid &mu_fluid
*ICFD_MAT
$# mid flg
2 0
*ICFD_PART
$# pid secid mid
1 1 2
*ICFD_PART
$# pid secid mid
2 1 1
*ICFD_PART
$# pid secid mid
3 1 1
*ICFD_PART
$# pid secid mid
4 1 2
*ICFD_PART
$# pid secid mid
5 1 2
*ICFD_PART
$# pid secid mid
6 1 1
*ICFD_PART
$# pid secid mid
7 1 2
*ICFD_PART
$# pid secid mid
8 1 2
*ICFD_PART
$# pid secid mid
9 1 1
*ICFD_PART
$# pid secid mid
10 1 2
*ICFD_PART
$# pid secid mid
11 1 2
*ICFD_PART
$# pid secid mid
12 1 2
*ICFD_PART
$# pid secid mid
13 1 2
*ICFD_PART_VOL
$# pid secid mid
14 1 1
$# spid1 spid2 spid3 spid4 spid5 spid6 spid7 spid8
2 3 6 9
*ICFD_PART_VOL
$# pid secid mid
15 1 2
$# spid1 spid2 spid3 spid4 spid5 spid6 spid7 spid8
1 4 5 6 7 8 10 11
$# spid10 spid11
12 13
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8
$ $
$ ICFD BOUNDARY/INITIAL/LOAD CONDITIONS $
$ $
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8
*ICFD_BOUNDARY_FREESLIP
$# pid
1
*ICFD_BOUNDARY_FREESLIP
$# pid
2
*ICFD_BOUNDARY_FREESLIP
$# pid
3
*ICFD_BOUNDARY_FREESLIP
$# pid
4
*ICFD_BOUNDARY_FREESLIP
$# pid
5
*ICFD_BOUNDARY_FREESLIP
$# pid
7
*ICFD_BOUNDARY_NONSLIP
$# pid
8
*ICFD_BOUNDARY_FREESLIP
$# pid
9
*ICFD_BOUNDARY_FREESLIP
$# pid
10
*LOAD_BODY_Z
$# lcid sf
1 1
*DEFINE_CURVE_TITLE
Gravity force
$# lcid sidr sfa sfo offa offo dattyp
1 &grav
$# a1 o1
0.0 1.0
10000.0 1.0
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8
$ $
$ ICFD MESH KEYWORDS $
$ $
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8
*MESH_VOLUME
$# volid
30
$# pid1 pid2 pid3 pid4 pid5 pid6 pid7 pid8
1 2 3 4 5 7 8 9
$# pid10 pid11 pid12
10
*MESH_INTERF
$# volid
30
$# pid1
6
*MESH_SIZE
$# volid
30
$# pid1
11
*MESH_SIZE
$# volid
30
$# pid1
12
*MESH_SIZE
$# volid
30
$# pid1
13
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8
$ $
$ DATABASE (OUTPUT) $
$ $
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8
*DATABASE_BINARY_D3PLOT
&dt_plot
*ICFD_DATABASE_DRAG
$# pid
10
*ICFD_DATABASE_POINTOUT
$# outlv dt
1 5e-3
$# pid x y z
1 0.8246 0. 0.021
2 0.8246 0. 0.061
3 0.8246 0. 0.101
4 0.8246 0. 0.141
5 0.8035 0. 0.1615
6 0.7635 0. 0.1615
7 0.7235 0. 0.1615
8 0.6835 0. 0.1615
*END

This case simulates the impact of a water column on a rigid rectangle shape obstacle. Pressure sensors are located at various points and results can be compared to the experiment. Warning : the mesh is fine, 8 CPUs or more are recommended for this case.
References :
[1] E.-S. Lee, D. Violeau, R. Issa, and S. Ploix, “Application of weakly
compressible and truly incompressible sph to 3-d water collapse in
waterworks,” Journal of Hydraulic Research, vol. 48, no. sup1,
pp. 50–60, 2010
[2] K. M. T. Kleefsman, G. Fekken, A. E. P. Veldman, B. Iwanowski, and
B. Buchner, “A volume-of-fluid based simulation method for wave
impact problems,” J. Comput. Phys., vol. 206, pp. 363–393, June
2005.
[3] A. C. Crespo, J. M. Dominguez, A. Barreiro, M. Gómez-Gesteira, and
B. D. Rogers, “Gpus, a new tool of acceleration in cfd: Efficiency and
reliability on smoothed particle hydrodynamics methods,” PLoS ONE,
vol. 6, pp. 1–13, 06 2011.