

Contacts for Implicit analyses in LS-DYNA

Anders Jonsson, DYNAmore Nordic, an Ansys company

Implicit contacts | Public Slide 1

Implicit contacts

Overview

- Introduction
- Sliding contact
 - Mortar contacts
 - Background and overview
 - Handled contact situations
 - IGNORE options
 - Non-mortar contacts
- Press-fit
 - Mortar contacts
 - Interference contact
- Tied contacts
 - (Very briefely)

- Troubleshooting implicit convergence related to contacts
 - The impossible case / Live demo (?)
- Some contact benchmarks
- Summary

Implicit contacts

Overview

- Introduction
- Sliding contact
 - Mortar contacts
 - Background and overview
 - Handled contact situations
 - IGNORE options
 - Non-mortar contacts
- Press-fit
 - Mortar contacts
 - Interference contact
- Tied contacts
 - (Very briefely)

- Troubleshooting implicit convergence related to contacts
 - The interesting case / Live demo (?)
- Some contact benchmarks
- Summary

Implicit contacts

Introduction

- Contacts in LS-DYNA is a vast filed
 - Focus on implicit applications
 - Brief overview of possibilities many more
- Sliding contacts keeping parts separated
 - Transfer Normal and Tangential forces
 - Heat flux. etc.
- Tied contacts keeping parts together
 - Transfer all forces
 - Heat flux, etc.
- Tiebreak contacts a bond that can breamort.
 - Compare cohesive elements

Introdu Tied weld contacts – creating a bond bas develop example temperature compre

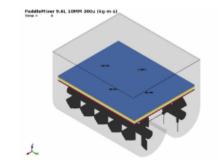
First ,go to contact definition in LS-DYNA

Jimmy Forsberg, DYNAmore Nordic - an Ansys Company

Intro

© 2023 DYNAmore Nordic AB

Which contact to use in LS-DYNA?


Overview of selection process – ordinary contact

- What kind of problem?
- Firstly use MPP version of LS-DYNA
- Crash/drop test problem using the explicit solver

 - *CONTACT_AUTOMATIC_SINGLE_SURFACE
 - SOFT=2
 - Solid element erosion YES
 - *CONTACT_ERODING_SINGLE_SURFACE
 - SOFT=2
 - *CONTACT AUTOMATIC GENERAL (when SOFT=1 or 2)
 - Treatment of beam elements
 - Seperate contact for edge treatment
- Implicit problem(/accuracy needs)
 - *CONTACT_AUTOMATIC_SINGLE_SURFACE_MORTAR
- Which elements are to be treated with the contact?
- Non-traditional lagrangean elements/particles → special contact!

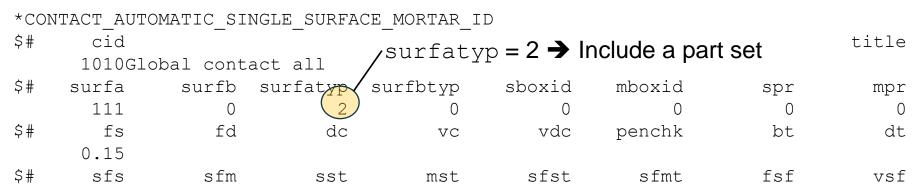
Background

- For sliding contact in implicit analyses, use the Mortar contacts:
 - *CONTACT AUTOMATIC SURFACE TO SURFACE MORTAR ID
 - *CONTACT_AUTOMATIC_SINGLE_SURFACE_MORTAR_ID
- Normally requires a minimum of input:
 - define what is in contact using parts or part sets, and
 - specify coefficient of friction.
 - It is recommended to use the softer part (less stiff material, or coarser mesh) as tracked.
 - Also supports more advanced options, i.e., pressure dependent friction
- Penetration information will be reported in mes0* files.
 - If "too large" penetrations are noted during the simulation, contact stiffness can be increased using the SAFS- and IGAP-parameters.
 - Also, in sleout and d3plot for fringeplotting

DYNA

Background

- For sliding contact in implicit analyses, use the Mortar contacts:
 - *CONTACT AUTOMATIC SURFACE TO SURFACE MORTAR ID
 - *CONTACT_AUTOMATIC_SINGLE_SURFACE_MORTAR_ID


```
*CONTACT AUTOMATIC SINGLE SURFACE_MORTAR_ID
$#
       cid
                                   vsurfayp = 5 → Include everything in the contact
      1010Global contact all
                                  surfbtyp
$#
                surfb
                       surfatyp
                                                         mboxid
     surfa
                                               sboxid
                                                                        spr
                                                                                  mpr
                   fd
        fs
                                                  vdc
                                                          penchk
                                                                                   dt
                                        VC
                                                                         bt
      0.15
$#
       sfs
                  sfm
                                                 sfst
                                                            sfmt
                                                                        fsf
                                                                                  vsf
                             sst
                                       mst
```

- Same modelling approach as in an explicit model applies
 - Possible to use one single surface contact definition
 - "All" contact situations will be detected automatically

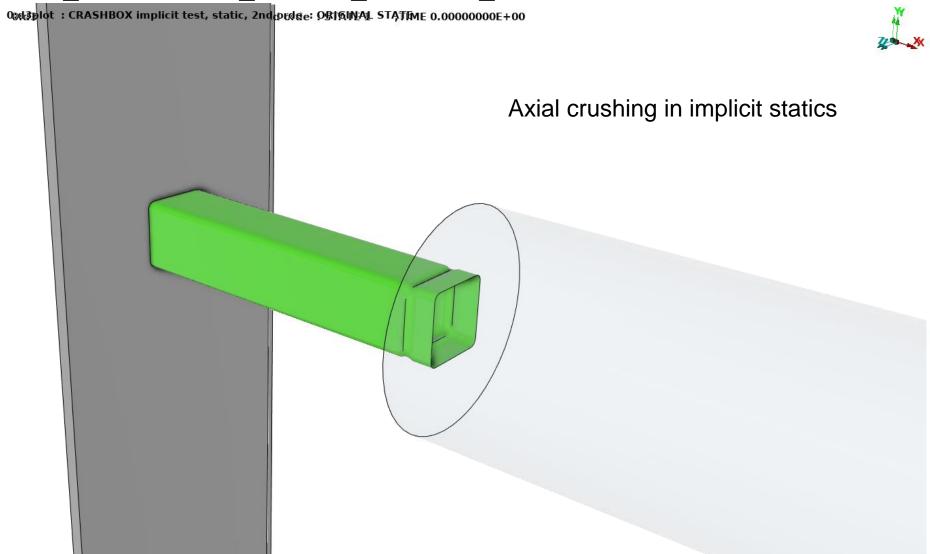
DYNA

Background

- For sliding contact in implicit analyses, use the Mortar contacts:
 - *CONTACT AUTOMATIC SURFACE TO SURFACE MORTAR ID
 - *CONTACT_AUTOMATIC_SINGLE_SURFACE_MORTAR_ID

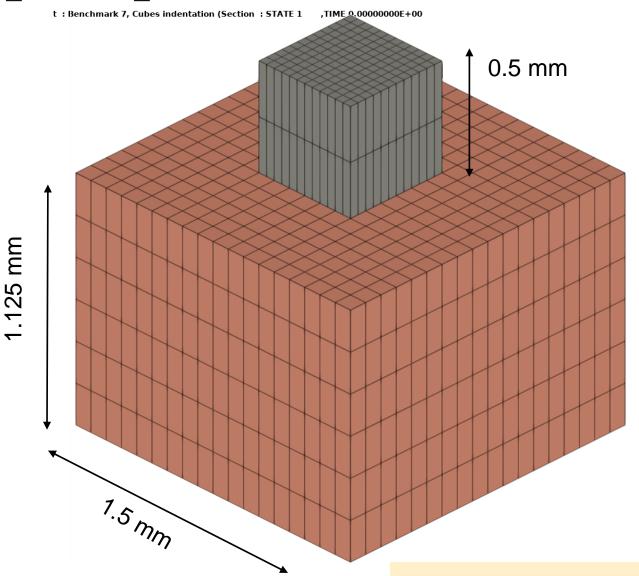
- Same modelling approach as in an explicit model applies
 - Possible to use one single surface contact definition
 - "All" contact situations will be detected automatically
 - → Exclude adhesive solids, spotweld solids/beams from contact

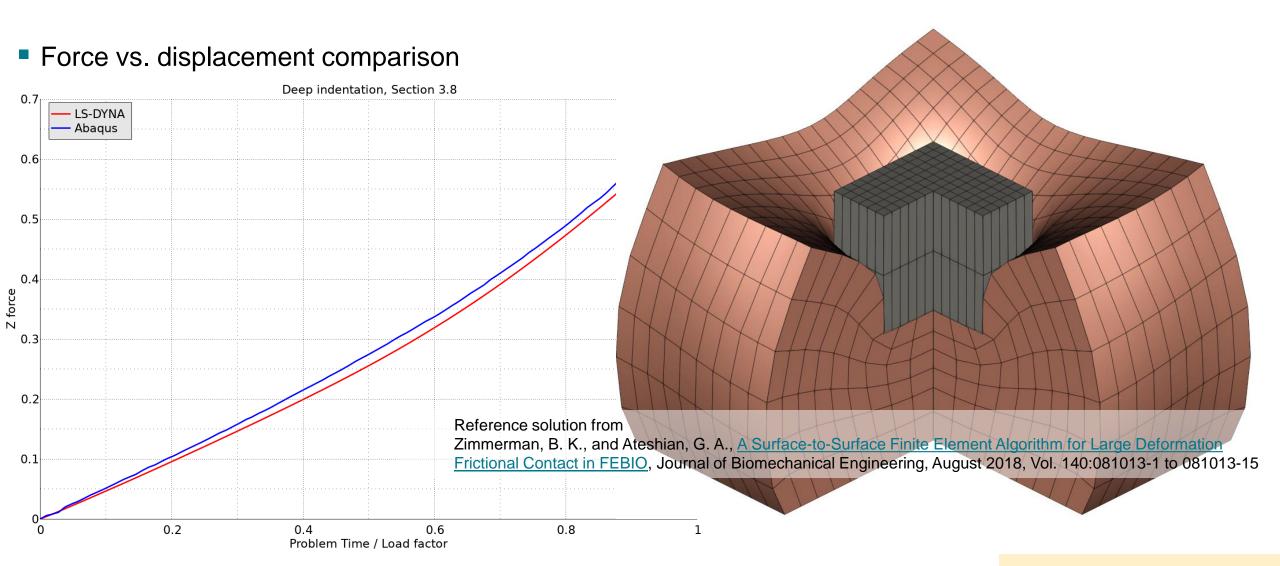
DYNA


Background

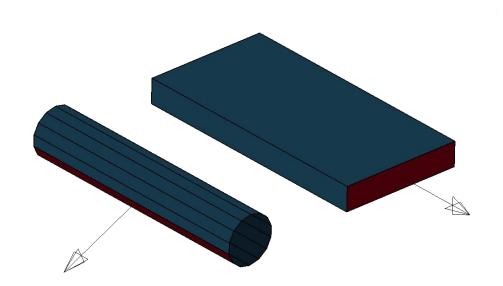
- For sliding contact in implicit analyses, use the Mortar contacts:
 - *CONTACT AUTOMATIC SURFACE TO SURFACE MORTAR ID
 - *CONTACT AUTOMATIC SINGLE SURFACE MORTAR ID
- Normally requires a minimum of input:
 - define what is in contact using parts or part sets, and
 - specify coefficient of friction.
 - It is recommended to use the softer part (less stiff material, or coarser mesh) as tracked.

