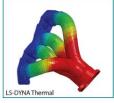
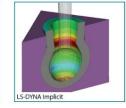


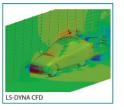
Thermal & thermo-mechanical simulations using LS-DYNA

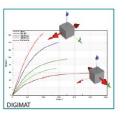
Marcus Lilja, DYNAmore Nordic AB

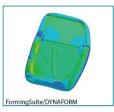
Contact – DYNAmore Nordic


- Support
 - Sales: <u>sales@dynamore.se</u>
 - E-mail: <u>support@dynamore.se</u>
 - Target to answer in 4 hours
 - Call: +46 13 236680




- Secure file server: files.dynamore.se
 - Software and license download, <u>client area with guidelines and more</u>
- <u>www.dynamore.se</u> information on LS-DYNA, Seminars, Conferences
- <u>www.dynalook.com</u> Papers from international LS-DYNA conferenses
- <u>www.dynasupport.com</u> General support for LS-DYNA
- <u>www.dynaexamples.com</u> LS-DYNA example models from crash to DEM





Intention

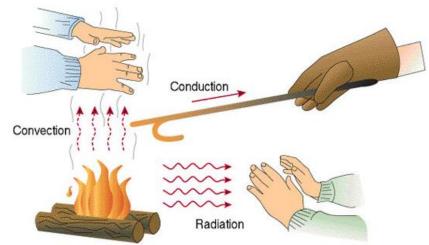
The intention is to give the audience basic knowledge of

- What is included in LS-DYNA
- How to select between different options and features
- How to set-up and run a thermal and thermo-mechanical simulation

Heat transfer mechanisms

There are basically three ways to transfer heat energy

Conduction


- Transfer of heat energy between particles of objects in contact.
- Needs a media.

Convection

- Transfer of heat energy by the movement of a fluid.
- Needs a media.

Radiation

- Transfer of heat energy by electromagnetic waves
- No movement of matter.
- No media needed.

Basic knowledge

Thermal solution

- Solution type
- Solver settings

Thermal conditions

- Heat source
- Heat energy transfer mechanisms
- Initial conditions

Thermal contacts

Correct heat transfer at interfaces

Thermal material models

- What is it?
- Different types
- How to choose

Thermal elements

- Definition in LS-DYNA
- Supported types
- Special case

Thermal solution types

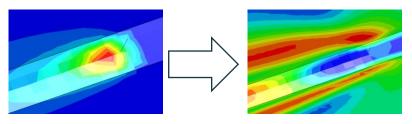
DYNA

Thermal solution types

There are different thermal solution type options available in LS-DYNA

- Steady state thermal simulation
- Transient thermal simulation
- Un-coupled thermal and mechanical simulation
- Coupled transient thermo-mechanical simulation

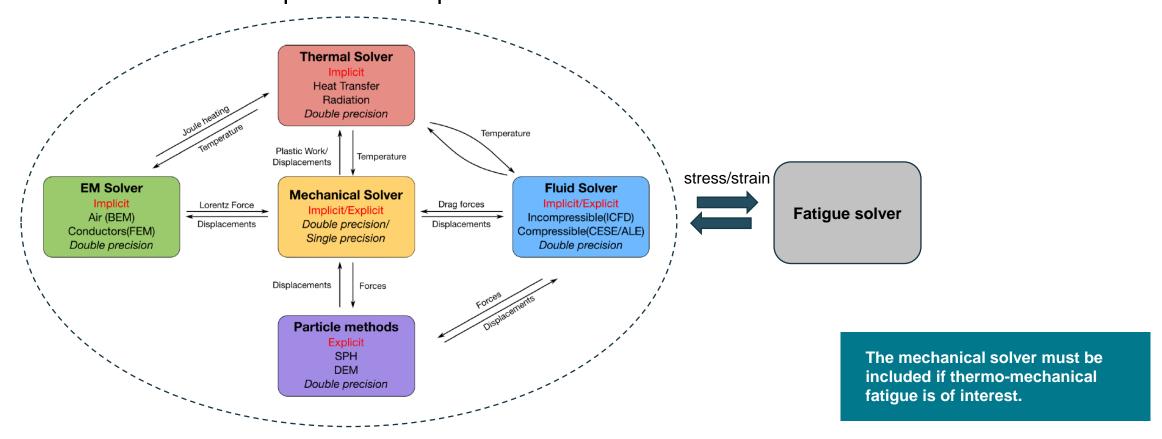
Thermal solution types


- Steady state thermal simulation
 - Very fast!
 - Linear assumption
 - Heat transfer problem solved in one single step
 - No stress/strain output
- Transient thermal simulation
 - Linear of non-linear
 - For path dependent problems
 - No stress/strain output
- Un-coupled thermal and mechanical simulation
 - No mechancal-thermal dependency
 - *LOAD_THERMAL_D3PLOT
- Coupled transient thermal and mechanical simulation
 - Linear or non-linear
 - Needed if the mechanical behavior affects the thermal properties
 - Complete output

Coupled thermo-mechanical simulation

Un-coupled thermo-mechanical simulation

Temperature input

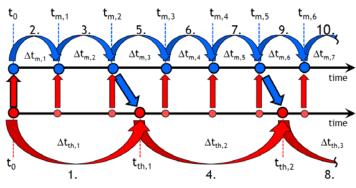


LS-DYNA thermal solver

DYNA

LS-DYNA thermal solver

The thermal solver can be coupled to any any other solver in the LS-DYNA-package or be used as a "stand-alone"-solver for unclupled thermal problems.



Event title | data classification (9 pt) © 2022 DYNAmore Nordic AB Slide 10

LS-DYNA thermal solver

The thermal solver is an implicit solver and the solution scheme for a coupled thermo-mechanical problem is stagered.
Mechanical Problem

Thermal Problem

- The mechanical time-step (implicit or explicit) should not exceed the thermal time-step size.
 - If automatic thermal time step size is used, then: t_{therm} = 100*t_{mech}
- The thermal time step must be small enough to capture the temperature/time behavior
- A convergence study of the results may be neccessary.

Mechanical solution (explicit)

Thermal solution (implicit)

$$t_{mech} = \frac{L_e}{c}$$
 $c = \sqrt{\frac{E}{\rho}}$

$$t_{therm} = \frac{\rho c_p L_e^2}{2k}$$

LS-DYNA thermal solver

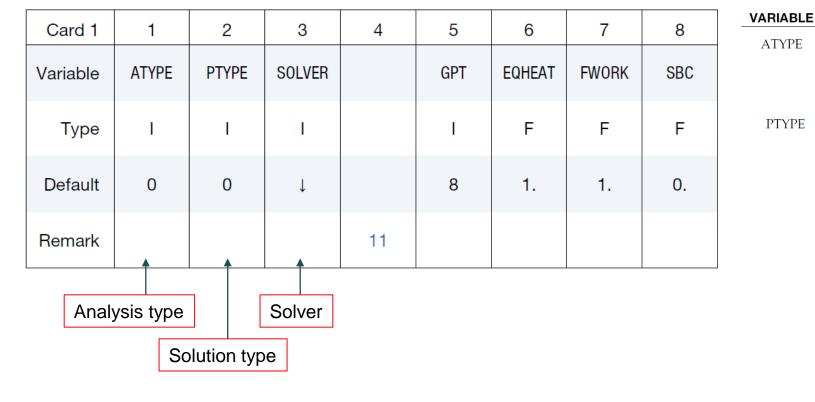
Activate the thermal solver by setting SOLN = 1 or 2 on *CONTROL_SOLUTION

Card 1	1	2	3	4	5	6	7	8
Variable	SOLN	NLQ	ISNAN	LCINT	LCACC	NCDCF	NOCOPY	
Туре	I	I	I	1	1	I	I	
Default	0	0	0	100	0	1	0	

VARIABLE DESCRIPTION

SOLN

Analysis solution procedure:

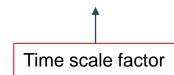

EQ.0: Structural analysis only

EQ.1: Thermal analysis only

EQ.2: Combined structural, multiphysics, and thermal analysis

LS-DYNA thermal solver

- *CONTROL_THERMAL_SOLVER
 - Define analysis & thermal problem type
- *CONTROL_SOLUTION need to be specified!


