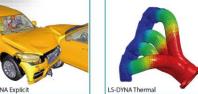
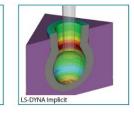
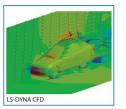
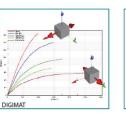


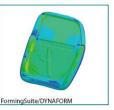
Mass-Scaling and Subcycling in LS-DYNA


Axel Hallén, DYNAmore Nordic AB


Contact – DYNAmore Nordic

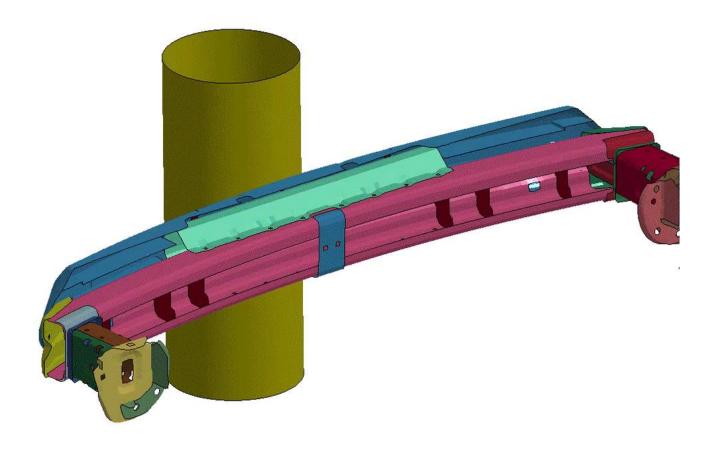

- Support
 - Sales: <u>sales@dynamore.se</u>
 - E-mail: <u>support@dynamore.se</u>
 - Target to answer in 4 hours
 - Call: +46 13 236680




- Training & seminars including on-line & on-site: www.dynamore.se
- Secure file server: files.dynamore.se
 - Software and license download, client area with guidelines and more
- <u>www.dynamore.se</u> information on LS-DYNA, Seminars, Conferences
- <u>www.dynalook.com</u> Papers from international LS-DYNA conferences
- <u>www.dynasupport.com</u> General support for LS-DYNA
- <u>www.dynaexamples.com</u> LS-DYNA example models from crash to DEM

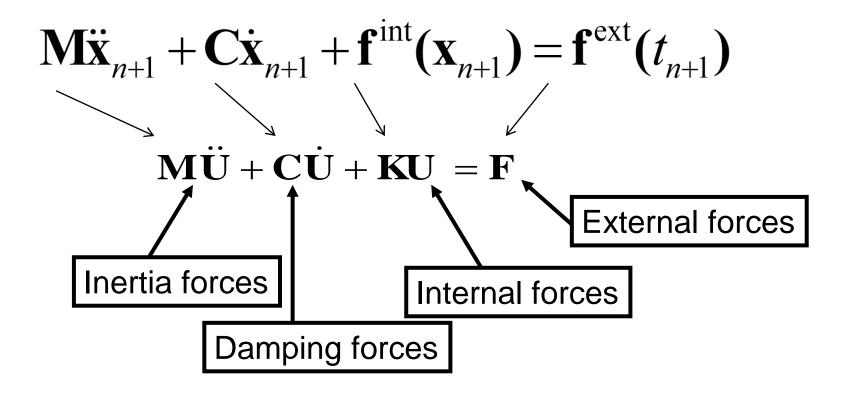
Introduction

- Mass-Scaling decreases computational cost in explicit analyses by increasing the critical time-step through added artificial mass. Excessive use induces dynamics in the solution.
- Conventional mass-scaling scales down all eigenfrequencies indiscriminately, a broadsword.
- Selective/Advanced mass-scaling only scales down the highest eigenfrequency, which the critical timestep is inversely proportional to, a scalpel.
- Time-Scaling decreases computational cost by speeding up the velocities in the analysis. Excessive use induces dynamics in the solution.
- Subcycling is a method of dividing up a model into domains that run with different time-steps to reduce computational cost.
- Multiscale is basically the same thing but the user specifies the domains and their respective timesteps manually.