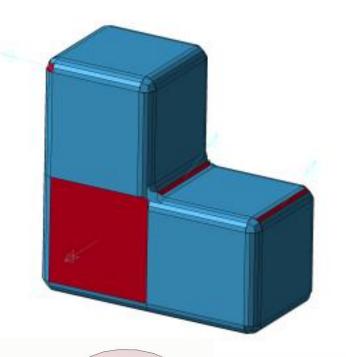
*CONTACT_AUTOMATIC_SURFACE_TO_SURFACE_MORTAR_ID \$# cid										
1000004PLATEN to BiW										
\$#	surfa	surfb	urfatyp	surfbtyp	sboxid	mboxid	spr	mpr		
	10001	(50000001)	2	3			1	1		
\$#	fs	fd	dc	VC	vdc	penchk	bt	dt		
	0.2									
\$#	sfs	sfm	sst	mst	sfst	sfmt	fsf	vsf		

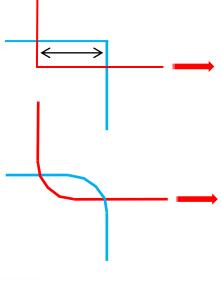

Example: *CONTACT_AUATOMATIC_SINGLE_SURFACE_MORTAR

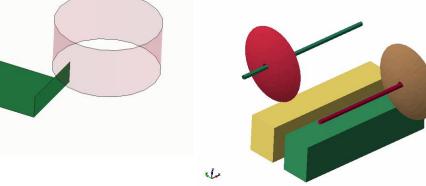

Example: *CONTACT AUATOMATIC SURFACE TO SURFACE MORTAR

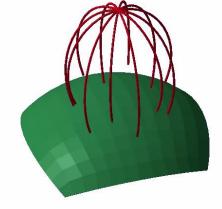
- A small stiff block is pressed into a larger, softer body
- Hyperelastic materials
 - Top block: E=100 MPa, v = 0.3
 - Bottom block: E=1 MPa, v = 0.3
- Target motion is 0.6 mm (53 % of thickness)
- A quarter slice removed from visualization for clarity



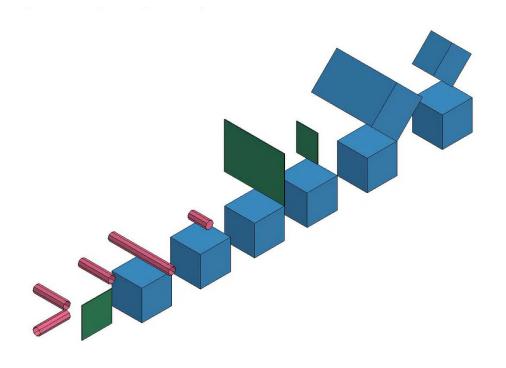

Example: *CONTACT_AUATOMATIC_SURFACE_TO_SURFACE_MORTAR

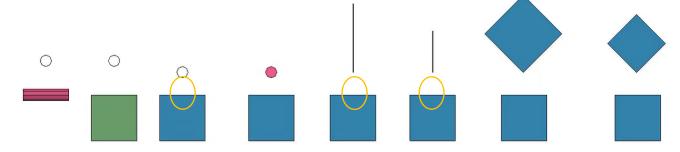



Contact situations



- Edge contact with shells
 - Flat surfaces
- Faceted surface on beams
 - Including end point
- Smoothed edges on solid elements
 - Avoids spurious contact situation when sliding off edges

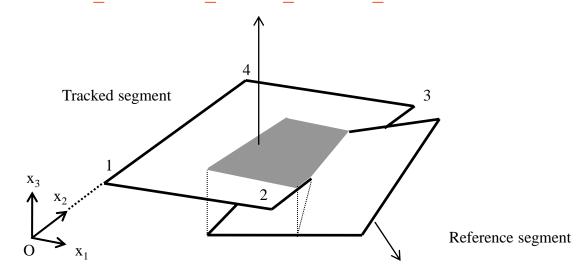



Contact situations

DYNA

Segment-based penetration check

- Captured contact situations
 - Segments not allowed to penetrate segments
 - Shell edge to segment of shell and solid
 - Solid edge to segment of shell and solid
 - Beam to beam
 - Beam to shell edge (NO segment extension!)
 - Beam to segment of shell and solid
- Including element erosion

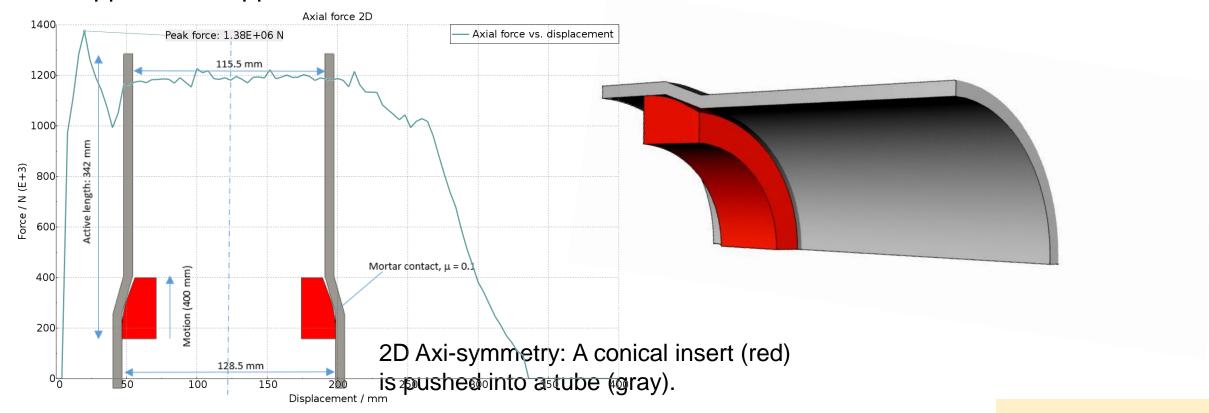


- Segment-to-segment based contact intended for implicit analysis. Based on consistent FE theory.
- Smooth force transition for penetration and segment to segment sliding
- Contact stress consistent with element shape functions
- Expensive but accurate
- Most contact situations detected automatically
 - Including element erosion
- Long term goal is to make it universal with few parameters
- Also, Mortar options for *CONTACT
 - 2D,
 - THERMAL,
 - TIED, TIEBREAK, TIED WELD and FORMING

Most common are

*CONTACT_AUTOMATIC_SURFACE_TO_SURFACE_MORTAR

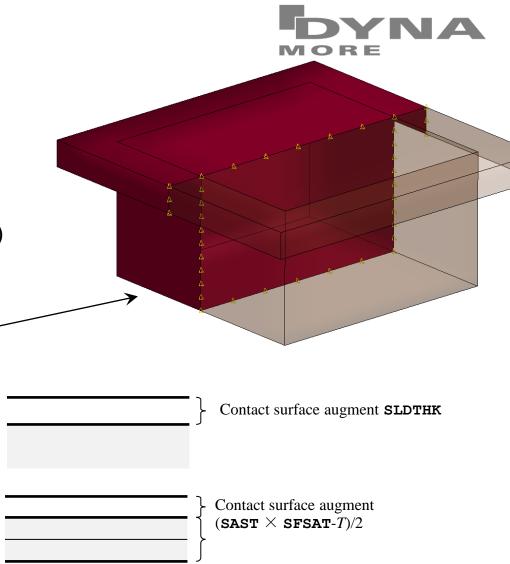
*CONTACT AUTOMATIC SINGLE SURFACE MORTAR



DYNA

2D Example

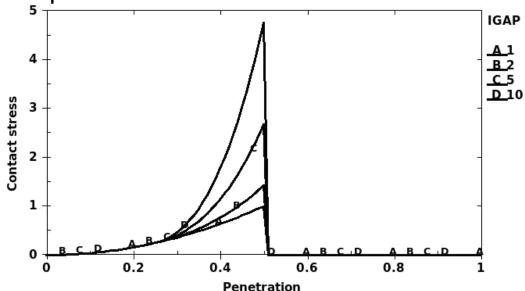
- *CONTACT 2D AUTOMATIC_SINGLE_SURFACE_MORTAR
- *CONTACT 2D AUTOMATIC SURFACE TO SURFACE MORTAR


Supported in mpp from R13

Implicit contacts | Public Slide 15

Parameters

- FS, FD, DC
 - Dynamic friction supported in dynamic or explicit
- VDC
 - Damping only in dynamic or explicit (not recommended in implicit)
- VC
 - Cap for the tangential surface stress (vc $\approx \frac{\sigma_Y}{\sqrt{3}}$)
- SFSA
 - Scale factor on penalty stiffness
- ISYM On *CONTROL CONTACT
 - Set to negative to define a node set on symmetry plane
- PENMAX, SLDTHK
 - Used to offset contact surface for solids
 - PENMAX is maximum penetration depth
- SAST, SFSAT
 - Used to set/offset contact surface for shells


Parameters

MPP 1	IGNORE	ВСКТ	LCBCKT	NS2TRK	INITITR	PARMAX		CPARM8
MPP 2	&	CHKSEGS	PENSF	GRPABLE				
Card 1	SURFA	SURFB	SURFATYP	SURFBTUB	SABOXID	SBBOXID	SAPR	SBPR
Card 2	FS	FD	DC	VC	VDC	PENCHCK	ВТ	DT
Card 3	SFSA	SFSB	SAST	SBST	SFSAT	SFSBT	FSF	VSF
Card A	SOFT	SOFSCL	LCIDAB	MAXPAR	SBOPT	DEPTH	BSORT	FRCFRQ
Card B	PENMAX	THKOPT	SHLTHK	SNLOG	ISYM	I2D3D	SLDTHK	SLDSTF
Card C	IGAP	IGNORE	DPRFAC/ MPAR1	DTSTIF/ MPAR2	EDGEK		FLANGL	CID_RCF
Card D	Q2TRI	DTPCHK	SFNBR	FNLSCL	DNLSCL	TCS0	TIEDID	SHLEDG
Card E	SHAREC							REGION
Card F	PSTIFF	IGNROFF		FSTOL	2DBINR	SSFTYP		

Contact stiffness

- The SFSA parameter scales the contact stiffness
 - Typically increase by orders of magnitude to get noticeable reduction of penetrations, for example $SFSA = 5, 10, 100, \dots$ etc.
- The IGAP parameter controls the progressive contact stiffness increase
 - On optional card C

$$\sigma_{\rm n} = \alpha \beta_{\rm S} \varepsilon K_{\rm S} f \left(\frac{d}{\varepsilon d_{\rm c}^{\rm S}} \right),$$

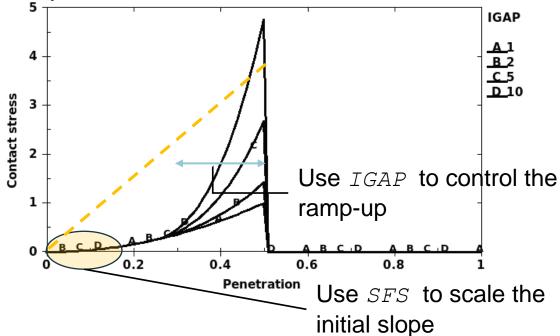
 α = stiffness scaling factor (SFS*SLSFAC)

 $K_{\rm s} = {\rm stiffness\ modulus\ of}\ tracked\ {\rm side}$

 $\varepsilon = 0.03$

d = penetration distance

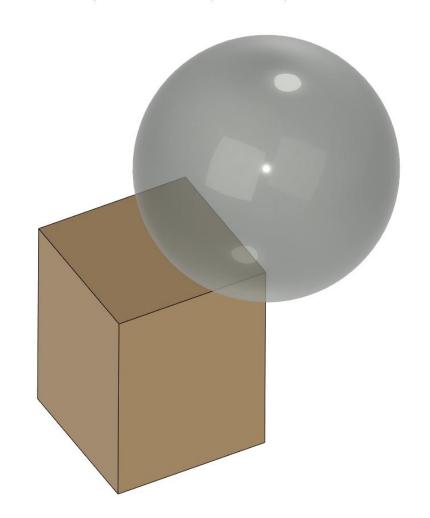
 d_c^s = characteristic length of *tracked* side

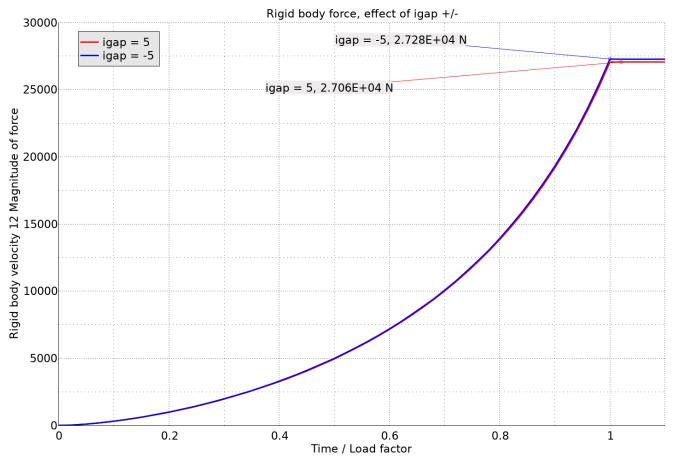

 β_s = stiffness scale factor of tracked side

Contact stiffness

- The SFSA parameter scales the contact stiffness
 - Typically increase by orders of magnitude to get noticeable reduction of penetrations, for example SFSA = 5, 10, 100, ... etc.
- The IGAP parameter controls the progressive contact stiffness increase