ATYPE	Thermal analysis type:
	EQ.0: Steady state analysis (see Remark 4)
	EQ.1: Transient analysis (see Remark 3)
PTYPE	Thermal problem type: (see *CONTROL_THERMAL_NONLINEAR if nonzero)
	EQ.0: Linear problem,
	EQ.1: Nonlinear problem with material properties evaluated at gauss point temperature.
	EQ.2: Nonlinear problem with material properties evaluated at element average temperature.

DESCRIPTION

LS-DYNA thermal solver

- *CONTROL_THERMAL_SOLVER
 - Optional card 2
 - Direct input of time scaling parameter
 - Instead of applying it manually to material properties

Card 2	1	2	3	4	5	6	7	8
Variable	MSGLVL	MAXITR	ABSTOL	RELTOL	OMEGA			TSF
Type	1	1	F	F	F			F
Default	0	500	1.0e-10	1.0e-04	1.0 or 0.			1.

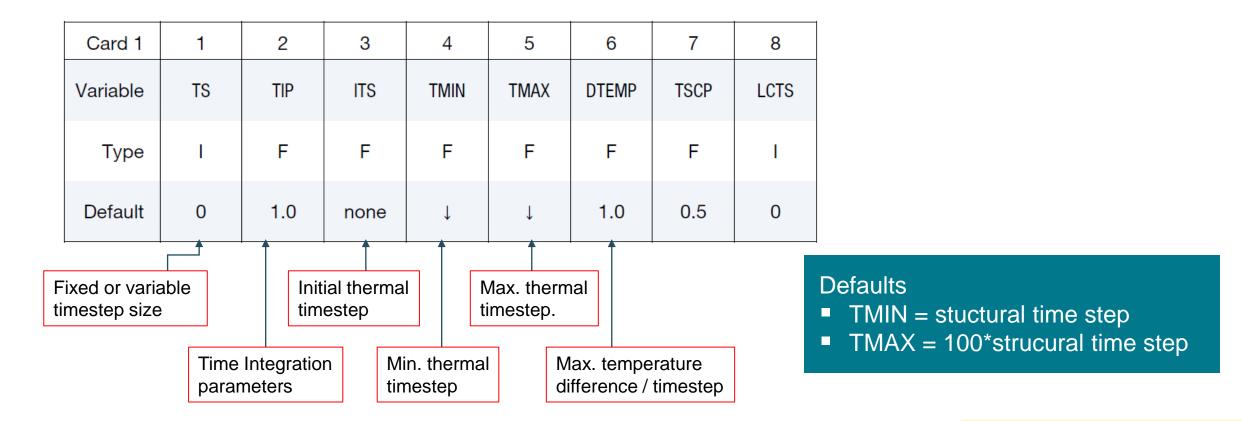
VARIABLE	DESCRIPTION
MSGLVL	Output message level (For SOLVER > 10)
	EQ.0: No output (default),
	EQ.1: Summary information,
	EQ.2: Detailed information, use only for debugging.
MAXITR	Maximum number of iterations. For SOLVER > 11.
	EQ.0: Use default value 500,
ABSTOL	Absolute convergence tolerance. For SOLVER > 11.
	EQ.0.0: Use default value 10 ⁻¹⁰
RELTOL	Relative convergence tolerance. For SOLVER > 11.
	EQ.0.0: Use default value 10 ⁻⁶
OMEGA	Relaxation parameter omega for SOLVER 14 and 16.
	EQ.0.0: Use default value 1.0 for Solver 14, use default value 0.0 for Solver 16.
TSF	Thermal Speedup Factor. This factor multiplies all thermal parameters with units of time in the denominator (e.g., thermal conductivity, convection heat transfer coefficients). It is used to artificially time scale the problem.
	EQ.0.0: Default value 1.0,
	LT.0.0: TSF is a load curve ID. Curve defines speedup factor as a function of time.

DYNA

LS-DYNA thermal solver

- Time scaling
 - Time saving
 - The thermal problem is scaled in time in the same manner as the structural problem.
 - Typical thermal properties are:

Thermal capacity J/kgK
Heat transfer W/m²K
Thermal conductivity W/mK


e.g. using N, mm, s and a time scale factor of X yields
Thermal capacity=Thermal capacity*1000.000
Heat transfer=Heat transfer/1000*X
Thermal conductivity=Thermal conductivity*X

The time scale factor can be input directly on the second card of the
 *CONTROL_THERMAL_SOLVER keyword. Then LS-DYNA scales the time dependent thermal input

DYNA

LS-DYNA thermal solver

- *CONTROL_THERMAL_TIMESTEP
 - Specify time step options for the thermal solver.
 - *CONTROL_SOLUTION need to be specified!

LS-DYNA thermal solver

- *CONTROL_THERMAL_NONLINEAR
 - Set convergence related conditions for the non-linear thermal solver
 - *CONTROL_SOLUTION need to be specified!

Card 1	1	2	3	4	5	6	7	8
Variable	REFMAX	TOL	DCP	LUMPBC	THLSTL	NLTHPR	PHCHPN	
Туре	I	F	F	I	F	I	F	
Default	10	10-4	1.0 or 0.5	0	0.	0	100.	

VARIABLE	DESCRIPTION	
REFMAX	Maximum number of matrix reformations per time step.	
	EQ.0: Set to 10 reformations.	
TOL	Convergence tolerance for temperature.	
	EQ.0.0: Set to $1000 \times$ machine roundoff.	

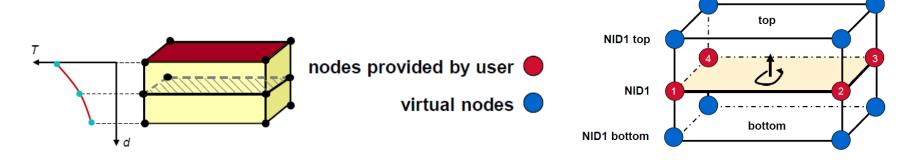
Thermal elements

DYNA

Thermal elements

- Supported element types
 - Solid, shells, thick shells, beams, discrete beams
- When a thermal material id (TMID) is assigned to the part definition (*PART) the elements in that part becomes thermal elements.
- To run a thermal simulation all elements in the model must have a thermal material assignment.

Card 2	1	2	3	4	5	6	7	8
Variable	PID	SECID	MID	EOSID	HGID	GRAV	ADPOPT	TMID
Туре	I/A	I/A	I/A	I/A	I/A	I	I	I/A
Default	none	none	none	0	0	0	0	0


Event title | data classification (9 pt) © 2022 DYNAmore Nordic AB Slide 19

DYNA

Thermal elements

- Thick thermal shells
 - THSHEL=1 on *CONTROL_SHELL will trigger that all 4-noded elements are treated as 12-noded.
 - The through thickness nodes will use quadratic shape functions and this will give a highly resolved temperature gradient through the shell element thickness.

Card 2	1	2	3	4	5	6	7	8
Variable	ROTASCL	INTGRD	LAMSHT	CSTYP6	THSHEL			
Туре	F	I	I	I				
Default	1.	0	0	1	0			

DYNA

Thermal contacts

- Thick thermal shell elements
 - Thermal contact should be defined at the outer surfaces only. This is achieved by setting ITHOFF=1 on the 5th card *CONTROL_CONTACT

Card 5	1	2	3	4	5	6	7	8
Variable	ISYM	NSEROD	RWGAPS	RWGDTH	RWKSF	ICOV	SWRADF	ITH0FF
Туре	I	I	I	F	F	I	F	_
Default	0	0	0	0.	1.0	0	0.	0

ITHOFF

Flag for offsetting thermal contact surfaces for thick thermal shells:

EQ.0: No offset. If thickness is not included in the contact, the heat will be transferred between the mid-surfaces of the corresponding contact segments (shells).

EQ.1: Offsets are applied so that contact heat transfer is always between the outer surfaces of the contact segments (shells).