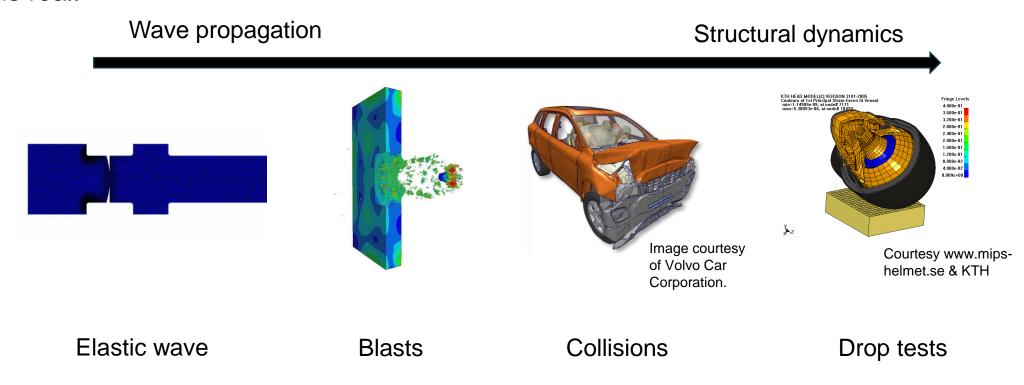

Agenda

- Problem types depending on level of dynamics
- The explicit time integration scheme critical time-step
- Conventional mass-scaling
- Selective mass-scaling
- Time-Scaling
- Subcycling
- Multiscale simulations
- Conclusion

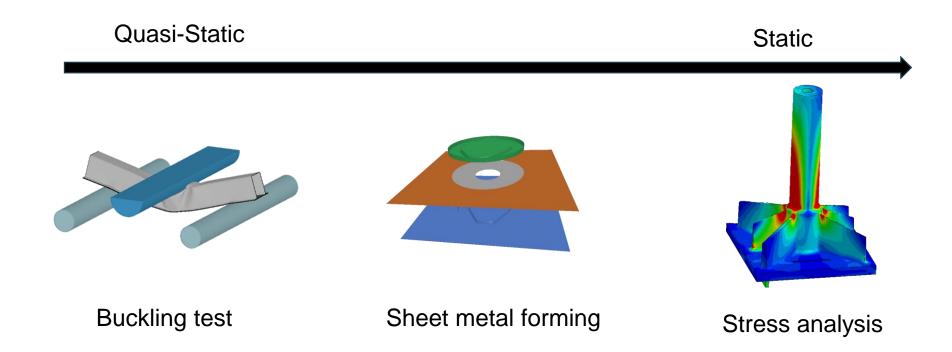
Test Model



Discretization in Time


• Equations of motion at time t_{n+1}

Discretization in Time – Problem Types


- Dynamic problems.
 - The mass inertia affects the results.
 - Time is real.

Discretization in Time – Problem Types

- Static and quasi-static problems.
 - The mass inertia should not affect the results.
 - The time should not affect the results.

Explicit Time Integration

• Explicit schemes give the configuration at time t_{n+1} as an explicit function of earlier configurations, i.e.,

$$\mathbf{x}_{n+1} = \mathbf{f}(\mathbf{x}_n, \mathbf{x}_{n-1}, ..., t_{n+1}, t_n, ...)$$

Explicit Time Integration - Critical Time-Step Size

- Standard Central Difference Method approximates time-step limit for LS-DYNA time integration.
- The natural frequencies are approximated at element level.

$$\Delta t_{\mathrm{critical}} = \frac{l_e}{c_e}$$
 $c_e \sim \sqrt{\frac{E_e}{\rho_e}}$ $\Delta t_{critical} = \frac{2}{\omega_{max}}$

No information can propagate across more than one element per time-step.

Explicit Time Integration - Critical Time-Step Size

- LS-Dyna will automatically identify the minimum time-step and use this for the simulation.
- The 100 smallest time-steps with corresponding element can be found in the ASCII file d3hsp.
- A safety factor is used for the critical time-step. The safety factor can be changed in *CONTROL_TIMESTEP.

$$\Delta t = 0.9 \Delta t_{\rm critical}$$
 Default safety factor $\Delta t = 0.67 \Delta t_{\rm critical}$ Recommended for high velocities (explosives)