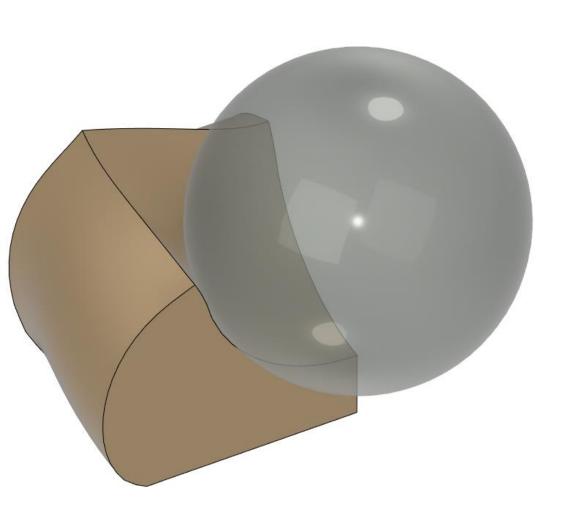
On optional card C

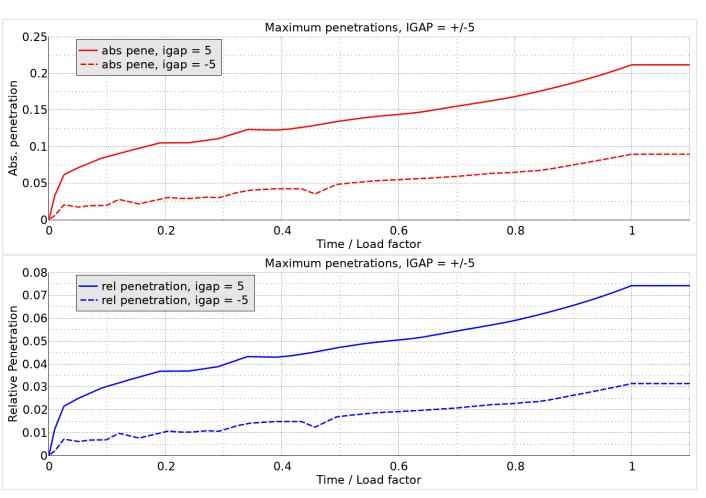

- Increase the SFSA parameter to reduce contact penetrations and obtain a stiffer contact.
- Increase the IGAP parameter to avoid contact release


IGAP < 0 → Linear relation for Contact stress vs. Penetration

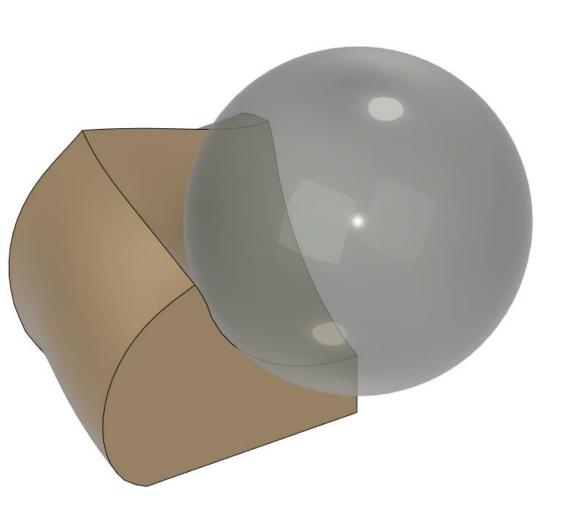
Contact stiffness: IGAP < 0

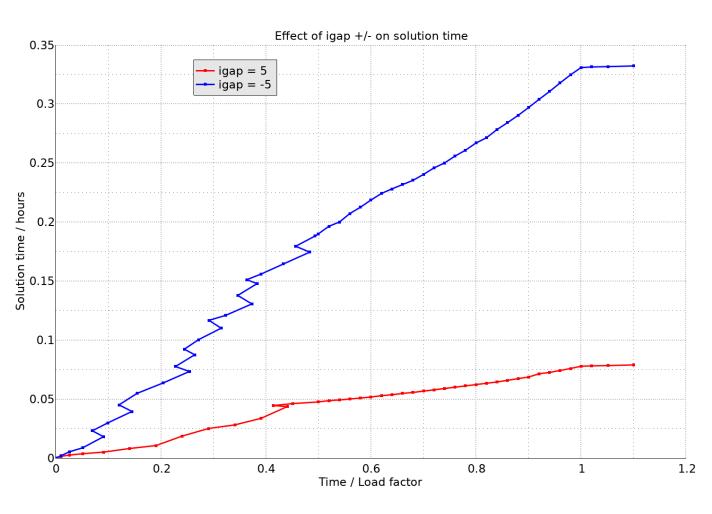
DYNA


0:d3plot : Ex 5b: Solution, ruber cube Full-newton, : STATE 1 ,TIME 0.00000000E+00



Contact stiffness: IGAP < 0





Contact stiffness: IGAP < 0

Mortar contact recommendations

- Use part or part set based tracked and reference sides
 - Avoid possible false edges in the interior of a component
- Use weak part as tracked
 - Leads in general to the best possible implicit convergence behavior
 - Automatically taken care of in a single surface contact
- Contact thickness

- **NLOC**
- All parts have real thickness in Mortar contacts
- Always including effect of nloc for shells
- Rigid shell parts have no thickness in forming contacts

Location of reference surface (shell mid-thickness) for three-dimensional shell elements.

Mortar contact master side is detected as softer

than slave side, might suggest a recommendation of switch

EQ.1.0: Nodes are located at top surface of shell.

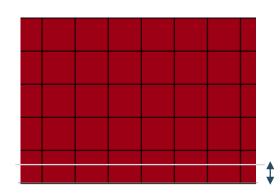
Warning 30397 (INI+397)

between master and slave

EQ.0.0: Nodes are located at mid-thickness of shell (default).

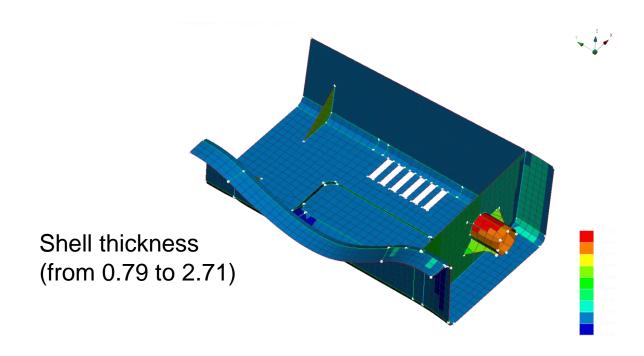
EQ.-1.0: Nodes are located at bottom surface of shell.

Implicit contacts | Public Slide 23


Contact thickness

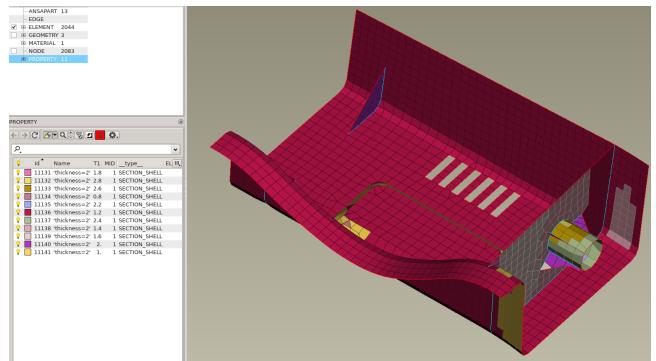
- For shells, the contact thickness is directly related to the physical thickness
 - Separate contact thickness may be specified using *PART CONTACT and OPTT
- For solids, the "contact search depth" may be specified using
 - PENMAX (Optional card B of the *CONTACT definition) in R10 and later
 - The "default value" based on tracked side mesh size is often OK

Contact thickness for shell elements directly related to physical thickness


PENMAX (R10 and later)
SAST (before R10)
for solids

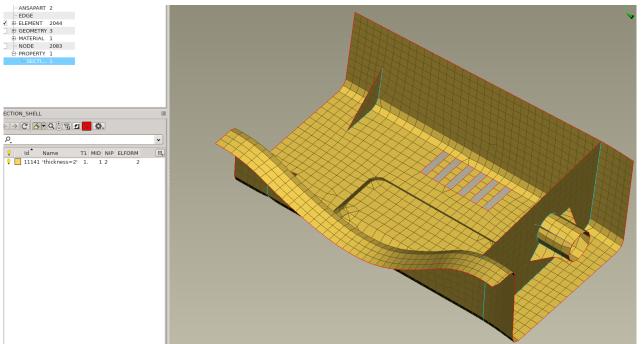
Contact search depth for solids

Contact thickness


- For shells, the contact thickness is directly related to the physical thickness
 - Separate contact thickness may be specified using *PART CONTACT and OPTT
 - For Mortar contacts, physical parts with varying thickness are beneficial to represent as one part also in LS-DYNA, with the thickness variation defined using *ELEMENT SHELL THICKNESS.

Contact thickness

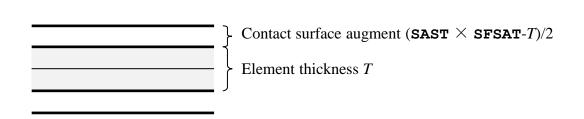
- For shells, the contact thickness is directly related to the physical thickness
 - Separate contact thickness may be specified using *PART_CONTACT and OPTT
 - For Mortar contacts, physical parts with varying thickness are beneficial to represent as one part also in LS-DYNA, with the thickness variation defined using *ELEMENT_SHELL_THICKNESS.

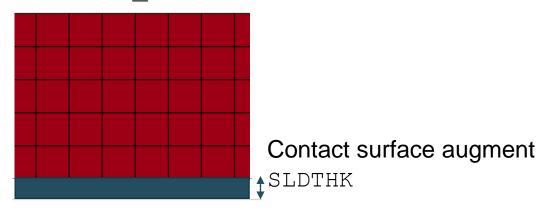


Output as *PARTS (in this case 11)
Works OK in most cases

Contact thickness

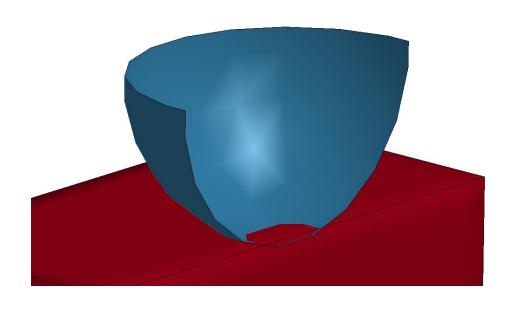
- For shells, the contact thickness is directly related to the physical thickness
 - Separate contact thickness may be specified using *PART_CONTACT and OPTT
 - For Mortar contacts, physical parts with varying thickness are beneficial to represent as one part also in LS-DYNA, with the thickness variation defined using *ELEMENT_SHELL_THICKNESS.


Output as one *PART and *ELEMENT_SHELL_THICKNESS


Preferred for Mortar contact

Modifying contact thickness

- May be useful in for example press-fit analyses
- For shells, the contact thickness may be modified using SAST and SFSAT
- For solids, the contact thickness may be augmented by
 - SLDTHK (Optional card B of the *CONTACT definition) may also be negative ...
- Separate contact thickness for shells may be specified using *PART CONTACT and OPTT



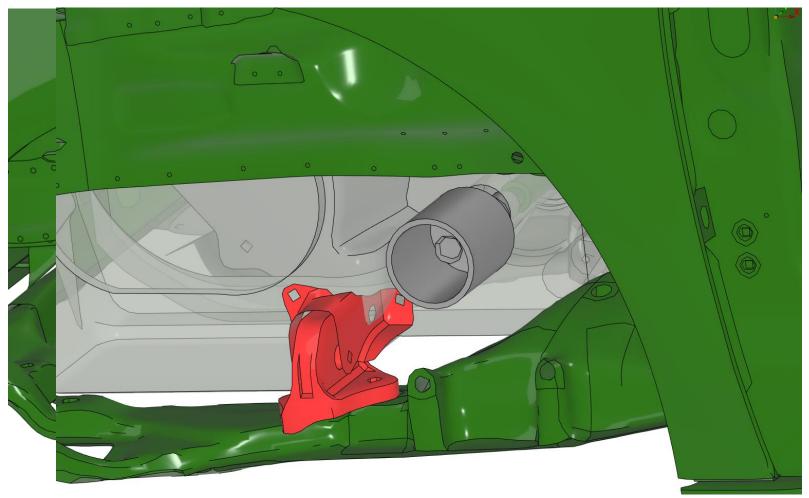
Contact thickness for shell elements may be augmented using SAST and SFSAT

Contact thickness for solids can be augmented using SLDTHK (may also be < 0).