DYNA

Thermal bounday conditions

- Thick thermal shell elements
 - The shells have a lower, middle and upper surface.
 - Initial conditions and boundary conditions must be applied to all surfaces. This is done by using the LOC-parameter which is found on all neccessary input-cards.

*INITIAL_	TEMPER	ATURE,									L	OC
Card 1	1	2	3	4	5	6	7	8				
Variable	NSID/NID	TEMP	LOC									
Туре	1	1	1									
Default		0	0	*BOUND	ARY_TEN	/IPERA II	JRE.					
Default	1	0.	0	Card 1	1	2	3	4	5	6	7	8
Remarks	1			Variable	NID	TLCID	TMUL	T LOC	TDEATH	TBIRTH		
				Туре) I	I	F	1	F	F		
				Default	t none	0	0.	0	1020	0.		

For a thick thermal shell, the temperature will be applied to the surface identified by LOC. See parameter, THSHEL, on the *CONTROL_SHELL keyword.

EQ.-1: lower surface of thermal shell element

EQ.0: middle surface of thermal shell element

EQ.1: upper surface of thermal shell element

Thermal material models

Thermal material models

Thermal material models

Thermal material models *MAT_THERMAL *MAT_T01/*MAT_THERMAL_ISOTROPIC *MAT_T02/*MAT_THERMAL_ORTHOTROPIC *MAT_T03/*MAT_THERMAL_ISOTROPIC_TD *MAT_T04/*MAT_THERMAL_ORTHOTROPIC_TD *MAT_T05/*MAT_THERMAL_DISCRETE_BEAM *MAT_T05/*MAT_THERMAL_CHEMICAL_REACTION *MAT_T06/*MAT_THERMAL_CWM *MAT_T07/*MAT_THERMAL_ORTHOTROPIC_TD_LC *MAT_T09/*MAT_THERMAL_ISOTROPIC_PHASE_CHANGE *MAT_T10/*MAT_THERMAL_ISOTROPIC_TD_LC *MAT_T11-T15/*MAT_THERMAL_USER_DEFINED *MAT_T11-T15/*MAT_THERMAL_CHEMICAL_REACTION_ORTHOTROPIC

- Heat capacity and conductivity may be temperature dependent.
- Mandatory in a thermal simulation
- Input curve data is never extrapolated

Thermal material models

Temperature dependent material models

Coupled material models *MAT_004/*MAT_ELASTIC_PLASTIC_THERMAL *MAT_021/*MAT_ORTHOTROPIC_THERMAL *MAT_106/*MAT_ELASTIC_VISCOPLASTIC_THERMAL *MAT_113/*MAT_TRIP *MAT_188/*MAT_THERMO_ELASTO_VISCOPLASTIC_CREEP *MAT_189/*MAT_ANISOTROPIC_THERMOELASTIC *MAT 249/*MAT REINFORCED THERMOPLASTIC *MAT_249_CRASH/*MAT_REINFORCED_THERMOPLASTIC_CRASH *MAT_249_UDFIBER/*MAT_REINFORCED_THERMOPLASTIC_UDFIBER Temperature dependent material properties. Not mandatory in a thermal simulation Curve input is extrapolated

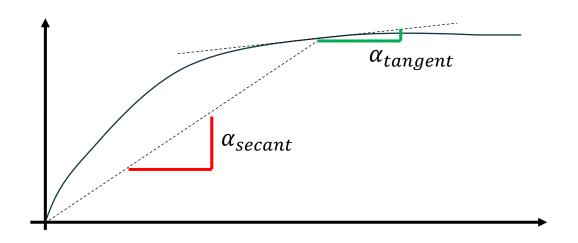
DYN

Thermal material models

*MAT_ADD_...

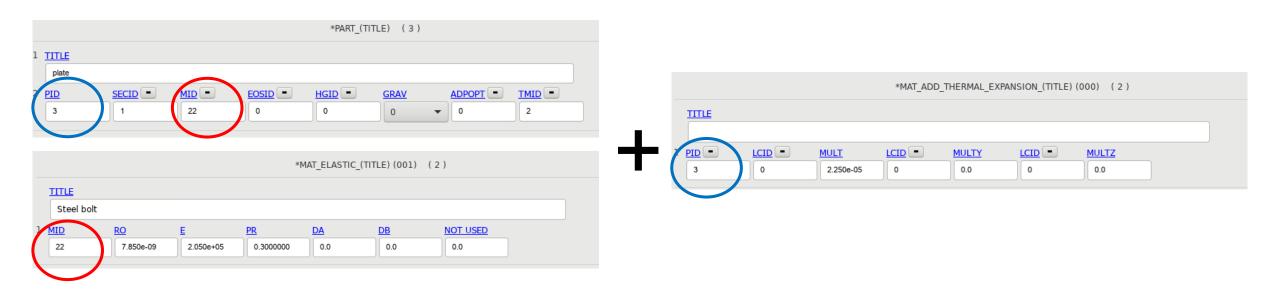
Add-on thermal strain effects								
*MAT	_ADD_TH	IERMAL_	EXPANSI	ION				
Card 1	1	2	3	4	5	6	7	8
Variable	PID	LCID	MULT	LCIDY	MULTY	LCIDZ	MULTZ	
Type	1	1	F	- 1	F	1	F	
Default	none	none	1.0	LCID	MULT	LCID	MULT	
 Add thermal expansion coefficient to any material model. The simulation may be thermal only, coupled thermo-machanical or structural only 								

Event title | data classification (9 pt)


© 2022 DYNAmore Nordic AB

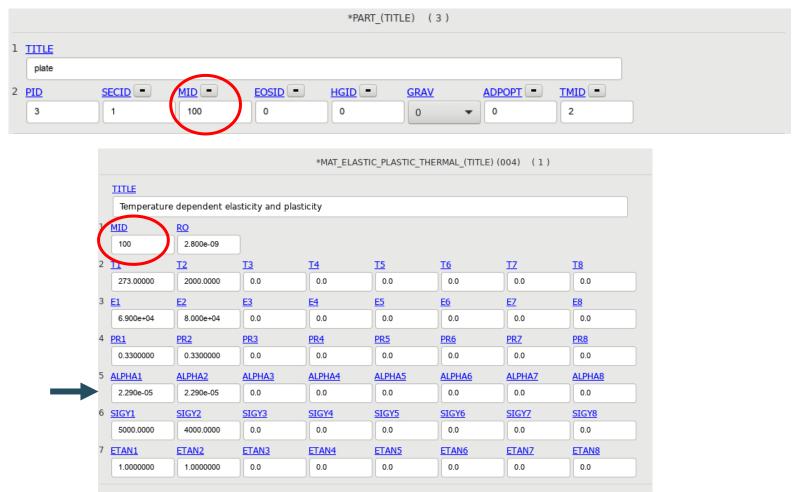
Slide 26

Thermal material models


- Thermal expansion
 - Given as a tangential input, not secant input. Hence, no reference temperature is needed.

Thermal material models

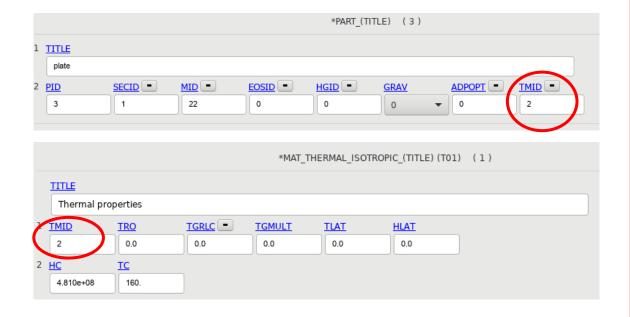
- Thermal expansion
- Included in the coupled thermo-mechanical material models.
- For a non-coupled material model, use *MAT_ADD_THERMAL_EXPANSION to include the effect of thermal strains.



