Intermediate : Turek and Hron Benchmark — Welcome to LS-DYNA Examples

Home » Knowledge Base » ICFD / Incompressible CFD » Intermediate Examples » Intermediate : Turek and Hron Benchmark

An elastic cantilever plate is clamped behind a rigid cylinder under laminar flow circumstances. Three different test cases named FSI1, FSI2 and FSI3 are provided. This is a purely numerical benchmark problem where codes can be compared to one another but no experimental results exist.

Animated Result

Fluid velocity fringes

dam

 

 

Keywords

*KEYWORD
*TITLE
*BOUNDARY_SPC_SET_BIRTH_DEATH
*CONTROL_IMPLICIT_DYNAMICS
*CONTROL_IMPLICIT_GENERAL
*CONTROL_IMPLICIT_SOLUTION
*CONTROL_TERMINATION
*DATABASE_BINARY_D3PLOT
*DATABASE_HISTORY_NODE
*DATABASE_NODOUT
*DEFINE_CURVE_TITLE
*DEFINE_FUNCTION
*ELEMENT_SHELL
*ICFD_BOUNDARY_FREESLIP
*ICFD_BOUNDARY_FSI
*ICFD_BOUNDARY_NONSLIP
*ICFD_BOUNDARY_PRESCRIBED_VEL
*ICFD_BOUNDARY_PRESCRIBED_PRE
*ICFD_CONTROL_ADAPT_SIZE
*ICFD_CONTROL_FSI
*ICFD_CONTROL_MESH
*ICFD_CONTROL_OUTPUT
*ICFD_CONTROL_TIME
*ICFD_DATABASE_DRAG
*ICFD_DATABASE_FLUX
*ICFD_MAT
*ICFD_PART
*ICFD_PART_VOL
*ICFD_SECTION
*INCLUDE
*MAT_ELASTIC
*MESH_BL
*MESH_BL_SYM
*MESH_SURFACE_ELEMENT
*MESH_SURFACE_NODE
*MESH_VOLUME
*NODE
*PARAMETER
*PART
*SECTION_SHELL
*SET_NODE_LIST
*END