Initial penetrations

- Mortar contact always output initial penetrations in mes* file(s) and how they are treated
- IGNORE will handle initial penetrations

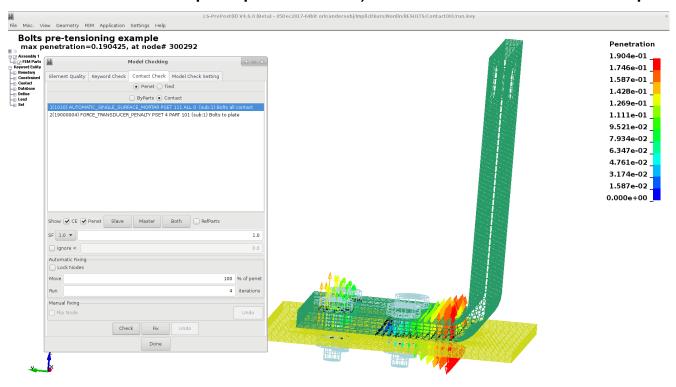
Mortar contact information for contact ID	1						
Number of slave segments	360						
Number of slave segments connected to rigid shells etc	0						
. Number of master segments etc	270						
<pre>*** Warning 19 number of initial penetr</pre>	ations						
List of penetrated pairs to follow							
Face of shell element 301 is penetrating face of solid element 401 by 0.8919116E-02 etc							
Maximum penetration is 0.999999E-02 between	l						


These penetrations will be tracked

Elements 360 and 450

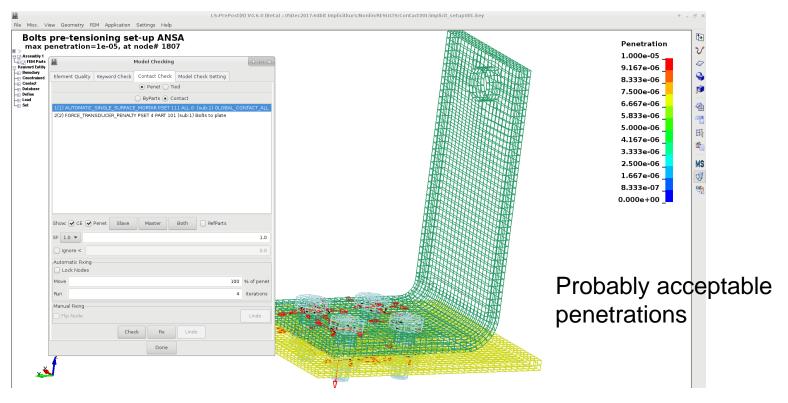
Initial penetrations

Avoid unintended initial penetrations



Implicit contacts | Public Slide 30

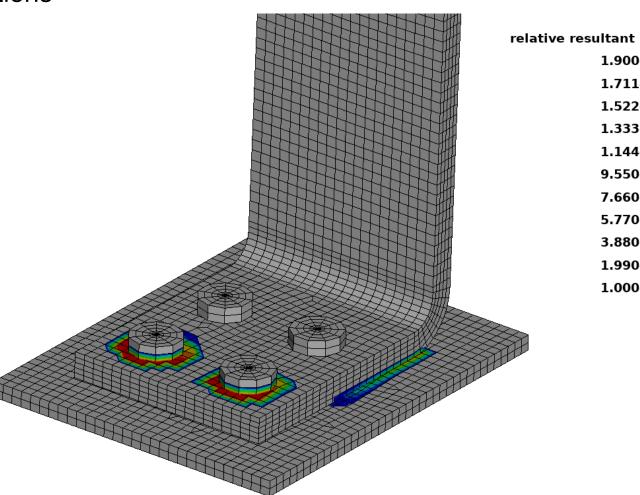
- Avoid unintended initial penetrations
 - Use LS-PrePost (or ANSA, or other pre-processor) to check and fix initial penetrations



In LS-PrePost: Application>Model Checking>Contact Check

Initial penetrations

- Avoid unintended initial penetrations
 - Use LS-PrePost (or ANSA, or other pre-processor) to check and fix initial penetrations



In LS-PrePost: Application>Model Checking>Contact Check

(Initial) penetrations

From R12, it is possible to visualize penetrations reported from the Mortar from d3plot/intfor and binout (sleout)

■ Set PENOUT = 2 on *CONTROL OUTPUT

relative resultant penet. 1.900e-01 1.711e-01 1.522e-01 1.333e-01 1.144e-01 9.550e-02 7.660e-02 5.770e-02 3.880e-02 1.990e-02 1.000e-03

may be used as

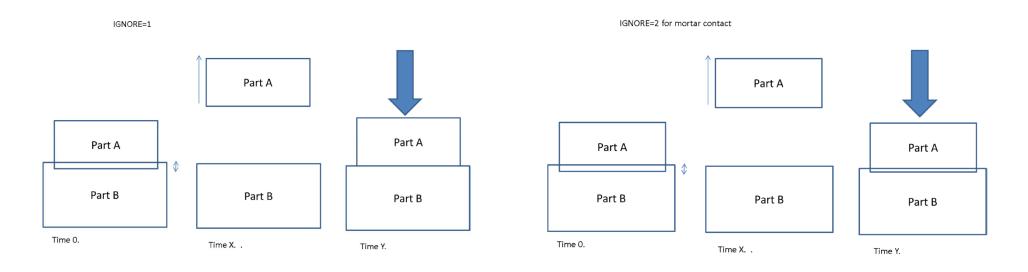
alternative to

interference contacts

Initial penetrations

Contact Optional Card C	IGAP	IGNORE	DPRFAC/ MPAR1	DTSTIF/ MPAR2	EDGEK	Ignored by Mortar contact	CID_RCF
Default	1	0	0.0	0.0	0.0	0.0	0

- IGNORE flag has partially modified meaning for Mortar contacts
 - IGNORE=1 initial penetrations ignored and tracked
 - IGNORE=2 initial penetrations ignored and tracked
 MPAR1 corresponds to initial contact pressure


See next slide

- IGNORE=3 initial moderate penetrations will be removed over time, e.g. for rubber press-fitting
 - MPAR1 time of closure from time zero
 - MPAR1<0 curve ID | MPAR1 | defines relative penetration reduction over time
- IGNORE=4 same as 3, but for large penetrations
 - MPAR2 Maximum initial penetration to resolve (at least the one occurring in the contact interface). Can only be used if the SURFA side consists of solid elements
- IGNORE < 0 same as | IGNORE | but ignore contact between segments belonging to same part, Main purpose are single surface contacts when eliminating initial penetrations by interference

DYNA

Initial penetrations

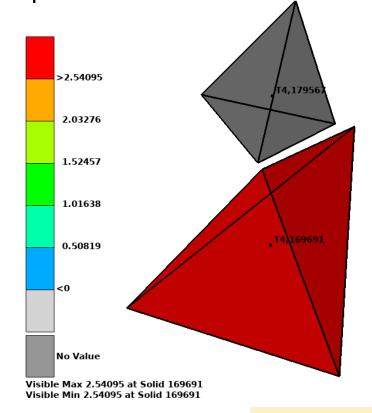
- This is controlled by the IGNORE option on *CONTROL CONTACT or Optional card C of the contact.
 - IGNORE = 1, 2 → No contact stress is applied, the "contact surface" (see figure) is modified

For IGNORE = 2, the contact surface is fixed at its initial location

Ignore options: IGNORE = -2

- A global single surface contact using part set
 - A case where self-contact within parts is neglected (which is OK in many quasi-static load cases)
 - All contacts between segments belonging to different Parts are still detected automatically

*CONTACT_AUTOMATIC_SINGLE_SURFACE_MORTAR_ID \$# cid tit:									
2vehicle self contact									
\$#	ssid	msid	sstyp	mstyp	sboxid	mboxid	spr	mpr	
	100	0	2						
\$#	fs	fd	dc	VC	vdc	penchk	bt	dt	
	0.2								
\$#	sfs	sfm	sst	mst	sfst	sfmt	fsf	vsf	
\$#	soft	sofscl	lcidab	maxpar	sbopt	depth	bsort	frcfrq	
\$#	penmax	thkopt	shlthk	snlog	isym	i2d3d	sldthk	sldstf	
\$#	igap	ignore	mpar1	mpar2	unused	unused	flangl	cid_rcf	
IGNORE < 0									


In some cases, typically with coarse solid mesh of surfaces close to each other, the default search depth of the Mortar contact may be too large.

This can typically be noted by that spurious penetrations are reported in the mes0* - files.

- In these cases, either
 - Give a reasonable search depth using PENMAX,
 - and/or change mesh size on the surfaces

Face of solid element 169691 is penetrating face of solid element 179567 by 0.2540949E+01

Face of solid element 169691 is penetrating edge of solid element 179567 by 0.2512578E+01

DYNA

Initial penetrations

■ It is good practice to inspect the mes00* - files and check for penetration messages once the simulation gets started.

For example:

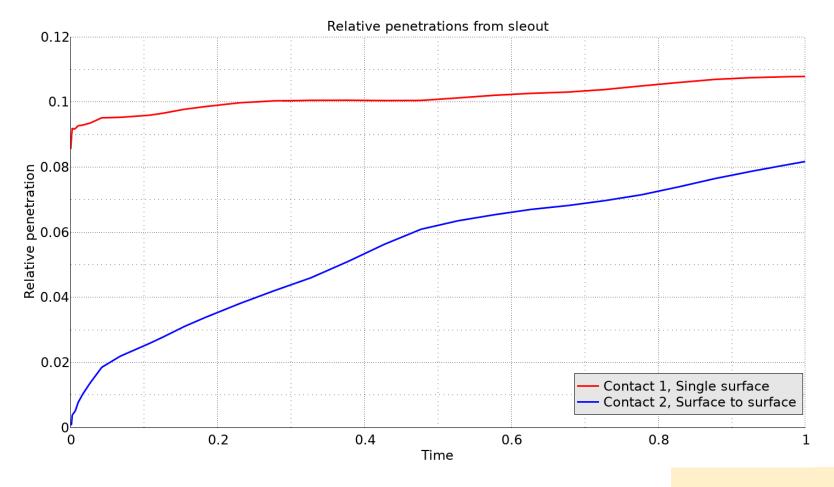
```
Contact sliding interface 151

Number of contact pairs 80179

Maximum penetration is 0.1686677E-17 between elements 515944 and 493946 on this processor

Maximum relative penetration is 0.6337536E+00 % between elements 515944 and 493946 on this processor

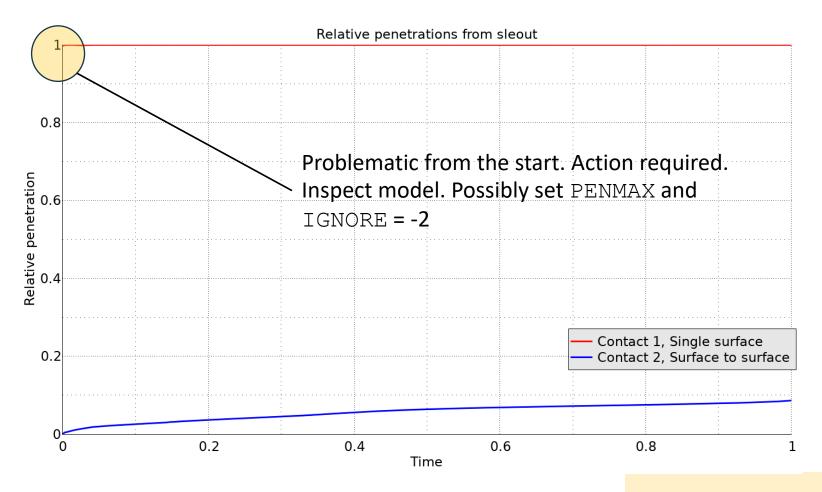
BEGIN implicit dynamics step 1 t= 1.0000E-02 02/04/20 21:15:17
```


Initial penetrations

■ It is convenient to track the evolution of penetrations if the PENOUT — option is active on

*CONTROL OUTPUT

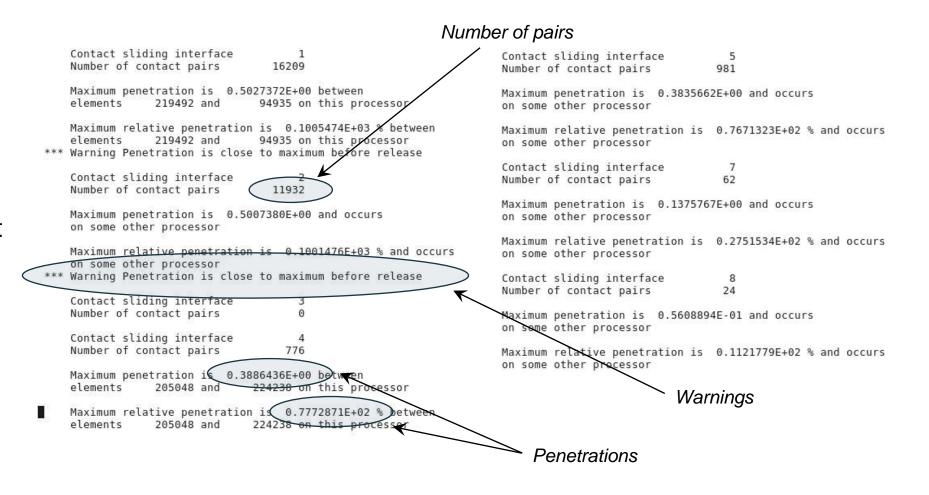
- History plot from sleout
- For example:

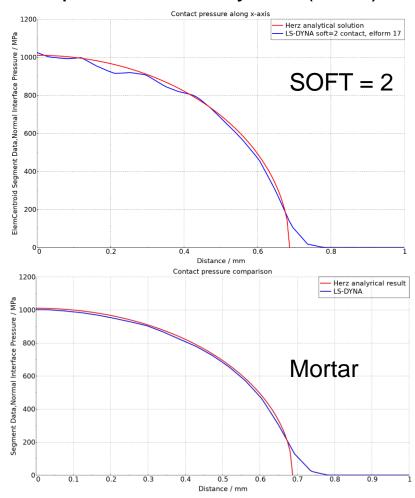

DYNA

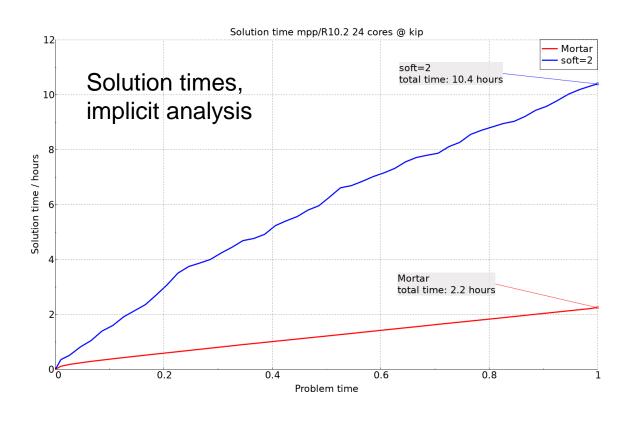
Initial penetrations

■ It is convenient to track the evolution of penetrations if the PENOUT – option is active on

*CONTROL_OUTPUT


For example:


- Number of contact pairs
- Maximum penetration, absolute and relative, and elements where this penetration occurs
- Warning if contact is about to release



Motivation (for implicit)

Comparison to analytical (Herz) solution and "explicit" SOFT=2 contact

Non-Mortar contacts

Other contact types

Implicit contacts | Public Slide 43

Sliding contacts

Using non-Mortar contacts

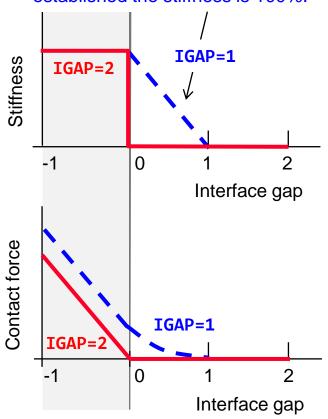
All contact types are available for explicit and implicit analysis, e.g.

```
*CONTACT_SURFACE_TO_SURFACE
*CONTACT_NODES_TO_SURFACE
*CONTACT_ONE_WAY_SURFACE_TO_SURFACE
*CONTACT FORMING ...
*CONTACT AUTOMATIC ...
*CONTACT_AUTOMATIC_SINGLE_SURFACE
*CONTACT AUTOMATIC BEAMS TO SURFACE
*CONTACT AUTOMATIC_GENERAL
*CONTACT_2D_AUTOMATIC_...
*CONTACT_..._THERMAL
*CONTACT ... INTERFERENCE
*CONTACT DRAWBEAD
```

family of three

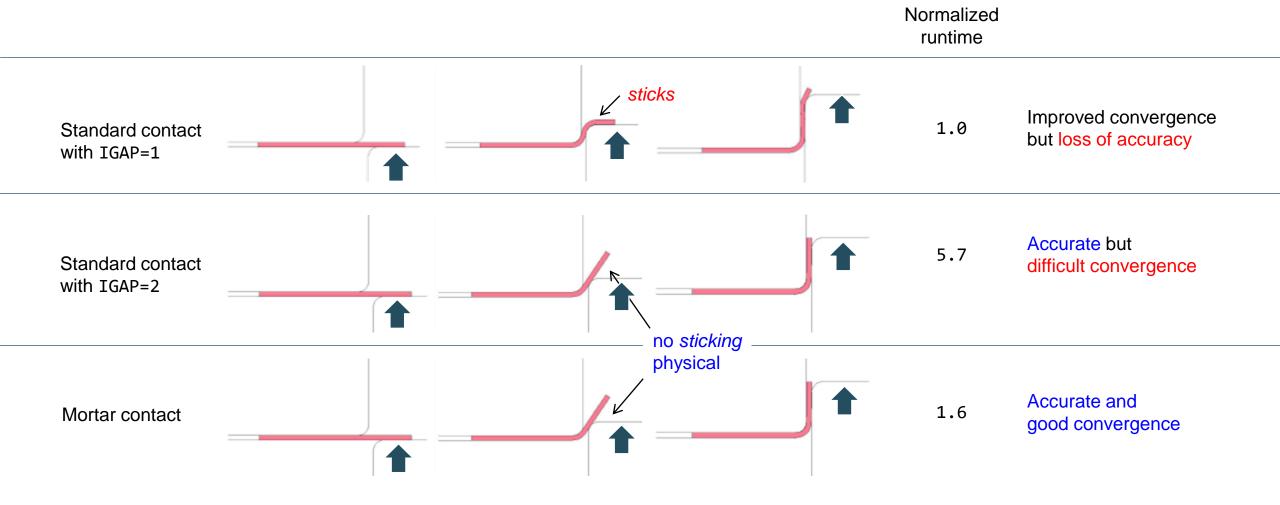
three variations
three variations

for coupled **thermal-mechanical** analysis **interference** fit between parts metal stamping


IGAP

- IGAP controls treatment of nodes which are close
 - IGAP<0 Like IGAP=1, except distance between interfaces for sticky contact is scaled by | IGAP | /10
 - IGAP=1 Apply method to improve convergence default in implicit
 - IGAP=2 No sticky contact
 - IGAP>2 Set IGAP=1 for first IGAP-2 steps, then set IGAP=2
- IGAP can improve convergence at the expense of
 - producing a sticky contact, that will resist opening of the contact gap
 - possibly under-reporting the contact force magnitude

*** Warning 60303 (IMP+303)
Using IGAP=1 may result in zero contact forces.
If this occurs set IGAP=2.


Stiffness terms are added before there actually is contact. When contact is established the stiffness is 100%.

Flanging problem example

"Standard" explicit contact vs. Mortar

Resolving intended penetrations

Implicit contacts | Public | Slide 47

Mortar contact, IGNORE = 3 and 4

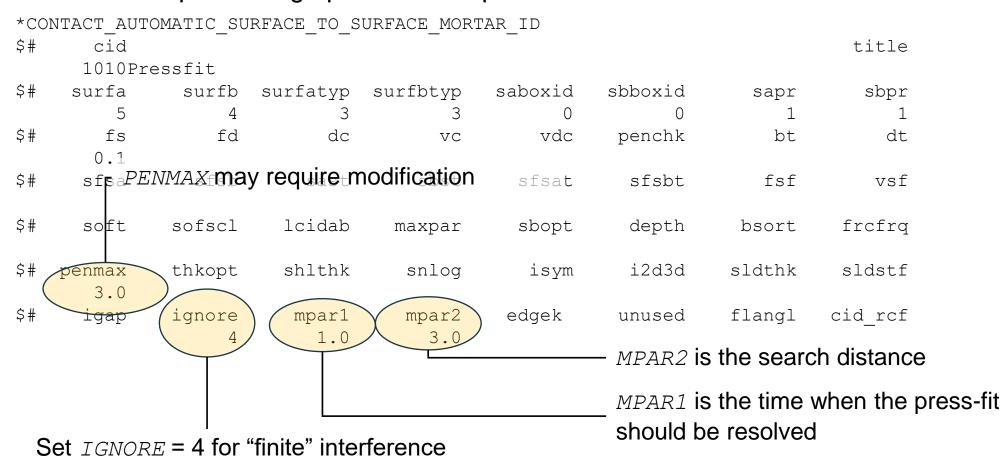
- Intended initial penetration corresponding to the grip between the parts
 - Possible to parametrize using OPTT, SAST, SFSAT, SLDTHK
- Two options for Mortar contact
 - \blacksquare IGNORE = 3
 - Resolve a press fit based on the standard contact search parameters
 - For moderate penetrations
 - Time when penetration should be resolved (using a linear ramp) is given by MPAR1
 - For a user-specified curve, set MPAR1 = −1 *LCID
 - Only option if both SURFA and SURFB are shell parts
 - \blacksquare IGNORE = 4
 - Specify a custom search depth for finding the penetrations using MPAR2
 - Since the default search depth will not find penetrations below PENMAX/2
 - Requires SURFA to be a solid part

Mortar contact, *IGNORE* = 3

Mortar example for small penetration / press-fit

		•	•		•			
*CONTACT AUTOMATIC SURFACE TO SURFACE MORTAR ID								
\$#	cid	_		_	_			title
1010Pressfit								
\$#	surfa	surfb	surfatyp	surfbtyp	saboxid	sbboxid	sapr	sbpr
	5	4	3	3	0	0	1	1
\$#	fs	fd	dc	VC	vdc	penchk	bt	dt
	0.1							
\$#	sfsa	sfsb	sast	sbst	sfsat	sfsbt	fsf	vsf
\$#	soft	sofscl	lcidab	maxpar	sbopt	depth	bsort	frcfrq
\$#	penmax	thkopt	shlthk	snlog	isym	i2d3d	sldthk	sldstf
± 11						_		
\$#	igap	(ignore)	mpar1	mpar2	edgek	unused	flangl	cid_rcf
		3	1.0					61.
					<i>MPAR1</i>	is the time	when the	press-tit s

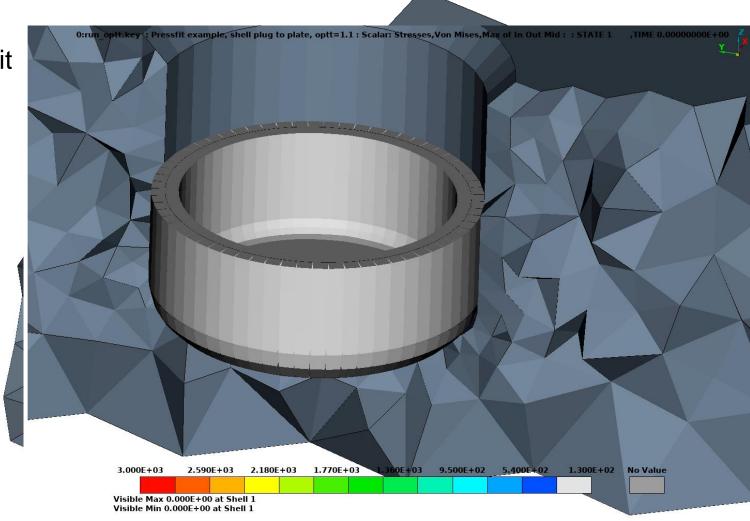
MPAR1 is the time when the press-fit should be resolved using a linear ramp.


Or MPAR1 = -1 * LCID for user-specified curve.