COMMENT:

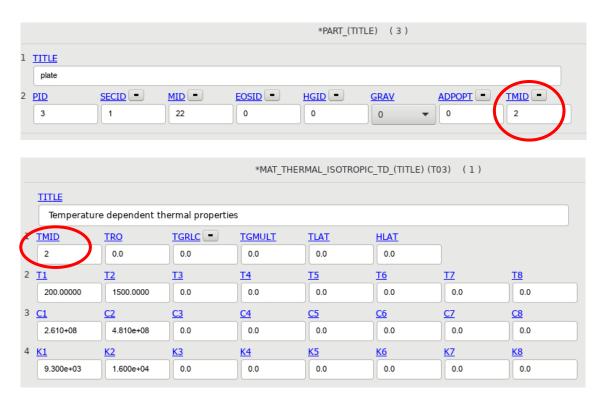
DYNA

Thermal material models


Thermal expansion is included in a coupled material model.

Thermal material models

- A thermal material model, TMID, need to be defined.
 - Linear material properties



TMID	Thermal material identification. A unique number or must be specified (see *PART).
TRO	Thermal density:
	EQ.0.0: Default to structural density
TGRLC	Thermal generation rate (see *DEFINE_CURVE).
	GT.0: Load curve ID giving thermal generation rate as a function of time
	EQ.0: Thermal generation rate is the constant multiplier, TG-MULT.
	LT.0: TGRLC is a load curve ID defining thermal generation rate as a function of temperature.
TGMULT	Thermal generation rate multiplier:
	EQ.0.0: No heat generation
TLAT	Phase change temperature
HLAT	Latent heat
НС	Specific heat
TC	Thermal conductivity

Thermal material models

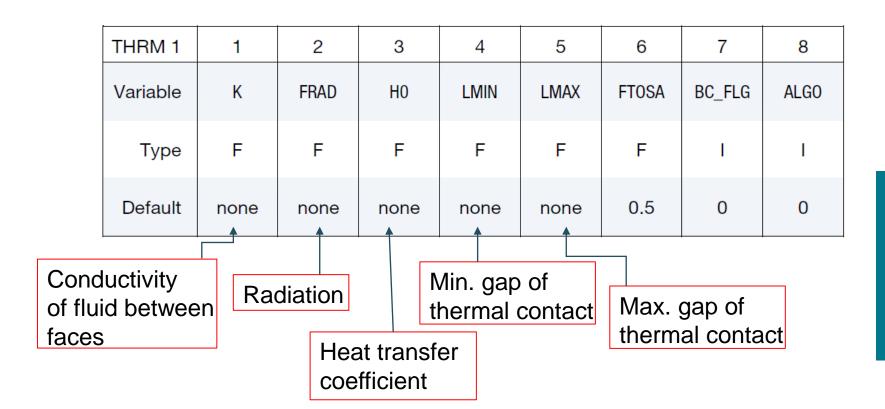
- A thermal material model, TMID, need to be defined.
 - Non-linear material properties

TMID	Thermal material identification. A unique number or must be specified (see *PART).								
TRO	Thermal density:								
	EQ.0.0: Default to structural density								
TGRLC	Thermal generation rate (see *DEFINE_CURVE).								
	GT.0: Load curve ID giving thermal generation rate as a function of time								
	EQ.0: Thermal generation rate is the constant multiplier, TG-MULT.								
	LT.0: TGRLC is a load curve ID defining thermal generation rate as a function of temperature.								
TGMULT	Thermal generation rate multiplier:								
	EQ.0.0: No heat generation								
TLAT	Phase change temperature								
HLAT	Latent heat								
T1,, T8	Temperatures: T1,, T8								
C1,, C8	Specific heat at: T1,, T8								
K1,, K8	Thermal conductivity at: T1,, T8								

Event title | data classification (9 pt)

© 2022 DYNAmore Nordic AB

Slide 31



Thermal contact

DYNA

Thermal contacts

- Thermal contact is activated by adding THERMAL or THERMAL_FRICTION to the contact type name
- Applicable to AUTOMATIC and FORMING contact types.

About LMIN & LMAX

- Gap > LMAX:
 - No thermal contact
- Gap < LMIN:
 - Thermal contact using H0

Thermal contacts

By adding _THERMAL_FRICTION instead of _THERMAL the user may define friction and heat conductance as a function of temperature and interface pressure.

		_	_		_	_	_		1 —		
THRM 1	1	2	3	4	5	6	7	8			
Variable	К	FRAD	НО	LMIN	LMAX	FTOSA	BC_FLG	ALG0			
Туре	F	F	F	F	F	F	I	1	THERMAL		
Default	none	none	none	none	none	0.5	0	0			
THERMAL	THERMAL Card 2.										_THERMAL_FRICTION
THRM 2	1	2	3	4	5	6	7	8			
Variable	LCFST	LCFDT	FORMULA	А	В	С	D	LCH			
Туре	I	I	I	I	I	I	I	I			
Default	0	0	0	0	0	0	0	0			

Event title | data classification (9 pt)

© 2022 DYNAmore Nordic AB

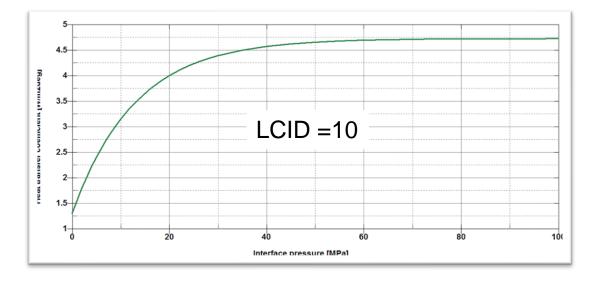
Slide 34

DYNA

Thermal contacts

Defining h(p) (conductance as a function of interface pressure) with _THERMAL_FRICTION

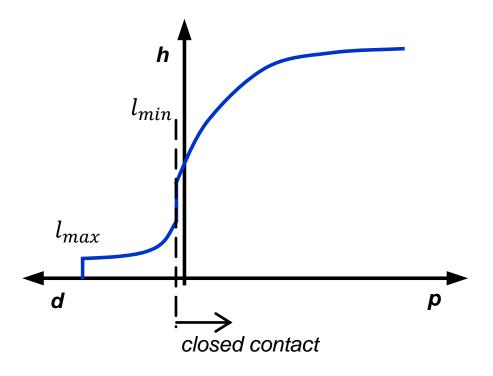
THERMAL Card 2.


THRM 2	1	2	3	4	5	6	7	8
Variable	LCFST	LCFDT	FORMULA	Α	В	С	D	LCH
Туре	1	I	I	1	I	1	I	1
Default	0	0	1	10	0	0	0	0

FORMULA

Formula that defines the contact heat conductance as a function of temperature and pressure.

EQ.1: h(P) is defined by load curve A, which contains data for contact conductance as a function of pressure.


A Load curve ID for the *a* coefficient used in the formula

Thermal contacts

Contact gap & Heat transfer

$$0 \le gap \le l_{\min} \qquad h = h0(p)$$

$$l_{\min} \le gap \le l_{\max} \qquad h = h_{cond} + h_{rad} \qquad h = \frac{k}{L_{gap}} + f_{rad} \left(T + T_{\infty}\right) \left(T^{2} + T_{\infty}^{2}\right)$$

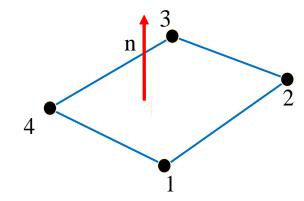
$$gap \ge l_{\max} \qquad h = 0$$

Thermal boundary conditions

Event title | data classification (9 pt)

© 2022 DYNAmore Nordic AB

Slide 37

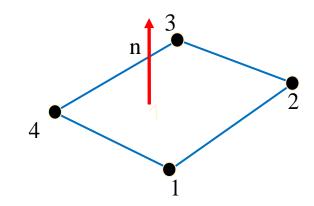

DYNA

Thermal bounday conditions

- *BOUNDARY_CONVECTION
 - Air cooling
 - Applied on single segment or on segment set(s)
 - Input convection heat transfer coeficient, α , and surrounding temperature, T_{∞}
 - lacktriangle α may be given as a constant or as a curve for time or temperature dependency
 - T_{∞} may be given as a constant or as a curve for time dependency

