Advanced : Tool cooling — Welcome to LS-DYNA Examples

Home » Knowledge Base » ICFD / Incompressible CFD » Beta Examples » Advanced : Tool cooling

This example shows two different ways of solving an large cooling problem. In the first input deck set, the fluid is solved using the transient solver and the LES turbulence model, after steady state has been reached, velocity and pressure are no longer updated, allowing the conjugate heat transfer problem to proceed. In the second input deck, the steady state solver and the RANS standard k-epsilon turbulence model are used in order to reach a steady state for the fluid before solving the coupled thermal only problem.

Animated Result

Fluid Temperature fringes

plate

 

Keywords

*KEYWORD
*TITLE
*BOUNDARY_PRESCRIBED_MOTION_RIGID
*CONTACT_SURFACE_TO_SURFACE_THERMAL
*CONTROL_CONTACT
*CONTROL_TERMINATION
*CONTROL_THERMAL_SOLVER
*CONTROL_THERMAL_TIMESTEP
*CONTROL_TIMESTEP
*CONTROL_SHELL
*CONTROL_SOLUTION
*DATABASE_BINARY_D3PLOT
*DATABASE_FORMAT
*DATABASE_TPRINT
*DEFINE_CURVE_TITLE
*ELEMENT_SHELL
*ELEMENT_SOLID
*INITIAL_TEMPERATURE_SET
*ICFD_BOUNDARY_CONJ_HEAT
*ICFD_BOUNDARY_FSI
*ICFD_BOUNDARY_NONSLIP
*ICFD_BOUNDARY_PRESCRIBED_PRE
*ICFD_BOUNDARY_PRESCRIBED_VEL
*ICFD_CONTROL_CONJ
*ICFD_CONTROL_FSI
*ICFD_CONTROL_MESH
*ICFD_CONTROL_MESH_MOV
*ICFD_CONTROL_OUTPUT
*ICFD_CONTROL_TIME
*ICFD_CONTROL_TURBULENCE
*ICFD_DATABASE_FLUX
*ICFD_INITIAL
*ICFD_MAT
*ICFD_PART
*ICFD_PART_VOL
*ICFD_SECTION
*INCLUDE
*MAT_RIGID
*MAT_THERMAL_ISOTROPIC
*MESH_BL
*MESH_BL_SYM
*MESH_SURFACE_ELEMENT
*MESH_SURFACE_NODE
*MESH_VOLUME
*PART
*SECTION_SHELL
*END