Set IGNORE = 3 for "small" interference

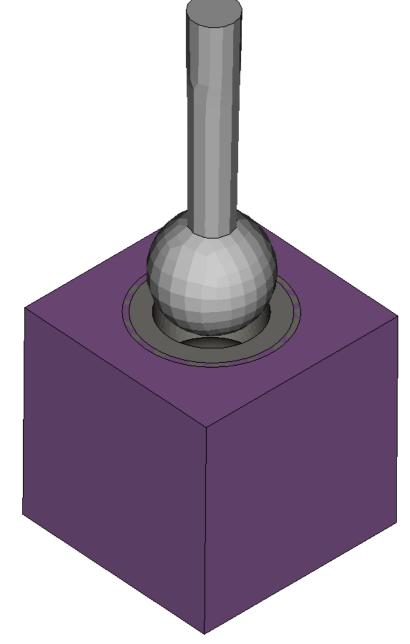
DYNA

Mortar contact, *IGNORE* = 4


Mortar example for large penetration / press-fit

DYNA

Mortar contact, *IGNORE* = 3


- Mortar example for (IGNORE = 3) press-fit
- Shell element plug, Ø≈ 12 mm. Radial grip 0.1 mm
- Thickness 1.1 mm

Mortar contact, IGNORE = 4

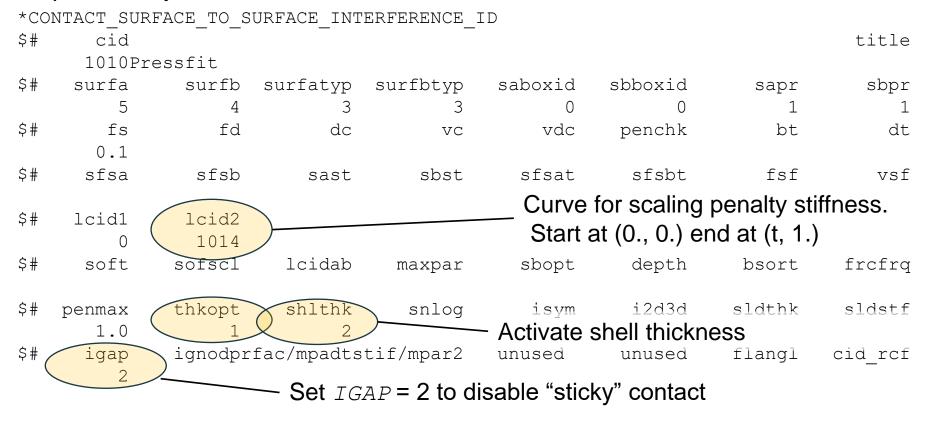
- Mortar example for large penetration (IGNORE = 4) press-fit
 - ~2.7 mm penetration, vs. mesh size 3 mm

Implicit contacts | Public Slide 52

Mortar contact, *IGNORE* = 4

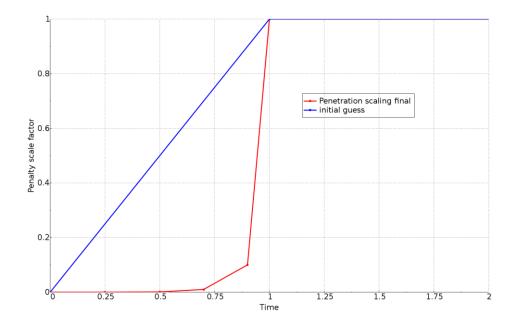
DYNA

- Mortar example for large penetration (IGNORE = 4) press-fit
 - Purple part = Rigid
 - Gray = Rubber (MAT_77)

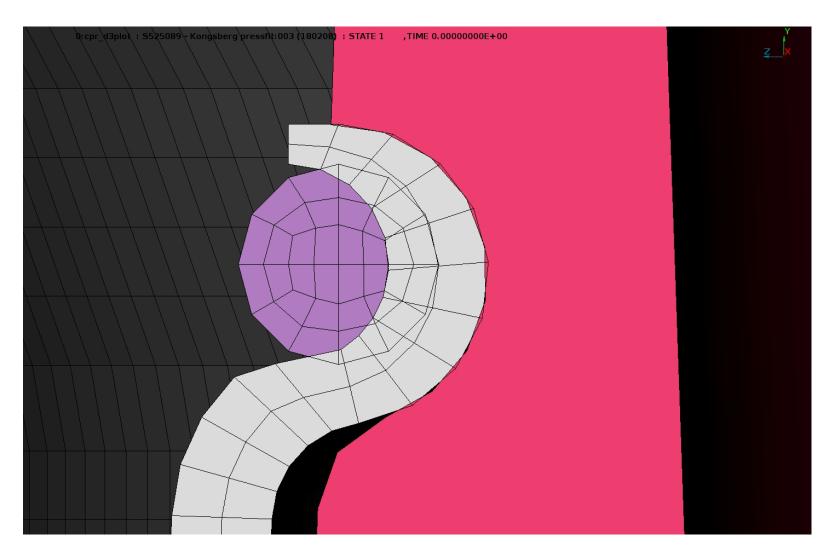


Press fit

*CONTACT SURFACE TO SURFACE INTERFERENCE


- In some cases, for press-fit (often "large" penetrations, IGNORE = 4) analyses using the Mortar contact may run into (convergence) problems.
- An option to try out is then

*CONTACT SURFACE TO SURFACE INTERFERENCE


- A curve starting at (0., 0.) should be provided for scaling the penalty stiffness up to 1.
 - May need some iterations to find the "right" curve. Start with linear ramp

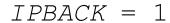
- This contact has the "sticky" option on by default. Set IGAP = 2 to disable.
 - Non-Automatic, requires activation of shell thickness

*CONTACT_SURFACE_TO_SURFACE_INTERFERENCE example

Tied contacts

Implicit contacts | Public | Slide 57

Tied contacts


DYNA

Recommendations

*CONTACT_TIED_	Constraint	DOFs	Move	Moment
	formulation		nodes ⁽¹⁾	transferred ⁽²⁾
NODES_TO_SURFACE	Kinematic	1 – 3	Yes	
NODES_TO_SURFACE_OFFSET	Penalty	1 – 3	No	No
NODES_TO_SURFACE_CONSTRAINED_OFFSET	Kinematic	1 - 3	No	Yes
SHELL_EDGE_TO_SURFACE	Kinematic	All	Yes	
SHELL EDGE TO SURFACE OFFSET	Penalty	All	No	No
SHELL EDGE TO SURFACE BEAM OFFSET	Penalty	All	No	Yes
SHELL EDGE TO SURFACE CONSTRAINED OFFSET	Kinematic	All	No	Yes

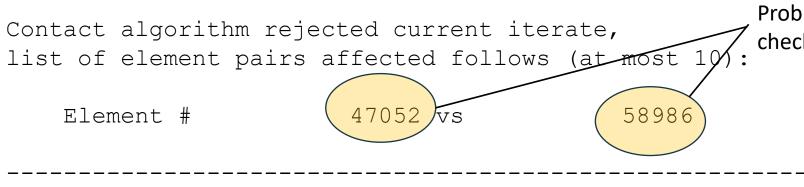
- For contacts involving structural elements / 6 DOFs, use
 - *CONTACT TIED SHELL EDGE TO SURFACE ID
 - *CONTACT TIED SHELL EDGE TO SURFACE BEAM OFFSET ID
- For maximum control, use a node set as SURFA (SURFATYP = 4)
 - Carefully check which nodes get tied, using for example LS-PrePost (Check > Contacts > From solver in ANSA)
- Main application of *CONTACT ... MORTAR TIED is troubleshooting convergence issues
- Setting IPBACK = 1 may be beneficial for avoiding loose parts ...

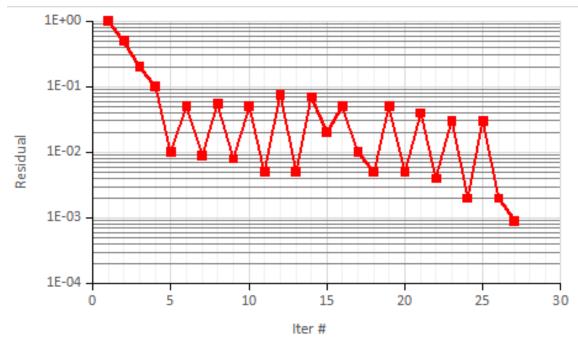
Tied contacts

■ Setting IPBACK = 1 may be beneficial for avoiding loose parts ...

*CONTACT_TIED_SHELL_EDGE_TO_SURFACE_ID										
\$#	cid							title		
1SPOTWELD CONTACT with ipbak										
\$#	surfa	surfb	surfatyp	surfbtyp	saboxid	sbboxid	sapr	sbpr		
	3	9	2	2						
\$#	fs	fd	dc	VC	vdc	penchk	bt	dt		
± 11				_	_			_		
\$#	sfsa	sfsb	sast	sbst	sfsat	sfsbt	fsf	vsf		
	0.0	0.0	-0.9	-0.9	0.0	0.0	0.0	0.0		
\$# 4	1									
\$# A										
ст т	.									
\$# E	3									
\$# C LS-DYNA will auto-create a penalty based tied										
\$# I)		ipbak			— contact	for the no	des that fa	il to get tied due to	
			100			conflicti	ing constra	ints		
										

Implicit contacts | Public Slide 59


Related to contact


Implicit contacts | Public Slide 60

Related to contacts

DYNAMORE

- An oscillating residual norm may be an indication of a convergence problem caused by contacts
 - One iteration close to converge, the next norms are orders of magnitude higher, and then close to converge again, and so on
 - Check d3hsp / mes0* files
- RETRY due to contact problems

Problematic element IDs listed: inspect model, check d3iter and d3plot files

automatic time step size DECREASE, RETRY step:

Related to contacts

- Avoid unintended initial penetrations
 - Check and fix penetrations in for example LS-PrePost
 - Check reported initial penetrations in mes0* file(s)
- Spurious initial penetrations
 - Adjust PENMAX
 - Set IGNORE = -2 on *CONTACT AUTOMATIC SINGLE SURFACE MORTAR
- If you <u>suspect</u> that problems with the contacts is causing convergence issues, you can try
 - switching to tied contacts. Just add TIED to *CONTACT AUTOMATIC ... MORTAR
 - reduce contact stiffness (SFSA)
 - Note! Only a step in the troubleshooting process, not a permanent fix!

Related to contacts

- If the assembly is only connected via pre-tension and sliding contacts, it will contain rigid body modes
 - Check for

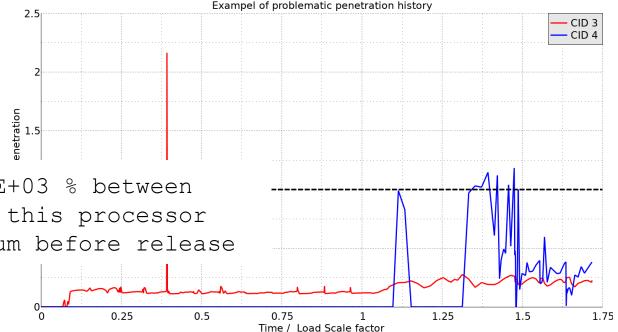
```
*** Warning 60124 (IMP+124)

2 negative eigenvalues detected

36 t 2.0000E-03 dt 2.00E-03 write d3iter file
```

02/02/18 21:12:51

- To overcome this, activate implicit dynamics (initially)
 - Set IMASS = 1 on *CONTROL_IMPLICIT_DYNAMICS
 - Ramp down dynamic effects using TDYBUR and TDYDTH
 - Note! For implicit dynamics, use a physical time scale for load application
 - For example 1000 ms or 10 s

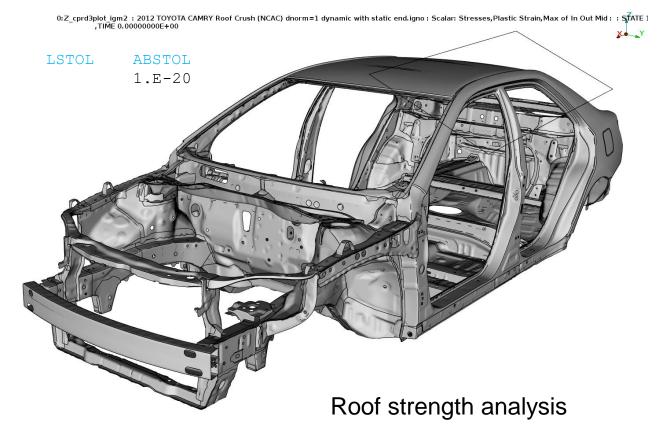

Related to contacts

- Contact release can cause severe convergence problems
 - Look for relative penetrations > 1
 - in mes0* files:

Maximum relative penetration is 0.1268843E+03 % between elements 162548 and 162861 on this processor *** Warning Penetration is close to maximum before release

Try increase IGAP to avoid contact release

Related to Mortar single surface contacts


- If self-contact within the same part can be neglected, set IGNORE = -2 on *CONTACT AUTOMATIC SINGLE SURFACE MORTAR
- It may speed up the simulation to use a box to limit the contact search domain
 - *DEFINE BOX
 - ...BOXID on Card 1 of *CONTACT AUTOMATIC SINGLE SURFACE MORTAR

Related to contacts

 For simulations with big changes in contact state in each iteration, switching to full-Newton may be beneficial for convergence