Card 2	1	2	3	4	5	6	7	8
Variable	HLCID	HMULT	TLCID	TMULT	LOC			
Туре	I	F	I	F	I			
Default	none	0.	none	0.	0			

$$\dot{q} = \alpha(T)(T - T_{\infty})$$

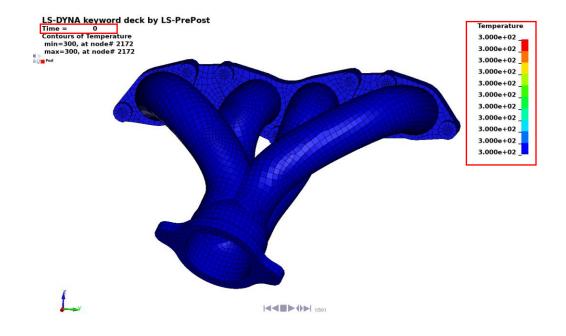

DYNA

Thermal bounday conditions

- *BOUNDARY_RADIATION
 - Heat transfer between parts
 - Several options... but for the SEGMENT_SET-option:
 - Applied on single segment or on segment set(s)
 - Input Radiation heat transfer coeficient, f, and surrounding temperature, T_{∞}
 - f may be given as a constant or as a curve for time or temperature dependency
 - T_{∞} may be given as a constant or as a curve for time dependency

Card 2	1	2	3	4	5	6	7	8
Variable	FLCID	FMULT	TLCID	TMULT	LOC			
Туре	1	F	I	F	I			
Default	none	0.	none	0.	0			

$$\dot{q}'' = \sigma \varepsilon F \left(T_{surface}^4 - T_{\infty}^4 \right) = f \left(T_{surface}^4 - T_{\infty}^4 \right)$$

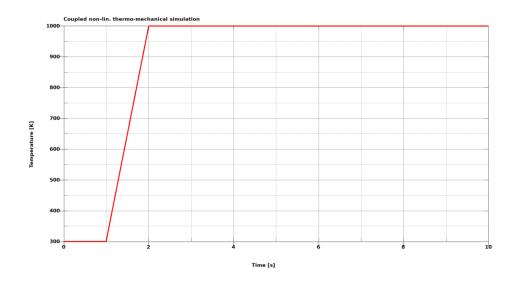

Thermal bounday conditions

DYNA

- *INITIAL_TEMPERATURE
 - Define an initial temperature for the simulation
 - Applied to a node or set of nodes.

NSID/NID = 0 => All nodes are included (default)

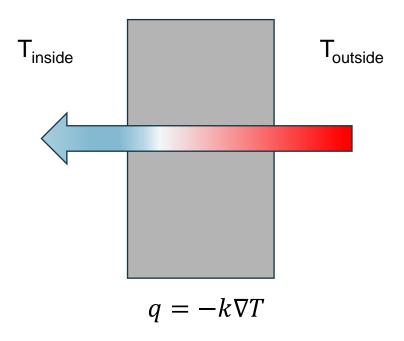
	-	-						
Card 1	1	2	3	4	5	6	7	8
Variable	NSID/NID	TEMP	LOC					
Туре	- 1	1	1					
Default	1	0.	0					
Remarks	1							
Node or node set id		Temp	oeratu	re				



DYNA

Thermal bounday conditions

- *BOUNDARY_TEMPERATURE
 - Heat source
 - Define boundary temperature for a thermal simulation
 - Several tailored options available (PERIODIC_SET, RSW, TRAJECTORY, WELD,....)


Card 1	1	2	3	4	5	6	7	8
Variable	NID	TLCID	TMULT	LOC	TDEATH	TBIRTH		
Туре	1	1	F	I	F	F		
Default	none	0	0.	0	1020	0.		
		1						
Node or Load curve node set id Temperature vs. time								

DYNA

Thermal bounday conditions

- *BOUNDARY_FLUX
 - Define boundary conditions on the amount of heat energy passing through a certain surface.
 - Given as heat flux density, q, in units of power/area.

Thermal strain output

Thermal strain output

Output of thermal strain specified on *DATABASE_EXTENT_BINARY

VARIABLE

E1

DESCRIPTION

STRFLG

Flag for output of strain tensors. STRFLG is interpreted digit-wise STRFLG = [NML],

$$STRFLG = L + M \times 10 + N \times 100$$

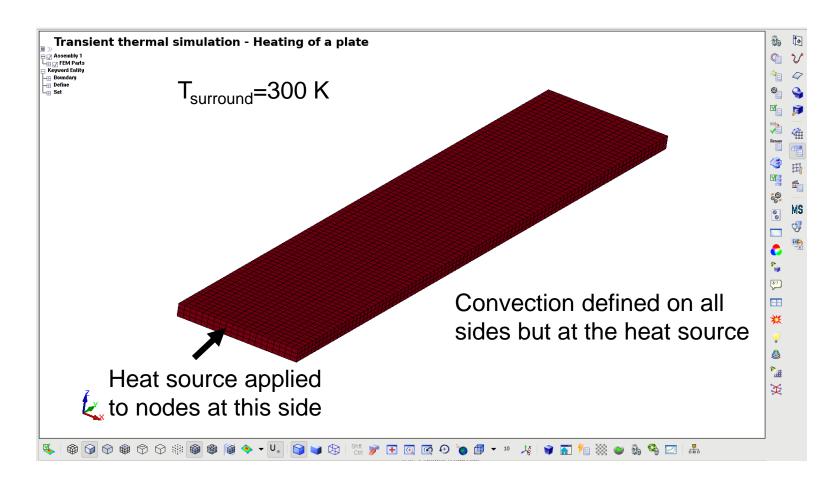
L.EQ.1: Write strain tensor data to d3plot, elout, and dynain. For shell and thick shell elements two tensors are written, one at the innermost and one at the outermost integration point. For solid elements a single strain tensor is written.

M.EQ.1: Write plastic strain data to d3plot.

N.EQ.1: Write thermal strain data to d3plot.

Examples. For STRFLG = 11 (011) LS-DYNA will write both strain and plastic strain tensors, but no thermal strain tensors. Whereas for STRFLG = 110, LS-DYNA will write plastic and thermal strain tensors but no strain tensors. For more information and supported elements and materials, see Remark 10.

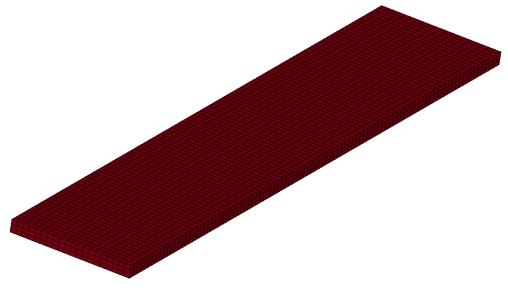
Card 1b 2 3 5 6 4 8 NEIPH **NEIPS** MAXINT STRFLG SIGFLG **EPSFLG** RLTFLG **ENGFLG** Variable Type Default 0 0 3 0 1 1 10 Remarks



Example 1 – Heating of a steel plate

Heating of a steel plate

- Thermal only analysis of a plate
 - Material: Steel
 - Environment: Air
 - Surrounding temp.: Room-temp.
 - Heat source temp.: 600 K