The simulation time-step changes due to deformed elements

```
1 t 0.0000E+00 dt 5.52E-07

1 t 0.0000E+00 dt 5.52E-07

1876 t 9.9962E-04 dt 5.04E-07

3920 t 1.9999E-03 dt 4.84E-07

5000 t 2.5189E-03 dt 4.80E-07

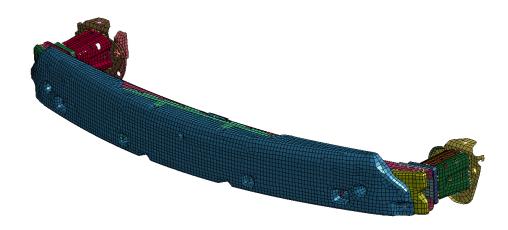
6046 t 2.9996E-03 dt 4.35E-07

8630 t 3.9997E-03 dt 3.52E-07

10000 t 4.4709E-03 dt 3.39E-07

11540 t 4.9999E-03 dt 3.38E-07

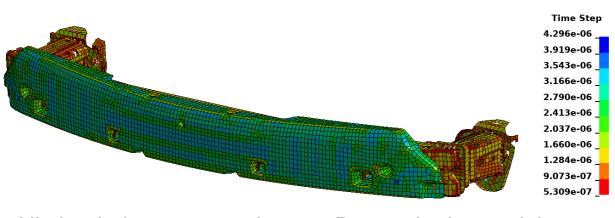
14428 t 5.9998E-03 dt 3.38E-07


15000 t 6.1934E-03 dt 3.39E-07

17317 t 6.9998E-03 dt 3.55E-07

20000 t 7.9439E-03 dt 3.45E-07
```

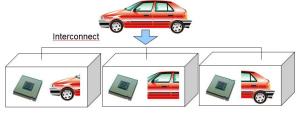
Example – Front Bumper NHTSA Honda Accord

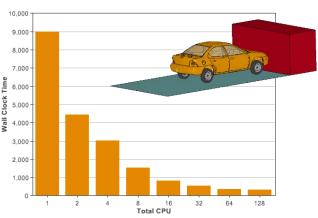


Steel: 7850 kg/m³ 210 GPa

Plastic: 1000 kg/m³ 5.6 GPa

Element size ranging from 3.5 to 12 mm, typically 7 mm Smallest time-step is 1.8e-7 s, and are spotweld solid elements.




All simulations are run in mpp R11.0 single precision.

Ways to Decrease the Simulation Time...

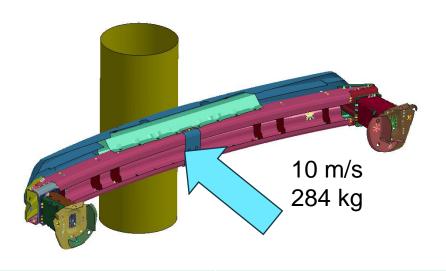
- Simulation time depends on:
 - Time-step size/number of time-steps.
 - Model size (number of elements/integration points).
 - Termination time.
 - Modelling technique (number of contacts, ..).
 - Parallelization (number of processors, partitioning).
- The time-step can be modified by increasing the mass of the model. – MASS-SCALING.

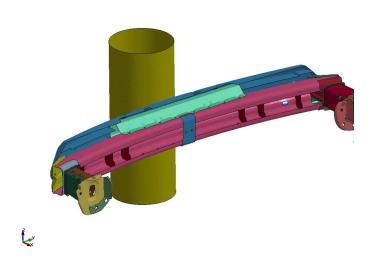
- The simulation time can be modified by scaling up the velocities. TIME-SCALING.
- For Quasi-Static problems where mass has no influence, both mass and time-scaling is possible as long as the problem does not become dynamic.
- For structural dynamics problems, only mass-scaling can be done since time is "real". Also, mass-scaling has to be done without affecting the results.

Explicit Time Integration – Mass-Scaling

Mass-scaling can be used to increase the time-step.