*CONTROL IMPLICIT SOLUTION									
\$#	NSOLVR	(ILIMIT	MAXREF 55	DCTOL	ECTOL	RCTOL			
\$#	DNORM	DIVERG	ISTIF	NLPRINT	NLNORM	D3ITCTL			
Ψ 11	1	DIVERG	10111	3	4	1			
\$#	ARCCTL	ARCDIR	ARCLEN	ARCMTH	ARCDMP				
\$#	LSMTD								
5 *CONTROL IMPLICIT AUTO									
\$	IAUTO 1	TEOPT 30	TEWIN 5	DTMIN 1.E-5	DTMAX -700.	DTEXP			

Related to tied contacts

- Carefully check which nodes get tied
 - Using for example LS-PrePost, or Check > Contacts > From solver in ANSA
- Inspect d3hsp/mes0* files to confirm check results from pre-processors.
- Define a tracked node set (SURFATYP=4) if full control is desired
- Check for mesh distortion due to nodal projections *** Warning 41240 (SOL+1240)
 - Tied contacts causing zero-volume hexas, for example spotwelds or adhesives
- Activate IPBACK if a constraint-based tied contact is used

General

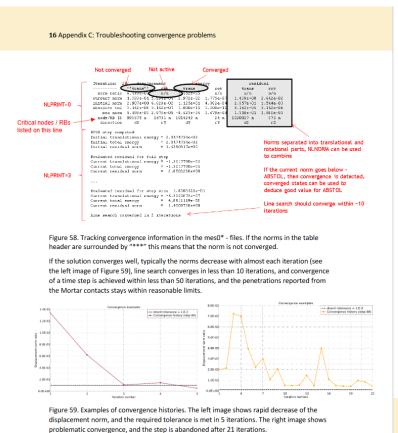
Implicit contacts | Public

- See previous Webinar
 - Troubleshooting convergence problems in LS-DYNA implicit, 2021-12-16
- Appendix C of the Guideline for implicit analyses in LS-DYNA

Guideline for implicit analyses using LS-DYNA

Copyright © DYNAMore Nordic AB 2022. All rights reserved.

1 Background
 2 Overview


3 LS-DYNA database cards for different analysis types

- 4 Set-up of some common implicit analysis types
- 5 Element types
- 6 Contacts for implicit analyses
- 7 Material models
- 8 Loads and boundary conditions
- 9 Other implicit analysis types
- 10 Modifications of control card settings
- 11 References
- 12 Revision record
- 13 Disclaimer
- 14 Appendix A: Rubber modeling for implicit analysis
- 15 Appendix B: Restart of analyses

16 Appendix C: Troubleshooting convergence problems

- 17 Appendix D: Converting an implicit model to explicit
- 18 Appendix E: Converting an explicit model to implicit
- 19 Appendix F: Implicit / explicit switching

20 Appendix G: Some comments on control card settings

Related to Mortar contact

DYNA

- Interesting example
- Live demo!

Contact benchmarks

Comparisons to analytical solution, comparisons to FEBIO and Abaqus

LS-DYNA implicit and Mortar contacts

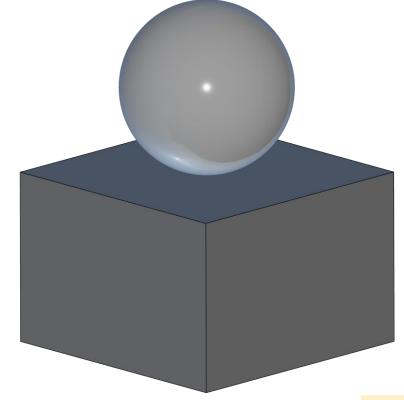
DYNA

Contact benchmarks

- Highly accurate and efficient contacts are important
- Here, some benchmark results are presented
 - Herz' contact
 - Comparisons to some of the cases presented in the paper
 - Zimmerman, B. K., and Ateshian, G. A., A Surface-to-Surface Finite Element Algorithm for Large Deformation Frictional Contact in FEBIO, Journal of Biomechanical Engineering, August 2018, Vol. 140:081013-1 to 081013-15
 - Some of these were reproduced using LS-DYNA R13.1
 - 1. Pinching of a hollow ball
 - Deep indentation
 - 3. Compression of concentric spheres
 - 4. Twisting contact between hemisphere and box

Herz contact, LS-DYNA vs. analytical

Compare stress, displacements and contact pressures from LS-DYNA to results Herz' theory


■ Herz results from *Johnson, K.L.,* Contact mechanics, Cambridge university press, 1985

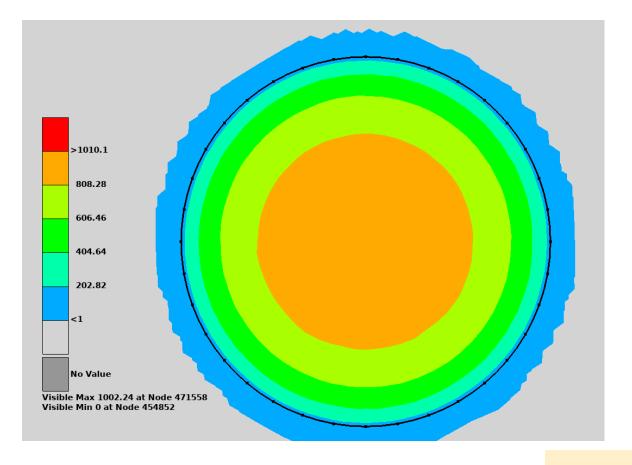
• A steel (E=210 GPa, v = 0.3) sphere, R = 50 mm, is pushed into a flat "infinite" steel plate by a force of

1 kN.

Meshed using 2nd order tets
 0.1 – 5 mm size. 550E3 elements

 A ¼ model with 245E3 elements was also studied

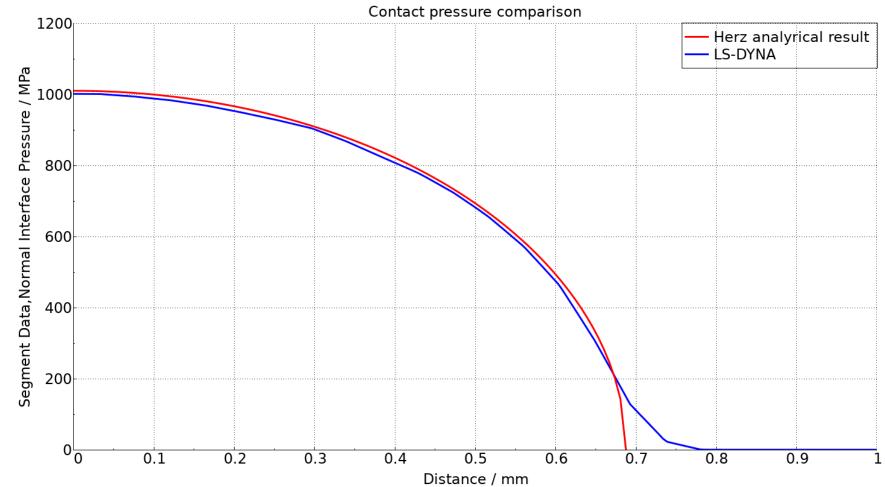
Results



Contact area (a) and peak contact pressure (p_0)

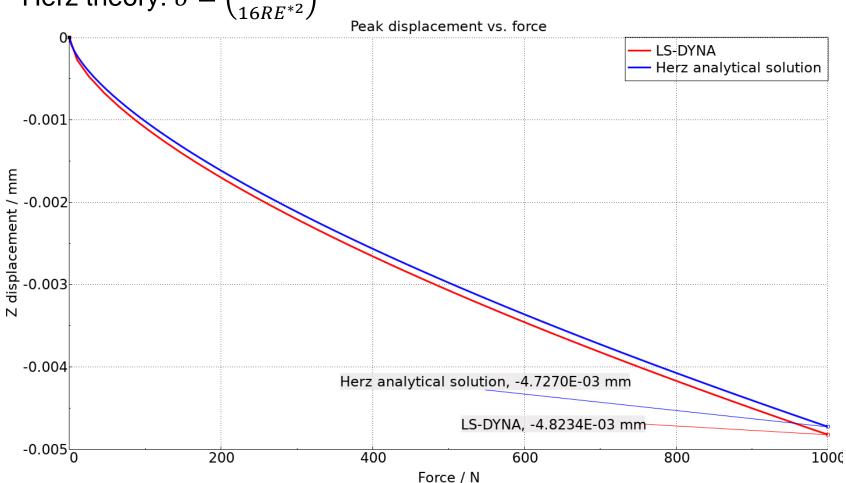
•
$$a = \left(\frac{3PR}{4E^*}\right)^{1/3} \approx 0.68753$$
 mm, with $E^* = \frac{E}{2(1-\nu^2)}$ in this case

• $p_0 = \frac{3P}{2\pi a^2} \approx 1010.1 \text{ MPa.}$


Fringe plot of the contact pressure from LS-DYNA. The black line shows the contact circle according to Herz theory. The peak contact pressure from LS-DYNA is 1002.2 MPa, which is 0.8 % lower than the analytical solution.

Herz contact, LS-DYNA vs. analytical

• Contact pressure distribution: $p = p_0 \sqrt{1 - (r/a)^2}$

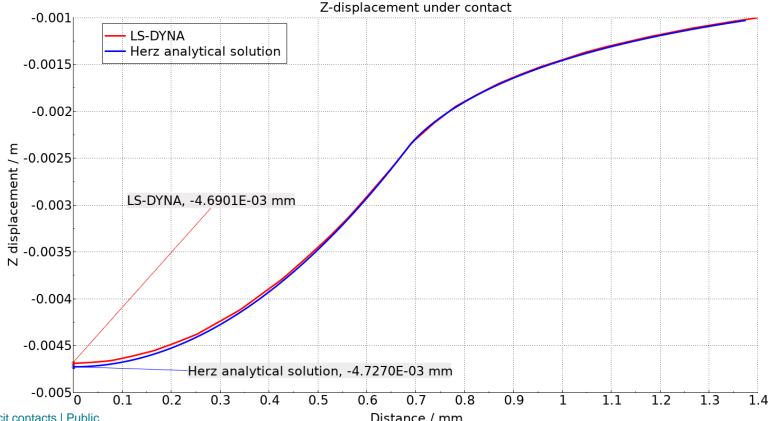


Implicit contacts | Public Slide 74

Peak deformation of the sphere vs. applied force

• Herz theory: $\delta = \left(\frac{9P^2}{16RE^{*2}}\right)^{1/3}$

The peak deformation from LS-DYNA is -4.8234E-3, or about 2 % above the Herz theory

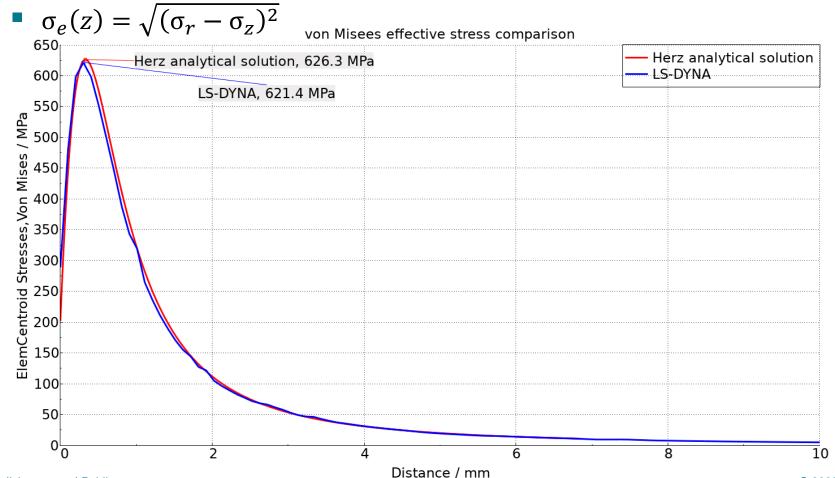

Implicit contacts | Public Slide 75

Z-deformation of plate under the contact

• Herz theory:
$$u_z(r) = \frac{\pi p_0}{4aE^*} (2a^2 - r^2), r \le a$$

$$u_Z(r) = \frac{p_0}{2aE^*} (2a^2 - r^2) \sin^{-1}\frac{a}{r} + ar\sqrt{1 - \frac{a^2}{r^2}}, r > a$$