Reduced Input

*KEYWORD
$—————————————————————————–
$
$ Example provided by Iñaki (LSTC)
$
$ E-Mail: info@dynamore.de
$ Web: http://www.dynamore.de
$
$ Copyright, 2015 DYNAmore GmbH
$ Copying for non-commercial usage allowed if
$ copy bears this notice completely.
$
$X——————————————————————————
$X
$X 1. Run file as is.
$X    Requires LS-DYNA MPP Dev svn 118500 (or higher) with double precision
$X
$X——————————————————————————
$X——————————————————————————
$# UNITS: kg / m / s / N / Pa / Nm (J) / Pa*s
$X——————————————————————————
$X
*KEYWORD
*TITLE
Tool cooling
$—+—-1—-+—-2—-+—-3—-+—-4—-+—-5—-+—-6—-+—-7—-+—-8
$                                                                              $
$                           ICFD CONTROL CARDS                                 $
$                                                                              $
$—+—-1—-+—-2—-+—-3—-+—-4—-+—-5—-+—-6—-+—-7—-+—-8
*ICFD_CONTROL_CONJ
0
*ICFD_CONTROL_FSI
1
*ICFD_CONTROL_GENERAL
1         0
*ICFD_CONTROL_MESH
$#    mgsf         –    mstrat   2dstruc     nrmsh
1
*ICFD_CONTROL_MESH_MOV
$#    mmsh
-1
*ICFD_CONTROL_OUTPUT
$#    msgl      outl     dtout   lsppout
3         0       0.0         1            &it_plot
*ICFD_CONTROL_TURBULENCE
$#    tmod    submod      wlaw
1         1         1
*ICFD_CONTROL_STEADY
&it_fluid      1e-8      1e-8     1e-12         1         1      0.25         1
*DEFINE_CURVE_TITLE
ICFD dt scale factor
7
$#                a1                  o1
0.0                 1.0
1.0                 1.0
2.0                20.0
25                20.0
26               100.0
1000               100.0
$—+—-1—-+—-2—-+—-3—-+—-4—-+—-5—-+—-6—-+—-7—-+—-8
$                                                                              $
$                       ICFD PARTS/ SECTION/ MATERIAL                          $
$                                                                              $
$—+—-1—-+—-2—-+—-3—-+—-4—-+—-5—-+—-6—-+—-7—-+—-8
*ICFD_MAT_TITLE
water
$#     mid       flg        ro       vis
1         1&rho_fluid &mu_fluid
&hc_fluid &tc_fluid
*ICFD_PART_TITLE
Wall
$#     pid     secid       mid
5         1         1
*ICFD_PART_TITLE
Inlet
$#     pid     secid       mid
6         1         1
*ICFD_PART_TITLE
Outlet
$#     pid     secid       mid
7         1         1
*ICFD_PART_VOL
$#     pid     secid       mid
10         1         1
$#   spid1     spid2     spid3     spid4     spid5     spid6     spid7     spid8
5         6         7         0         0         0         0         0
*ICFD_SECTION
$#     sid
1
$—+—-1—-+—-2—-+—-3—-+—-4—-+—-5—-+—-6—-+—-7—-+—-8
$                                                                              $
$                    ICFD BOUNDARY/INITIAL/LOAD CONDITIONS                     $
$                                                                              $
$—+—-1—-+—-2—-+—-3—-+—-4—-+—-5—-+—-6—-+—-7—-+—-8
*ICFD_BOUNDARY_CONJ_HEAT
$#     pid
5
*ICFD_BOUNDARY_FSI
$#     pid
5
*ICFD_BOUNDARY_NONSLIP
$#     pid
5
*ICFD_BOUNDARY_PRESCRIBED_PRE
$#     pid      lcid        sf     death     birth
7         9       1.01.00000E28       0.0
*ICFD_BOUNDARY_PRESCRIBED_TEMP
$#     pid      lcid        sf     death     birth
6        10       1.01.00000E28       0.0
*ICFD_BOUNDARY_PRESCRIBED_VEL
$#     pid       dof       vad      lcid        sf       vid     death     birth
6         1         1         9       1.0         01.00000E28       0.0
*ICFD_BOUNDARY_PRESCRIBED_VEL
$#     pid       dof       vad      lcid        sf       vid     death     birth
6         3         1         9       1.0         01.00000E28       0.0
*ICFD_BOUNDARY_PRESCRIBED_VEL
$#     pid       dof       vad      lcid        sf       vid     death     birth
6         2         1         8       1.0         01.00000E28       0.0
*ICFD_INITIAL
$#     pid        vx        vy        vz         t         p
0       0.0       0.0       0.0   &T_init       0.0
*DEFINE_CURVE_TITLE
Inlet velocity
$#    lcid      sidr       sfa       sfo      offa      offo    dattyp     lcint
8         0       1.0  &v_inlet       0.0       0.0         0         0
$#                a1                  o1
0.0                 1.0
100.0                 1.0
*DEFINE_CURVE_TITLE
Reference pressure
$#    lcid      sidr       sfa       sfo      offa      offo    dattyp     lcint
9         0       1.0       1.0       0.0       0.0         0         0
$#                a1                  o1
0.0                 0.0
100.0                 0.0
*DEFINE_CURVE_TITLE
Inlet Temperature
$#    lcid      sidr       sfa       sfo      offa      offo    dattyp     lcint
10         0       1.0  &T_inlet       0.0       0.0         0         0
$#                a1                  o1
0.0                 1.0
100.0                 1.0
$—+—-1—-+—-2—-+—-3—-+—-4—-+—-5—-+—-6—-+—-7—-+—-8
$                                                                              $
$                            ICFD MESH KEYWORDS                                $
$                                                                              $
$—+—-1—-+—-2—-+—-3—-+—-4—-+—-5—-+—-6—-+—-7—-+—-8
*MESH_BL
$#     pid     nelth      blth      blfe      blst
5         2      9e-4    3.0e-4         1
*MESH_BL_SYM
$#    pid1      pid2      pid3      pid4      pid5      pid6      pid7      pid8
6         7         0         0         0         0         0         0
*MESH_VOLUME
$#   volid
1
$#    pid1      pid2      pid3      pid4      pid5      pid6      pid7      pid8
5         6         7         0         0         0         0         0
$—+—-1—-+—-2—-+—-3—-+—-4—-+—-5—-+—-6—-+—-7—-+—-8
$                                                                              $
$                             DATABASE (OUTPUT)                                $
$                                                                              $
$—+—-1—-+—-2—-+—-3—-+—-4—-+—-5—-+—-6—-+—-7—-+—-8
*ICFD_DATABASE_FLUX
6
*ICFD_DATABASE_FLUX
7
*END

Figures

figure_001

Download

Description

This example shows two different ways of solving an large cooling problem. In the first input deck set, the fluid is solved using the transient solver and the LES turbulence model, after steady state has been reached, velocity and pressure are no longer updated, allowing the conjugate heat transfer problem to proceed. In the second input deck, the steady state solver and the RANS standard k-epsilon turbulence model are used in order to reach a steady state for the fluid before solving the coupled thermal only problem. Please note that the cooling effect of the surrounding air as well as any potential heat radiation effects have not been taken into account.