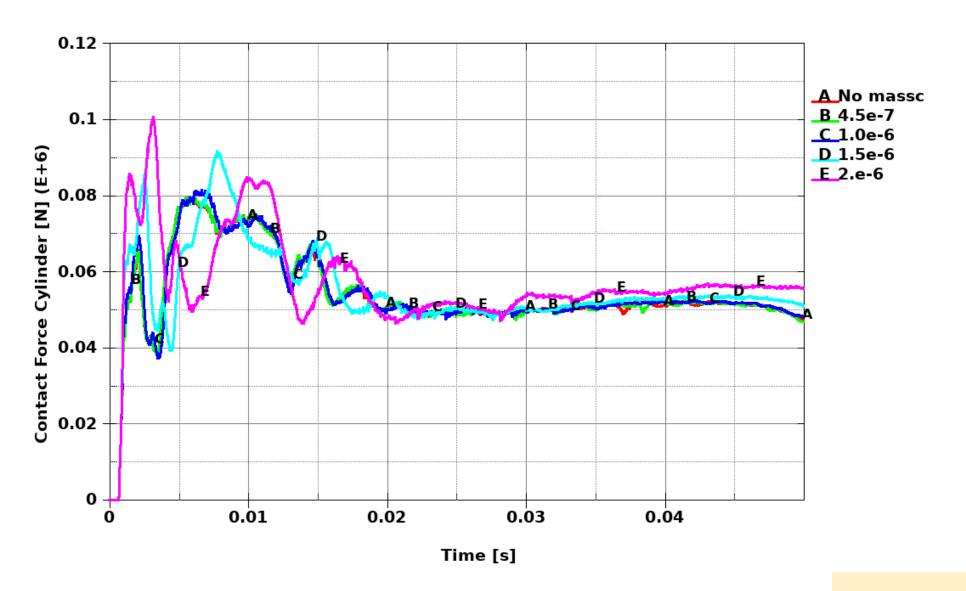
$$\Delta t_{\text{critical}} = \frac{l_e}{c_e} \qquad c_e \sim \sqrt{\frac{E_e}{\rho_e}} \qquad \qquad \rho_e \qquad \Longrightarrow \quad \Delta t_{\text{critical}} \qquad \uparrow$$


- The mass-scaling is activated in *CONTROL_TIMESTEP.
- Set the time-step in DT2MS. Use a negative value to only scale the elements that needs mass-scaling.


```
*CONTROL TIMESTEP
                                                dt2ms
$# dtinit
               tssfac
                                    tslimt
                           isdo
                                                            lctm
                                                                     erode
                                                                                ms1st
                 0.9
                                       0.0 -1.200E-6
   dt2msf
             dt2ms1c
                          imscl
                                                           rmscl
                                                             0.0
```

```
calculation with mass scaling for minimum dt
   added mass = 2.2481E-03
   physical mass= 4.9051E-01
   ratio = 4.5831E-03
     1 t 0.0000E+00 dt 1.08E-06 flush i/o buffers 05/22/19 10:32:23
     1 t 0.0000E+00 dt 1.08E-06 write d3plot file 05/22/19 10:32:23
```

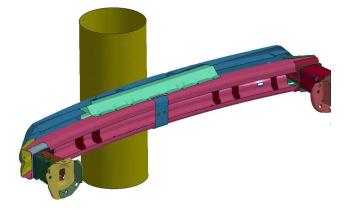
Example – Front Bumper NHTSA Honda Accord



Time-Step [s]	Mass-Scaling [kg, %]			Mean Error % [RMS contact force]
1.8 E-7	0,0	421 s	0	0
4.5 E-7	0.0372 , 0.013	181 s	2.7	0.3
1.0 E-6	2.2, 0.8	80 s	18.9	4.3
1.5 E-6	12. , 4.2	60 s	94.3	20.
2.0 E-6	33. , 11.6	46 s	154.	33.6