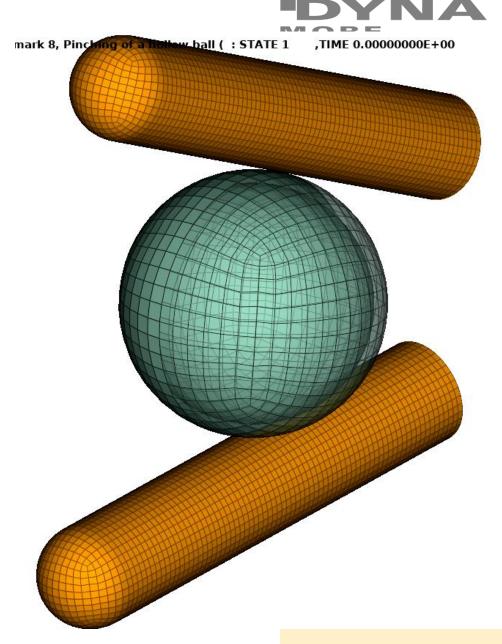
The peak deformation from LS-DYNA is -4.6901E-3, or about 0.8 % above the Herz theory


Implicit contacts | Public Distance / mm © 2023 DYNAmore Nordic AB Slide 76

Von Mises effective stress vs. Z, at r = 0

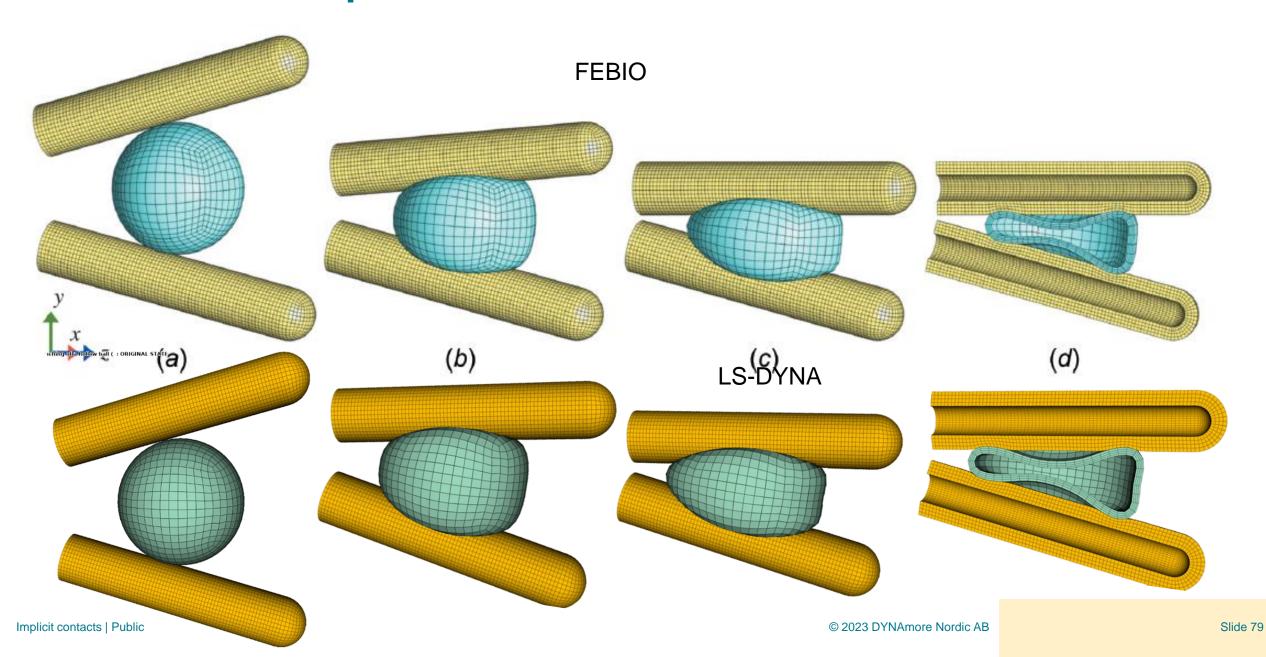
From 1/4 model

• Herz theory:
$$\sigma_z(z) = \frac{-p_0}{(1+z^2/a^2)}$$
, $\sigma_r(z) = -p_0(1+\nu)\left(1-z/a\cdot\tan^{-1}\frac{a}{z}\right) + \frac{p_0}{2(1+z^2/a^2)}$



The peak effective stress from LS-DYNA is 621.4 MPa, or about 0.8 % below the Herz theory

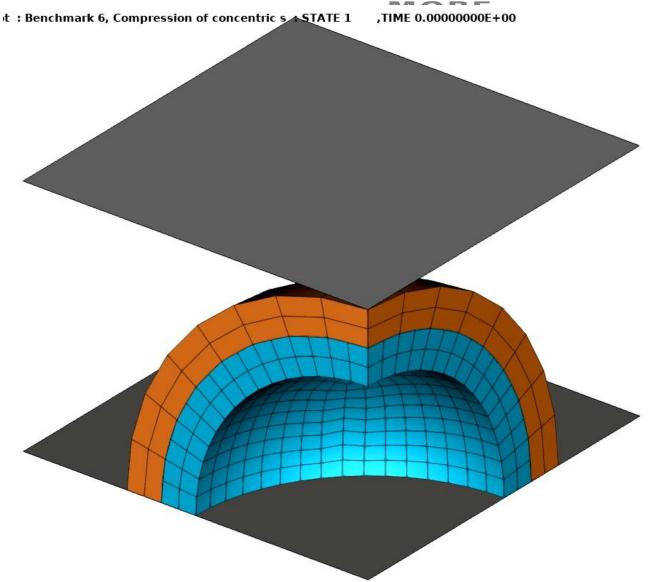
Implicit contacts | Public © 2023 DYNAmore Nordic AB Slide 77


Pinching of a hollow ball

- Simulate compression of a hollow ball between two fingers
- Fingers idealized as hollow tubes (L= 10 cm, $r_v = 1$ cm, $r_i = 0.5$ mm)
 - Hemispherical cap
 - Elastic, E=1 MPa, v = 0.3
- Hollow ball, $r_y=2.5$ cm, $r_i=2.25$
 - Hyperelastic material, Mooney-Rivlin, C10 = 1.25 MPa, C01=0, k = 1250 MPa
- Coefficient if friction: $\mu = 0.9$.

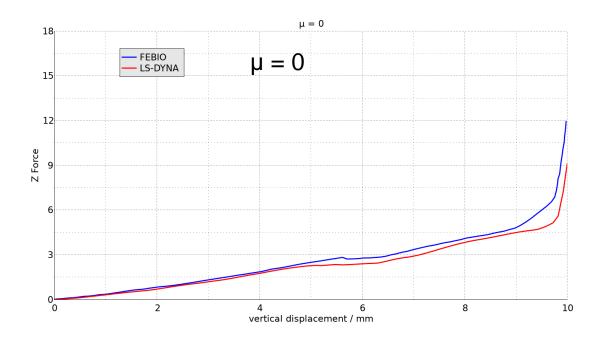
Implicit contacts | Public © 2023 DYNAmore Nordic AB Slide 78

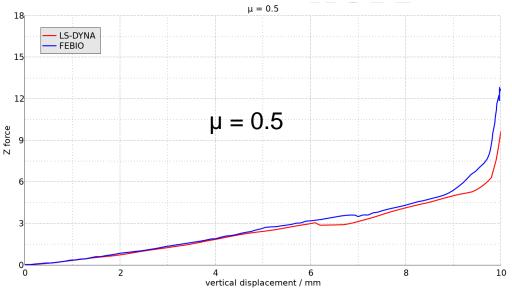
Deformation comparison

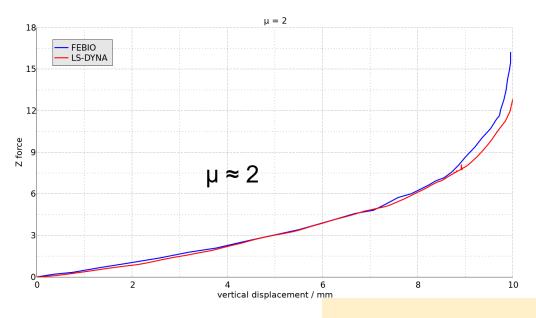


Compression of concentric spheres

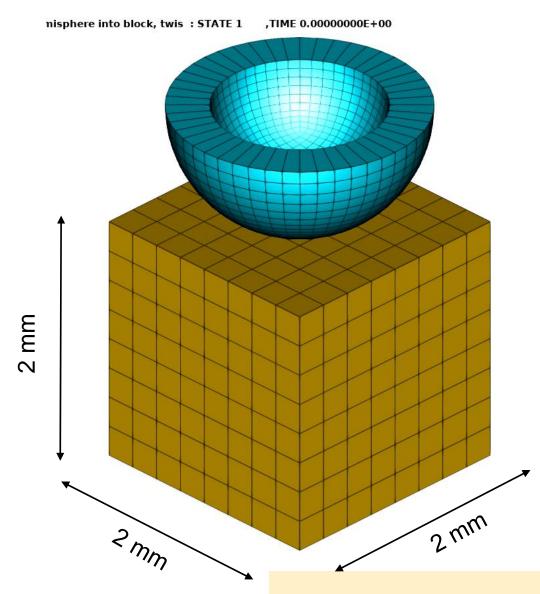
 Elastic spheres, outer radius 14mm, innermost radius 10 mm


- E=1, v = 0.3
- ¼ model (symmetry)
- Upper plate is pushed 10 mm downwards
- Studied frictions
 - $\mu = 0$, $\mu = 0.5$, $\mu \approx 2$



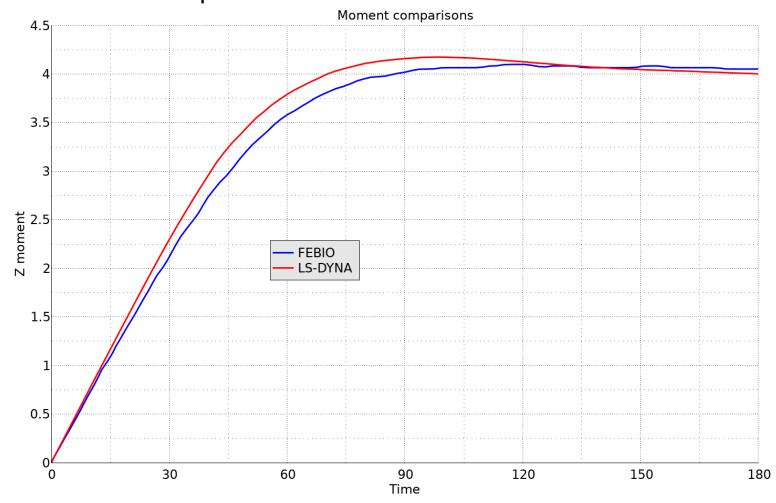

Compression of concentric speres

Force vs. displacement comparisons



Twisting contact between a hemisphere and a box

- A hemisphere is pushed into a box and twisted 180°
- Elastic materials
 - For hempisphere: E = 50 MPa, v = 0.3
 - For box : E = 10 MPa, v = 0.3
- Friction: $\mu = 0.5$
- Initial displacement of (-)1 mm of the hemisphere, followed by
- rotation by 180°


Implicit contacts | Public

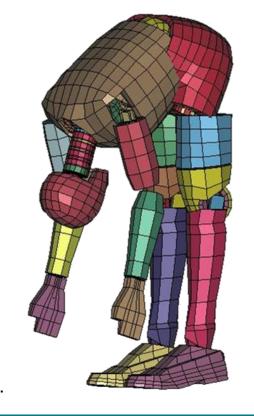
© 2023 DYNAmore Nordic AB

Twisting contact between a hemisphere and a box

Moment vs. rotation comparison

Implicit contacts | Public © 2023 DYNAmore Nordic AB Slide 83

Contacts in LS-DYNA implicit


Summary

Slide 84

- The Mortar contacts are recommended for implicit analyses
 - *CONTACT_AUTOMATIC_SURFACE_TO_SURFACE_MORTAR_ID
 - *CONTACT_AUTOMATIC_SINGLE_SURFACE_MORTAR_ID
- Handles most possible contact situations, including element erosion
- Efficient and accurate
- Similar modelling approach as in explicit, using single surface contact definition, can also be applied in implicit
 - Use IGNORE = -2 if no self-contact within the same part is expected
- Use IGNORE = 3 or 4 to resolve press fit

Thank You

DYNAMore Nordic AB Brigadgatan 5 587 58 Linköping, Sweden

Tel.: +46 - (0)13 23 66 80 info@dynamore.se

www.dynamore.se www.dynaexamples.com www.dynasupport.com www.dynalook.com

© 2022 DYNAmore Nordic AB. All rights reserved. Reproduction, distribution, publication or display of the slides and content without prior written permission of the DYNAmore Nordic AB is strictly prohibited.

Find us on

DYNAmore worldwide Germany - France - Italy - Sweden - Switzerland - USA

Slide 85 Implicit contacts | Public