An elastic cantilever plate is clamped behind a rigid cylinder under laminar flow circumstances. Three different test cases named FSI1, FSI2 and FSI3 are provided. This is a purely numerical benchmark problem where codes can be compared to one another but no experimental results exist.
Fluid velocity fringes

*KEYWORD *TITLE *BOUNDARY_SPC_SET_BIRTH_DEATH *CONTROL_IMPLICIT_DYNAMICS *CONTROL_IMPLICIT_GENERAL *CONTROL_IMPLICIT_SOLUTION *CONTROL_TERMINATION *DATABASE_BINARY_D3PLOT *DATABASE_HISTORY_NODE *DATABASE_NODOUT *DEFINE_CURVE_TITLE *DEFINE_FUNCTION *ELEMENT_SHELL *ICFD_BOUNDARY_FREESLIP *ICFD_BOUNDARY_FSI *ICFD_BOUNDARY_NONSLIP *ICFD_BOUNDARY_PRESCRIBED_VEL *ICFD_BOUNDARY_PRESCRIBED_PRE *ICFD_CONTROL_ADAPT_SIZE *ICFD_CONTROL_FSI *ICFD_CONTROL_MESH *ICFD_CONTROL_OUTPUT *ICFD_CONTROL_TIME *ICFD_DATABASE_DRAG *ICFD_DATABASE_FLUX *ICFD_MAT *ICFD_PART *ICFD_PART_VOL *ICFD_SECTION *INCLUDE *MAT_ELASTIC *MESH_BL *MESH_BL_SYM *MESH_SURFACE_ELEMENT *MESH_SURFACE_NODE *MESH_VOLUME *NODE *PARAMETER *PART *SECTION_SHELL *SET_NODE_LIST *END
$-----------------------------------------------------------------------------
$
$ Example provided by Iñaki (LSTC)
$
$ E-Mail: info@dynamore.de
$ Web: http://www.dynamore.de
$
$ Copyright, 2015 DYNAmore GmbH
$ Copying for non-commercial usage allowed if
$ copy bears this notice completely.
$
$X------------------------------------------------------------------------------
$X
$X 1. Run file as is.
$X Requires LS-DYNA MPP R8.0.0 (or higher) with double precision
$X
$X------------------------------------------------------------------------------
$# UNITS: Dimensionless.
$X------------------------------------------------------------------------------
$X
*KEYWORD
*TITLE
ICFD The Turek and Hron Benchmark problem
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8
$ $
$ PARAMETERS $
$ $
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8
*PARAMETER
R T_end 12.0
R dt_plot 0.05
$
$--- Fluid
$
R v_inlet 2.0
R vel_rise 2.0
Rrho_fluid 1000.
R mu_fluid 1.
R dt_fluid 0.001
*INCLUDE
mesh.k
*INCLUDE
struc.k
$
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8
$ $
$ ICFD CONTROL CARDS $
$ $
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8
*ICFD_CONTROL_TIME
$# ttm dt
&T_end &dt_fluid
*ICFD_CONTROL_FSI
$# owc
0
*ICFD_CONTROL_MESH
$# mgsf mstrat 2dstruc
1
*ICFD_CONTROL_ADAPT_SIZE
$# asize
1
*ICFD_CONTROL_OUTPUT
$# mslv
4
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8
$ $
$ ICFD PARTS/ SECTION/ MATERIAL $
$ $
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8
*ICFD_SECTION
$# sid
1
*ICFD_MAT
$# mid flg ro vis
1 1&rho_fluid &mu_fluid
*ICFD_PART
$# pid secid mid
1 1 1
*ICFD_PART
$# pid secid mid
2 1 1
*ICFD_PART
$# pid secid mid
3 1 1
*ICFD_PART
$# pid secid mid
4 1 1
*ICFD_PART
$# pid secid mid
5 1 1
*ICFD_PART
$# pid secid mid
6 1 1
*ICFD_PART_VOL
$# pid secid mid
10 1 1
$# spid1 spid2 spid3 spid4 spid5 spid6
1 2 3 4 5 6
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8
$ $
$ ICFD BOUNDARY/INITIAL CONDITIONS $
$ $
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8
*ICFD_BOUNDARY_PRESCRIBED_VEL
$# pid dof vad lcid
1 1 1 1
*ICFD_BOUNDARY_PRESCRIBED_VEL
$# pid dof vad lcid
1 2 1 2
*ICFD_BOUNDARY_PRESCRIBED_PRE
$# pid lcid sf death birth
2 2
*ICFD_BOUNDARY_NONSLIP
$# pid
3
*ICFD_BOUNDARY_NONSLIP
$# pid
4
*ICFD_BOUNDARY_FSI
$# pid
4
*ICFD_BOUNDARY_NONSLIP
$# pid
5
*ICFD_BOUNDARY_NONSLIP
$# pid
6
*ICFD_BOUNDARY_FSI
$# pid
6
*DEFINE_FUNCTION
$# dfid
1
$# function
float h(float y, float time)
{
float fac,trise;
trise = vel_rise;
fac = v_inlet;
if(time<=trise) return 1.5*4.0/0.1681*y*(0.41-y)*fac*0.5*(1-cos(time*pi/2));
return 1.5*4.0/0.1681*y*(0.41-y)*fac;
}
*DEFINE_CURVE_TITLE
Pressure outlet
$# lcid sidr sfa sfo offa offo dattyp
2
$# a1 o1
0.0 0.0
10000.0 0.0
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8
$ $
$ ICFD MESH KEYWORDS $
$ $
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8
*MESH_VOLUME
$# volid
10
$# pid1 pid2 pid3 pid4 pid5 pid6
1 2 3 4 5 6
*MESH_BL
$# pid nelth
3 1
*MESH_BL
$# pid nelth
4 1
*MESH_BL
$# pid nelth
5 1
*MESH_BL_SYM
$# pid
1
*MESH_BL_SYM
$# pid
2
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8
$ $
$ DATABASE (OUTPUT) $
$ $
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8
*ICFD_DATABASE_FLUX
$# pid
1
*ICFD_DATABASE_FLUX
$# pid
2
*ICFD_DATABASE_DRAG
$# pid
4
*ICFD_DATABASE_DRAG
$# pid
5
*ICFD_DATABASE_DRAG
$# pid
6
*DATABASE_BINARY_D3PLOT
&dt_plot
*END

An elastic cantilever plate is clamped behind a rigid cylinder under laminar flow circumstances. Three different test cases named FSI1, FSI2 and FSI3 are provided. This is a purely numerical benchmark problem where codes can be compared to one another but no experimental results exist.
References :
[1] S. Turek and J. Hron, Proposal for Numerical Benchmarking of Fluid-Structure Interaction between an Elastic Object and Laminar Incompressible Flow, pp. 371–385. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006.
[2] S. Turek, J. Hron, M. Razzaq, H. Wobker, and M. Schäfer, Numerical Benchmarking of Fluid-Structure Interaction: A Comparison of Different Discretization and Solution Approaches, pp. 413–424. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010.
[3] S. Turek, J. Hron, M. Mádlík, M. Razzaq, H. Wobker, and J. F. Acker, Numerical Simulation and Benchmarking of a Monolithic Multigrid Solver for Fluid-Structure Interaction Problems with Application to Hemodynamics, pp. 193–220. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010.