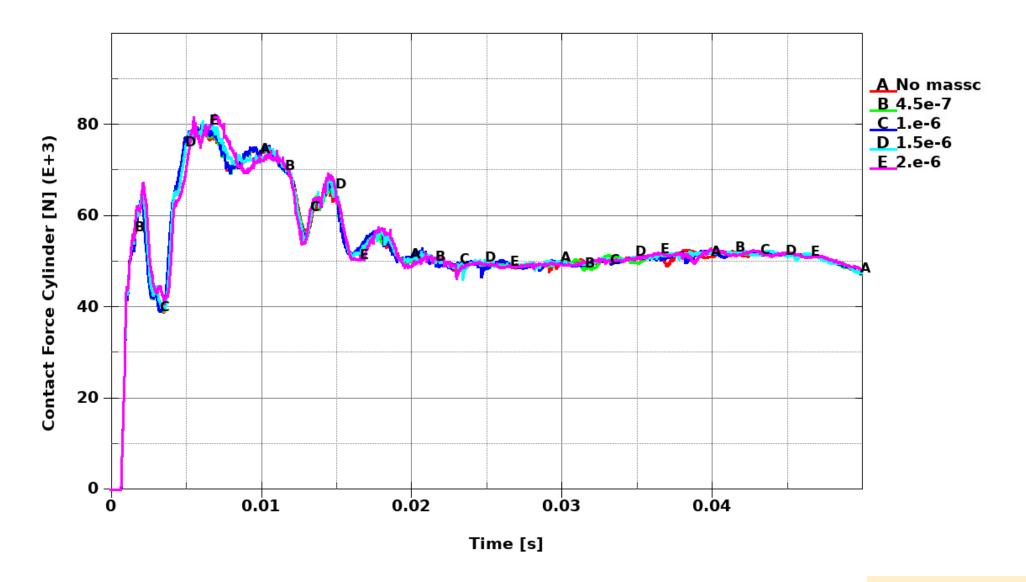
Mass-Scaling – Contact Force

Selective Mass-Scaling


- Selective mass-scaling only scales the critical (high) eigenfrequencies. Thus, rigid body motion and lower order deformation is unaffected.
- Selective mass-scaling creates a non-diagonal massmatrix. The more mass-scaling yields more banded massmatrix.
- Solving the equation of motion involves a matrix assembly and inversion and is thus CPU intensive.

- IMSCL=1: Activates selective mass-scaling.
- IMSCL < 0: |IMSCL| is a *SET_PART that will undergo selective mass-scaling, e.g. solid meshed spotwelds. Recommended to limit the increase in CPU time.</p>

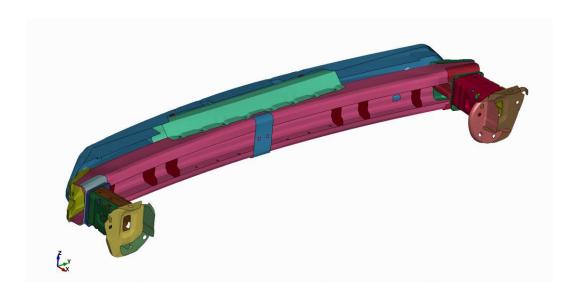
Example – Front Bumper NHTSA Honda Accord


```
calculation with selective mass scaling physical mass= 4.9051E-01 added 1f mass= 6.6365E-12 ratio = 1.3530E-11 added hf mass= 3.7274E-05 ratio = 7.5989E-05
```

بيا

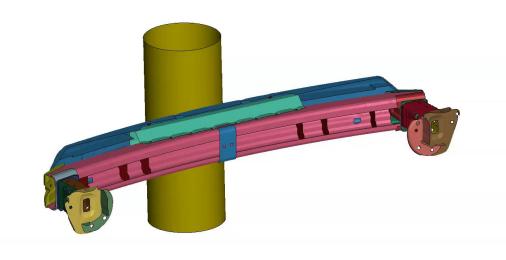
Time-Step [s]	Mass-Scaling [kg, %]		MAX Error % [RMS contact force]	Mean Error % [RMS contact force]
1.8 E-7	0,0	421 s	0	0
4.5 E-7	0.0372, 0.013	227 s (181 s)	2.7	0.3
1.0 E-6	2.2, 0.8	116 s (80 s)	4.7	0.66
1.5 E-6	12. , 4.2	76 s (60 s)	10.5	2.7
2.0 E-6	33. , 11.6	61 s (46 s)	19.7	5.6