Reduced Input

$-----------------------------------------------------------------------------
$
$ Example provided by Iñaki (LSTC)
$
$ E-Mail: info@dynamore.de
$ Web: http://www.dynamore.de
$
$ Copyright, 2015 DYNAmore GmbH
$ Copying for non-commercial usage allowed if
$ copy bears this notice completely.
$
$X------------------------------------------------------------------------------
$X
$X 1. Run file as is.
$X    Requires LS-DYNA MPP R8.0.0 (or higher) with double precision 
$X
$X------------------------------------------------------------------------------
$# UNITS: Dimensionless. 
$X------------------------------------------------------------------------------
$X
*KEYWORD
*TITLE
ICFD The Turek and Hron Benchmark problem
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8
$                                                                              $
$                             PARAMETERS                                       $
$                                                                              $
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8
*PARAMETER
R    T_end      12.0
R  dt_plot      0.05
$
$--- Fluid
$
R  v_inlet       2.0
R vel_rise       2.0
Rrho_fluid     1000.
R mu_fluid        1. 
R dt_fluid     0.001
*INCLUDE
mesh.k
*INCLUDE
struc.k
$
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8
$                                                                              $
$                           ICFD CONTROL CARDS                                 $
$                                                                              $
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8
*ICFD_CONTROL_TIME
$#     ttm        dt
    &T_end &dt_fluid
*ICFD_CONTROL_FSI
$#     owc
         0
*ICFD_CONTROL_MESH
$#    mgsf              mstrat   2dstruc
                                       1
*ICFD_CONTROL_ADAPT_SIZE
$#   asize
         1
*ICFD_CONTROL_OUTPUT
$#    mslv
         4
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8
$                                                                              $
$                       ICFD PARTS/ SECTION/ MATERIAL                          $
$                                                                              $
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8
*ICFD_SECTION
$#     sid   
         1
*ICFD_MAT
$#     mid       flg        ro       vis          
         1         1&rho_fluid &mu_fluid       
*ICFD_PART
$#     pid     secid       mid 
         1         1         1
*ICFD_PART
$#     pid     secid       mid 
         2         1         1
*ICFD_PART
$#     pid     secid       mid 
         3         1         1
*ICFD_PART
$#     pid     secid       mid 
         4         1         1
*ICFD_PART
$#     pid     secid       mid 
         5         1         1
*ICFD_PART
$#     pid     secid       mid 
         6         1         1
*ICFD_PART_VOL
$#     pid     secid       mid 
        10         1         1
$#   spid1     spid2     spid3     spid4     spid5     spid6
         1         2         3         4         5         6
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8
$                                                                              $
$                    ICFD BOUNDARY/INITIAL CONDITIONS                          $
$                                                                              $
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8
*ICFD_BOUNDARY_PRESCRIBED_VEL
$#     pid       dof       vad      lcid       
         1         1         1         1      
*ICFD_BOUNDARY_PRESCRIBED_VEL
$#     pid       dof       vad      lcid       
         1         2         1         2       
*ICFD_BOUNDARY_PRESCRIBED_PRE
$#     pid      lcid        sf     death     birth     
         2         2     
*ICFD_BOUNDARY_NONSLIP
$#     pid   
         3
*ICFD_BOUNDARY_NONSLIP
$#     pid   
         4
*ICFD_BOUNDARY_FSI
$#     pid   
         4  
*ICFD_BOUNDARY_NONSLIP
$#     pid   
         5
*ICFD_BOUNDARY_NONSLIP
$#     pid   
         6
*ICFD_BOUNDARY_FSI
$#     pid   
         6 
*DEFINE_FUNCTION
$#    dfid
         1
$# function
float h(float y, float time)
{
 float fac,trise;
 trise = vel_rise;
 fac = v_inlet;
 if(time<=trise) return 1.5*4.0/0.1681*y*(0.41-y)*fac*0.5*(1-cos(time*pi/2));
 return 1.5*4.0/0.1681*y*(0.41-y)*fac;
}  
*DEFINE_CURVE_TITLE
Pressure outlet
$#    lcid      sidr       sfa       sfo      offa      offo    dattyp
         2
$#                a1                  o1
                 0.0                 0.0
             10000.0                 0.0
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8
$                                                                              $
$                            ICFD MESH KEYWORDS                                $
$                                                                              $
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8
*MESH_VOLUME
$#   volid     
        10
$#    pid1      pid2      pid3      pid4      pid5      pid6    
         1         2         3         4         5         6
*MESH_BL
$#     pid     nelth
         3         1
*MESH_BL
$#     pid     nelth
         4         1
*MESH_BL
$#     pid     nelth
         5         1
*MESH_BL_SYM
$#     pid
         1
*MESH_BL_SYM
$#     pid
         2
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8
$                                                                              $
$                             DATABASE (OUTPUT)                                $
$                                                                              $
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8
*ICFD_DATABASE_FLUX
$#     pid
         1
*ICFD_DATABASE_FLUX
$#     pid
         2
*ICFD_DATABASE_DRAG
$#     pid
         4
*ICFD_DATABASE_DRAG
$#     pid
         5
*ICFD_DATABASE_DRAG
$#     pid
         6
*DATABASE_BINARY_D3PLOT
&dt_plot
*END
 

Figures

figure_001

Download

Description

An elastic cantilever plate is clamped behind a rigid cylinder under laminar flow circumstances. Three different test cases named FSI1, FSI2 and FSI3 are provided. This is a purely numerical benchmark problem where codes can be compared to one another but no experimental results exist.

References :

[1] S. Turek and J. Hron, Proposal for Numerical Benchmarking of Fluid-Structure Interaction between an Elastic Object and Laminar Incompressible Flow, pp. 371–385. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006.

[2] S. Turek, J. Hron, M. Razzaq, H. Wobker, and M. Schäfer, Numerical Benchmarking of Fluid-Structure Interaction: A Comparison of Different Discretization and Solution Approaches, pp. 413–424. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010.

[3] S. Turek, J. Hron, M. Mádlík, M. Razzaq, H. Wobker, and J. F. Acker, Numerical Simulation and Benchmarking of a Monolithic Multigrid Solver for Fluid-Structure Interaction Problems with Application to Hemodynamics, pp. 193–220. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010.