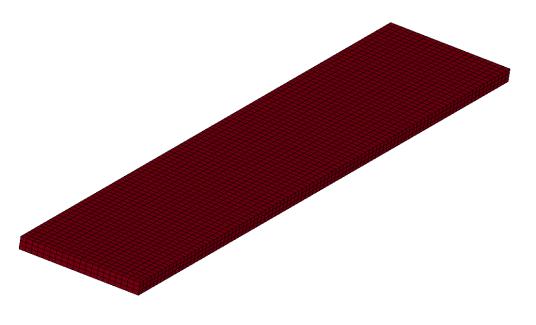


DYNAMORE

Heating of a steel plate

Load case set-up

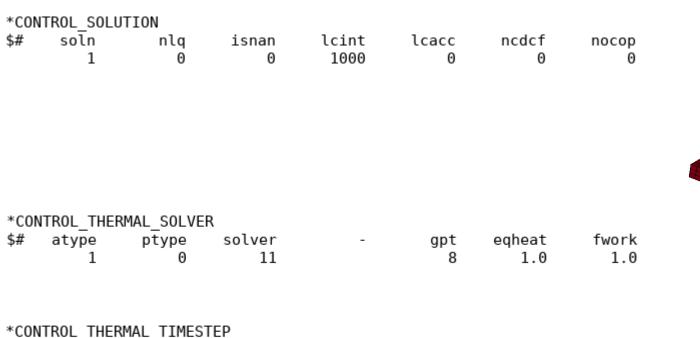
*IN: \$#	ITIAL_TEM nsid 0	IPERATURE_SE temp 300.0	T loc					
*B0l \$#	JNDARY_CO ssid 1	NVECTION_SE pserod	ΞT					
\$#	hlcid 0	hmult 1.0	tlcid 0	tmult 300.0	loc 0			
*B0l	JNDARY TE	MPERATURE S	ET					
\$#	nsid 6	lcid 500	cmult 1.0	loc 0	tdeath	tbirth		
	FINE_CURV te temp	E_TITLE						
\$#	lcid	sidr	sfa	sfo	offa	offo	dattyp	lcint
\$#	500	0 a1 0.0 10.0 100.0	0.0	0.0 01 300.0 600.0	0.0	0.0	Θ	0



DYNA

Heating of a steel plate

Material modeling


```
*PART
$#
                                                                             title
Plate
$#
                           mid
                                                                              tmid
       pid
               secid
                                    eosid
                                               hgid
                                                                  adpopt
                                                          grav
                                                  0
                                                                                 2
*MAT ELASTIC
       mid
                                                     da
                                                                     not used
                                          pr
                    ro
                                         0.3
                                                    0.0
          1 7.8500E-9
                        205000.0
                                                                0.0
                                                                           0.0
*MAT THERMAL ISOTROPIC
      tmid
                                                          hlat
                          tgrlc
                                   tgmult
                                               tlat
                  ro
                            0.0
                                      0.0
                                                0.0
                                                           0.0
                 0.0
        hc
                  tc
4.810000E8
             16000.0
```


Heating of a steel plate

Solution & solver definition

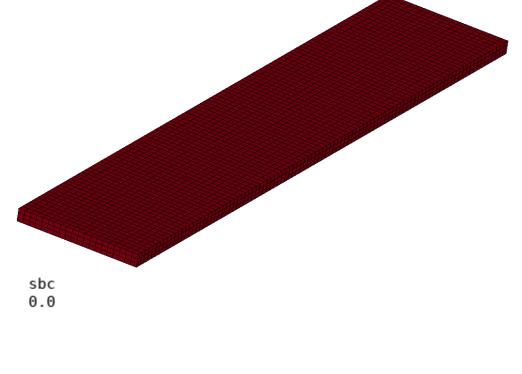
tmin

0.0

dtemp

1.0

tmax


0.0

lcts

0

tscp

0.5

Event title | data classification (9 pt)

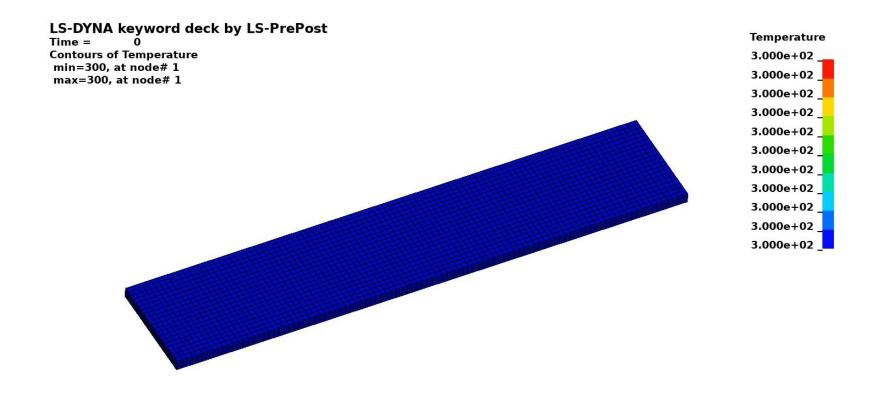
ts

1.0

tip

1.0

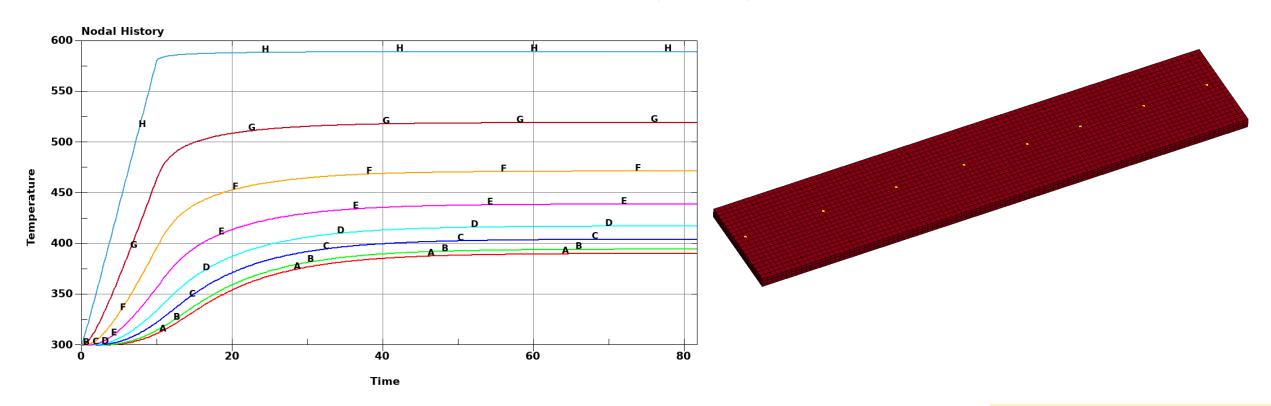
its


1.e-3

\$#

Heating of a steel plate

Results

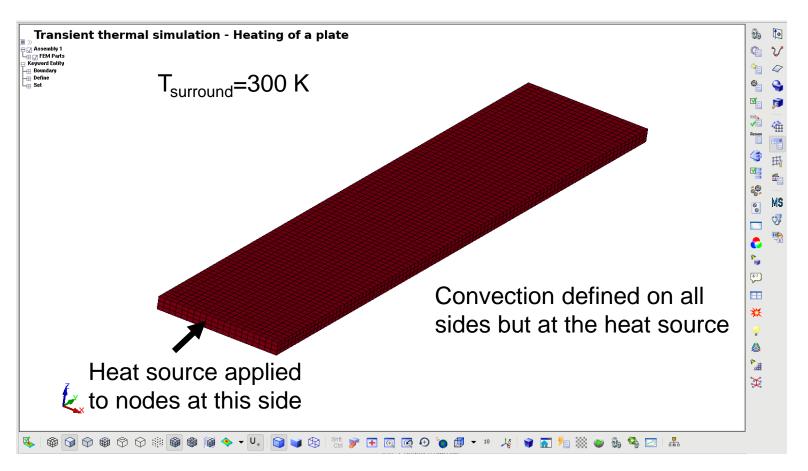


DYNA

Heating of a steel plate

- Results
 - Steady-state found at t > 60s => Time consuming?
 - The problem is not path-dependent and linear => try Steady-state

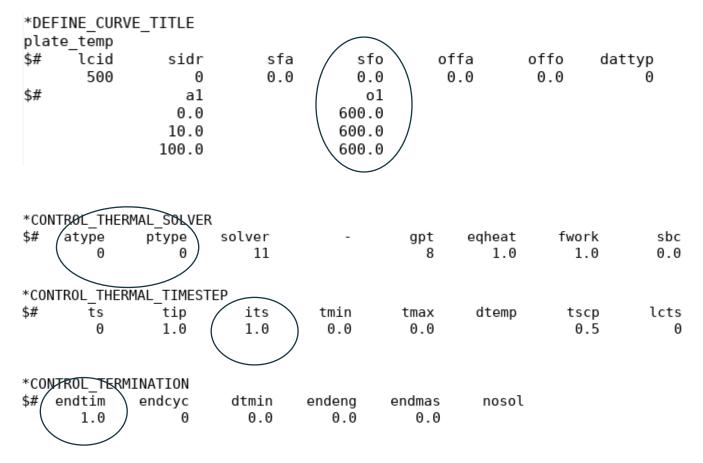
Heating of a steel plate

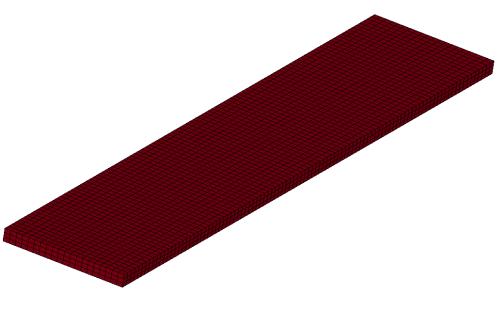

Steady-state thermal analysis of a plate

Material: Steel

Environment: Air

Surrounding temp.: Room-temp.