Selective Mass-Scaling – Contact Force



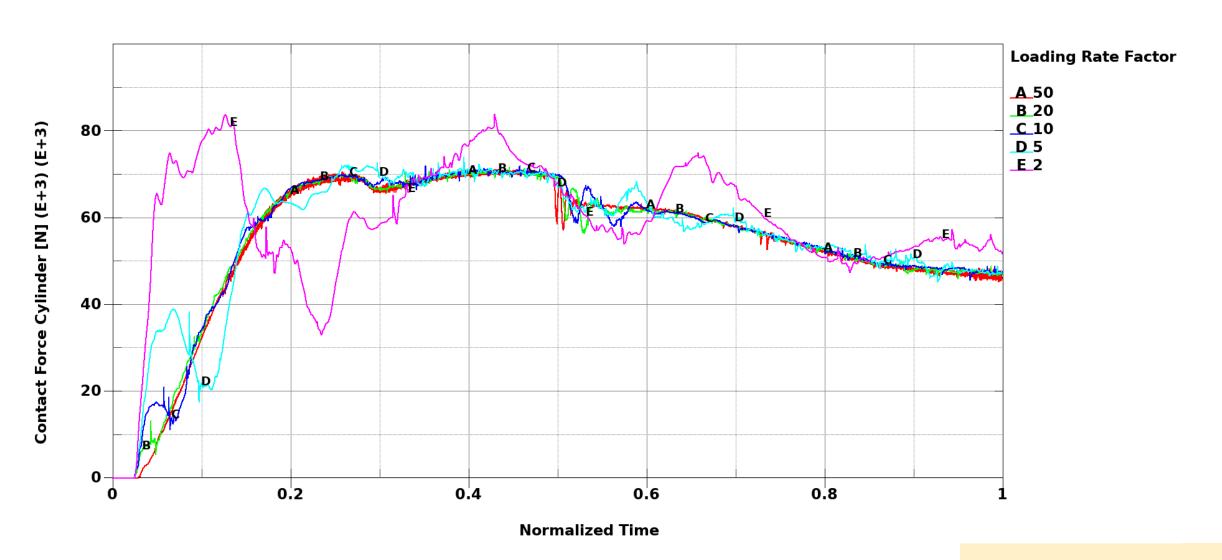
Time-Scaling

- For quasi-static problems, time does not affect the results, so time-scaling is possible.
- Examine the lowest eigenmode describing the deformation mode of interest.
- A general rule is to use: $Loading\ Rate = 10 * \frac{1}{f_{eig}}$, to decide maximum time-scaling.

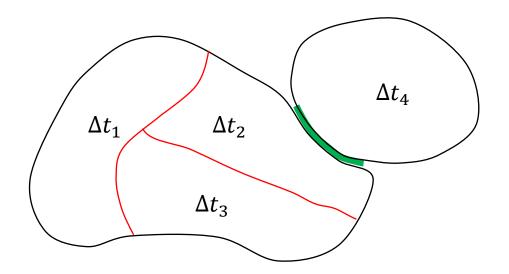


Mode 2, Frequency 140.77 Hz

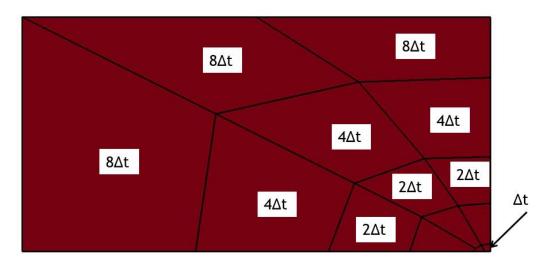
Time-Scaling



Loading Rate [s]	Loading Rate Factor	Simulation Time (mpp,8 cores)
0.35	50	618 s
0.14	20	245 s
0.07	10	123 s
0.035	5	65 s
0.014	2	27 s

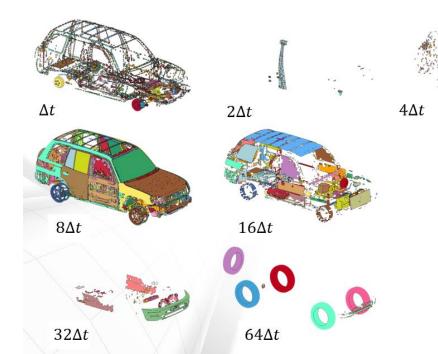

Time-Scaling – Contact Forces

Subcycling



- Different subdomains of the model are running with different time-steps.
- Possibility to limit the mass-scaling.
- The model is divided into subdomains where each time-step must be a 2-power multiple of the smallest time-step.
- Explicit time integration time-step and external force time-step can be different.
- Difficulties in boundaries between domains (wave propagation, contact forces...).

Subcycling


- *CONTROL_SUBCYCLE_{K}_{L}.
 - K is maximum multiple of the smallest time-step (1,2,4,8,16,32 or 64) for explicit time integration.
 - L is maximum multiple of the smallest time-step (1,2,4,8,16,32 or 64) for the external forces.
- L must be less or equal to K.
- Elements between multiples of the smallest time-step will run at a smaller time-step.
- If the critical time-step is lowered, the elements are mass-scaled to fit the critical time-step. Thus, elements are not allowed to change "time-step interval" and mass-scaling is ALWAYS on.