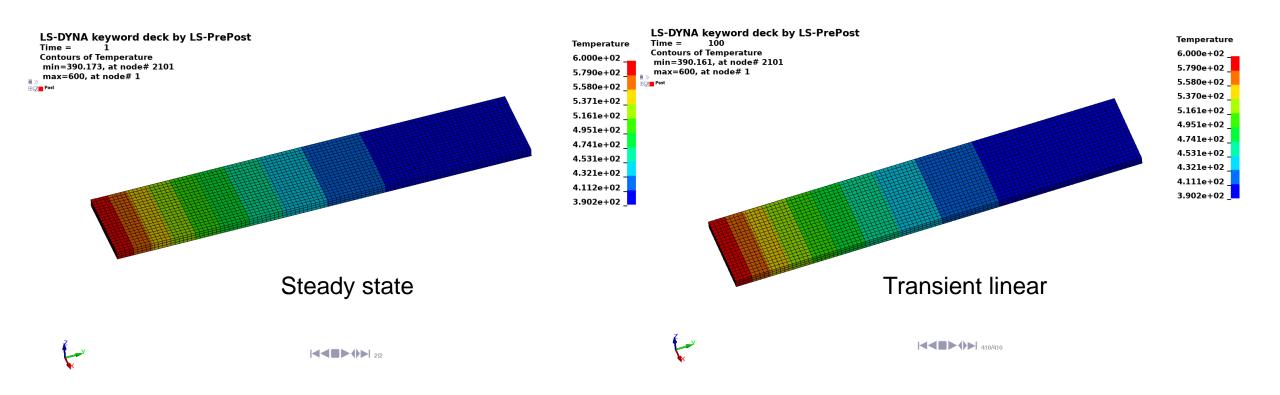

Heat source temp.: 600 K



DYNA

Heating of a steel plate

Changes



Heating of a steel plate

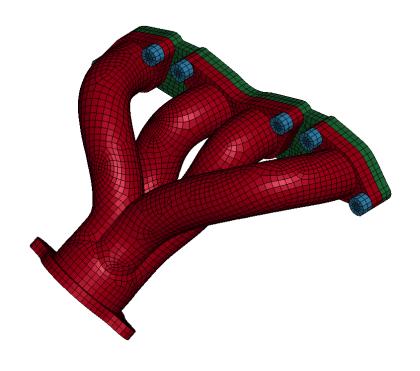
- Results
 - Solution time for Steady state is, in this case, 24 times faster than for the transient linear solution!



Example 2 – Exhaust manifold

Exhaust manifold

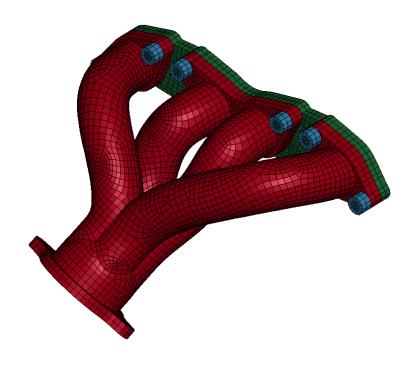
- Thermo-mechanical simulation
 - Material: Steel
 - Environment: Air
 - Surrounding temp.: Room-temp.
 - Heat source temp.: 600 K
 - Pre-stressed bolts
 - Thermal contacts
 - Conductance is dependent on interface pressure
 - Stress output requested
 - Non-linear thermal properties
 - Conductivity & specific heat are temperature dependent


Need to use a non-linear, fully coupled approach

Exhaust manifold

Load case set-up

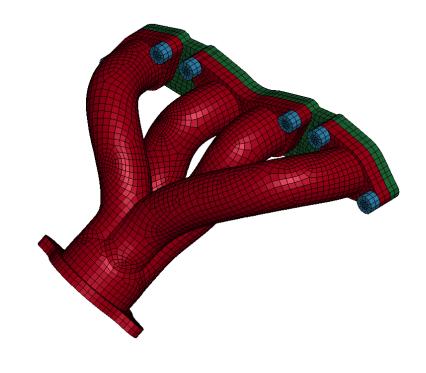
*IN] \$#	TIAL_TEM nsid 0	PERATURE_SE temp 300.0	T loc 0					
*B0U \$#	JNDARY_CO ssid 1	NVECTION_SE pserod	ĒΤ					
\$#	hlcid 0	hmult 1.0	tlcid 0	tmult 300.0	loc 0			
*B0U	INDARY TE	MPERATURE S	ET					
\$#	nsid 6	lcid 500	cmult 1.0	loc 0	tdeath	tbirth		
	INE_CURV	E_TITLE						
\$#	lcid 500	sidr 0	sfa 0.0	sfo 0.0	offa 0.0	offo 0.0	dattyp 0	lcint 0
\$#		a1 0.0 10.0 100.0		01 300.0 600.0 600.0				



Exhaust manifold

Material modeling

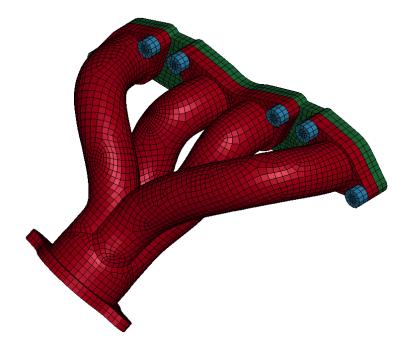
*PAF	RT ifold								
\$#	pid	secid	mid	eosid	haid	arav	adopt	tmid	
	1	1	1	Θ	0	0	Θ	2	
*PAF									
bolt									
\$#		secid	mid		hgid	grav		tmid	
*PAF	2	1	1	0	0	0	0	2	
engi									
\$#	pid	secid	mid	eosid	hgid	grav	adopt	tmid	
Ψ"	3	1	1	0	0	9.20	0	2	
	[ELAST]	IC							
\$#	mid	ro	e	pr		da	db no	ot used	
	1	7.8500E-9	205000.0	0.3		0.0	0.0	0.0	
*MAT	THERMA	AL ISOTROP	IC TD						
\$#	_ tmid	_	_	tgmult		tlat	hlat		
	2	0.0	0.0	0.0		0.0	0.0		
\$#	t1	t2	t3	t4		t5	t6	t7	t8
	200.0	400.0	1500.0	0.0		0.0	0.0	0.0	0.0
\$#	c1	c2	c3	c4		c5	c6	с7	с8
4.8	31000E8	4.81000E9	4.81000E9	0.0		0.0	0.0	0.0	0.0
\$#	k1	k2	k3	k4		k5	k6	k7	k8
1	L6000.0	160000.0	160000.0	0.0		0.0	0.0	0.0	0.0