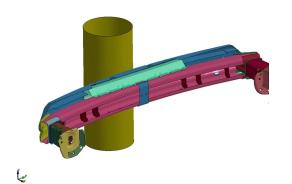
Subcycling – Time-Step Subdomains

- Example: A model with critical time-step 1.E-7. and K=64.
 - Subdomains will run with 7 different time-steps:
 - 1.E-7: Elements with critical timestep between 1.E-7 and 1.9999E-7.
 - 2.E-7: Elements with critical timestep between 2.E-7 and 3.9999E-7.
 - 4.E-7: Elements with critical timestep between 4.E-7 and 7.99999E-7.
 - 8.E-7: Elements with critical timestep between 8.E-7 and 15.99999E-7.

• ...

13th International LS-DYNA Users Conference

Session: Simulation

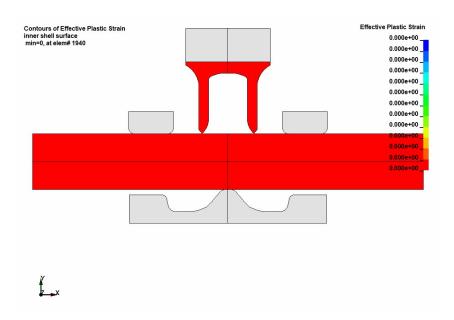

Current Status of Subcycling and Multiscale Simulations in LS-DYNA®

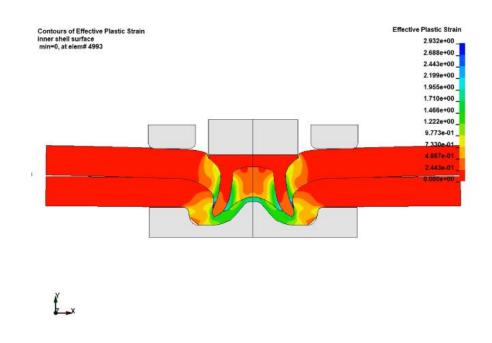
Thomas Borrvall
DYNAmore Nordic AB

Dilip Bhalsod, John O. Hallquist, Brian Wainscott Livermore Software Technology Corporation (LSTC)

Example – Front Bumper NHTSA Honda Accord

Includes 10100 rigid nodes in rigid cylinder

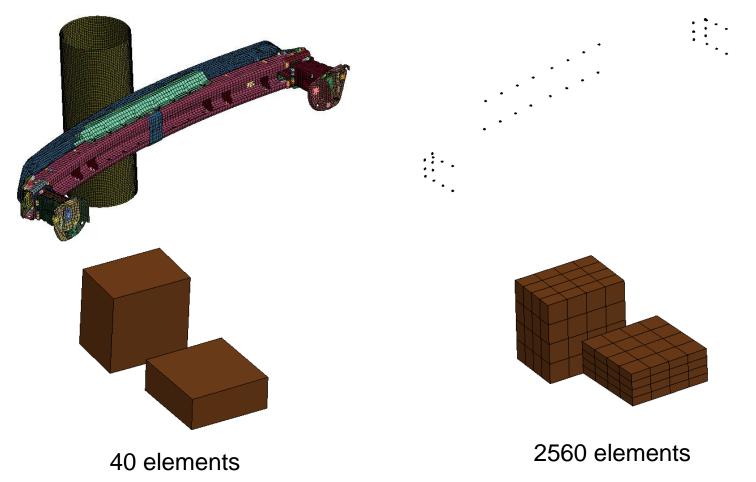

nodal partitioning for subcycling minimum time step size 0.1821E-06 maximum time step size 0.2914E-05 external time step size 0.1821E-06 # of nodes with minimum time step size x 1 = 10422 # of nodes with minimum time step size x 2 = 862 # of nodes with minimum time step size x 4 = 7670 5955 # of nodes with minimum time step size x 8 = # of nodes with minimum time step size x 16= 327 # of nodes with minimum time step size x 32= # of nodes with minimum time step size x 64=


	Simulation Time (mpp,16 cores)	MAX Error % [RMS contact force]	Mean Error % [RMS contact force]	# Nodes ∆t	# Nodes 2∆t	# Nodes 4∆t	# Nodes 8∆t	# Nodes 16∆t
1,1	421 s	0	0	15134	0	0	0	0
2,1	358	2.7	0.3	322	14814	0	0	0
4,1	308	2.7	0.4	322	862	13952	0	0
8,1	309	7	0.35	322	862	7670	6282	0
16,1	315	15.2	0.6	322	862	7670	5955	327
16,1 ∆t=4.5E-7	172s (181s)	15.2	0.9	2978	7313	4839	0	0

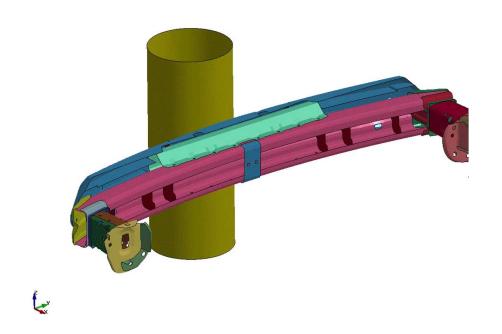
Multiscale

- Instead of automatic division into time-step subdomains the user can manually give a mass-scaling time-step for a part/part set.
- Time-step will be adjusted by LS-DYNA to a 2-power multiple of the smallest step.
- Suitable for small but highly refined parts e.g., self-piercing rivets.

Multiscale in LS-DYNA


- *CONTROL_SUBCYCLE_MASS_SCALE_PART_{SET}.
 - Specifies mass-scaling time-step for the selected parts.
- The rest of the model will adopt the time-step set by DT2MS on *CONTROL_TIMESTEP card.
- External force calculations {L} are default 1, but can be altered by a *CONTROL_SUBCYCLE_{K}_{L} keyword. {K} is ignored in this case.

Example – Front Bumper NHTSA Honda Accord

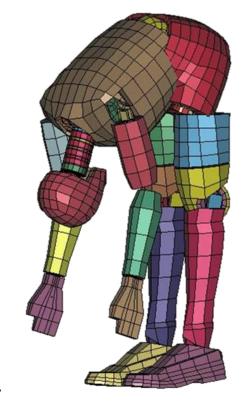


Highly dense spotwelds.

Example – Front Bumper NHTSA Honda Accord

Time-Step [s]	Mass -Scaling [kg, %]	Simulation Time (mpp,16 cores)		Mean Error % [RMS contact force]
4.48E-8	0,0	1859	0	0
4.5E-8; 5.0 E-7	0., 0.	1531	1.7	0.4
4.5E-8;1.2E-6	0.06, 0.	1290	1.6	0.4

Conclusion


- Simulation times can be significantly decreased by mass-scaling.
- Mass-scaling affects the dynamics of the problem by adding mass to the elements.
- Adding too much mass will change the behaviour of your model.
- Two types of mass-scaling exist:
 - Conventional mass-scaling: Scales all eigenfrequencies.
 - Selective mass-scaling: Scales the bounding eigenfrequencies.
- Too much Selective mass-scaling is CPU intensive.
- Time-Scaling is very beneficial but should not be used too ambitiously, to avoid inducing dynamics.
- Subcycling allows for different sub-domains to run on different time-steps.
 - Subcycling: Automatic division into sub-domains with different time-steps.
 - Multiscale: Manual definition of time-step for each sub-domain by part(set).
- Time-step can be different for the explicit time integration and the external forces update.
- A too high external force update time-step may cause instabilities.

Further Reading...

- On DYNAlook
 - Du Bois J. H. and Du Bois P., A Study in Mass Scaling for Sheet Metal Forming with LS-DYNA, 15th International LS-DYNA Users Conference. (https://www.dynalook.com/conferences/15th-international-ls-dyna-conference/metal-forming/a-study-in-mass-scaling-for-sheet-metal-forming-with-ls-dyna-r).
 - Borrvall T., et al., Current Status of Subcycling and Multiscale Simulations in LS-DYNA, 13th
 International LS-DYNA Users Conference. (https://www.dynalook.com/conferences/13th-international-ls-dyna-conference/simulation/current-status-of-subcycling-and-multiscale-simulations-in-ls-dyna-r).

Thank You

DYNAMore Nordic AB Brigadgatan 5 587 58 Linköping, Sweden

Tel.: +46 - (0)13 23 66 80 info@dynamore.se

www.dynamore.se www.dynaexamples.com www.dynasupport.com www.dynalook.com

© 2022 DYNAmore Nordic AB. All rights reserved. Reproduction, distribution, publication or display of the slides and content without prior written permission of the DYNAmore Nordic AB is strictly prohibited.

Find us on

DYNAmore worldwide Germany - France - Italy - Sweden - Switzerland - USA