Exhaust manifold

Solution & solver definition

*C0I \$#	NTROL_SOLU soln 2	JTION nlq 0	isnan 0	lcint 1000	lcacc 0	ncdcf 0	nocop 0	
*CON \$#	NTROL_THEF atype 1	RMAL_SOLVE ptype 2	R solver 11	-	gpt 8	eqheat 1.0	fwork 1.0	sbc 0.0
*CON \$#	NTROL_THEF ts 1	RMAL_TIMES tip 1.0	TEP its 1.e-3	tmin 0.0	tmax 0.0	dtemp 1.0	tscp 0.5	lcts 0
*CON \$#	NTROL_THEF refmax 100	RMAL_NONLI tol 1.e-6		lumpbc 0	thlstl 0.0	nlthpr 1	phchpn 100.0	



Exhaust manifold

DYNA

- Thermal contact
 - All contacts are defined the same in this example

*C0	*CONTACT_AUTOMATIC_SURFACE_TO_SURFACE_MORTAR_THERMAL_FRICTION_ID									
\$#	cid	_		_	_		-	title		
	1b	olts and e	ngine							
\$#	surfa	surfb	surfatyp	surfbtyp	saboxid	sbboxid	sapr	sbpr		
	3	2	3	3	0	0	0	0		
\$#	fs	fd	dc	VC	vdc	penchk	bt	dt		
	0.2	0.2	0.0	0.0	0.0		0.01	.00000E20		
\$#	sfsa	sfsb	sast	sbst	sfsat		fsf	vsf		
	1.0	1.0	1.0	0.0	1.0	1.0	1.0	1.0		
\$#	k	frad	h0	lmin	lmax	ftosa	bc flg	algo		
			3000.0	0.001	0.01	1.0	_ 0	0		
\$#	lcfst	lcfdt	formula	а	b	С	d	lch		
	Θ	0	1	10	0	0	0	0		
\$#	soft	sofscl	lcidab	maxpar	sbopt	depth	bsort	frcfrq		
	Θ	0.1	Θ	1.025	2.0	2	0	1		
\$#	penmax	thkopt	shlthk	snlog	isym	i2d3d	sldthk	sldstf		
	0.0	0	2	Ō	0	0	0.0	0.0		
\$#	igap	ignore	dprfac	dtstif	edgek	unused	flangl	cid rcf		
	2	1	0.0	0.0	0.0		0.0	_ 0		

k and frad are not defined.

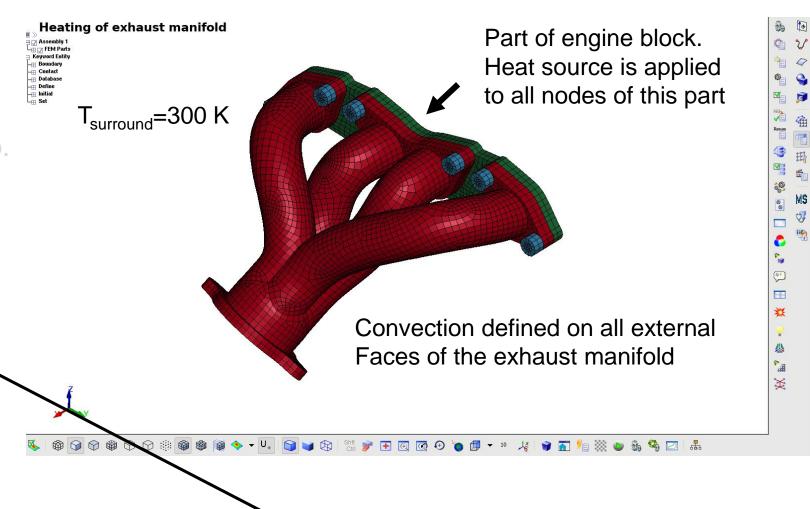
The bolts are prestressed so there is no gap in the model.

Exhaust manifold


Results

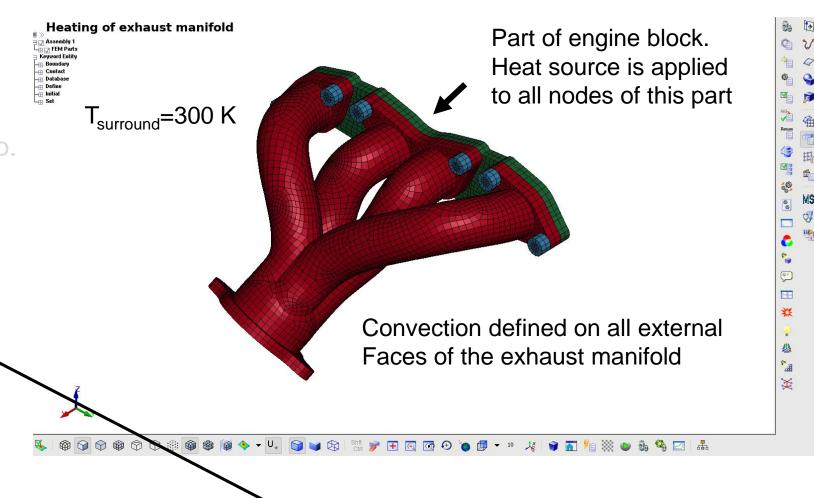
Heating of exhaust manifold

Time = 0
Contours of Temperature
min=300, at node# 2172
max=300, at node# 2172



Exhaust manifold

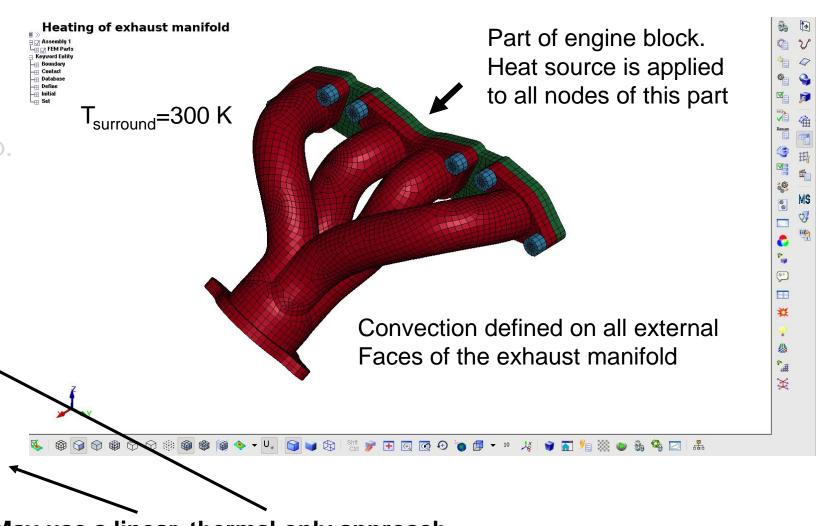
- Thermo-mechanical simulation
 - Material: Steel
 - Environment: Air
 - Surrounding temp.: Room-temp.
 - Heat source temp.: 600 K
 - Pre-stressed bolts
 - Thermal contacts
 - Conductance is **not** dependent on interface pressure
 - Stress output requested
 - Non-linear thermal properties
 - Conductivity & specific heat are temperature dependen



May use a non-linear, un-coupled thermo-mechanical approach

Exhaust manifold

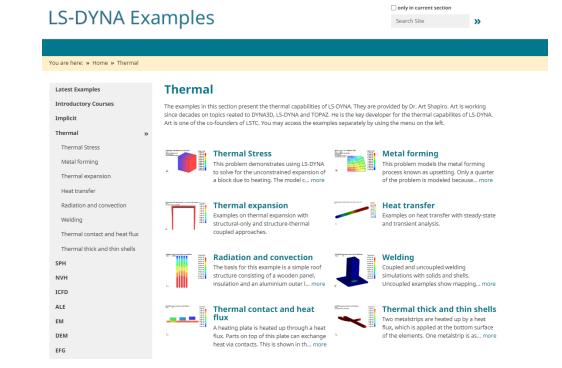
- Thermo-mechanical simulation
 - Material: Steel
 - Environment: Air
 - Surrounding temp.: Room-temp.
 - Heat source temp.: 600 K
 - Pre-stressed bolts
 - Thermal contacts
 - Conductance is **not** dependent on interface pressure
 - Stress output requested
 - Linear thermal properties
 - Conductivity & specific heat are
 not temperature dependent



May use a linear, un-coupled thermo-mechanical approach

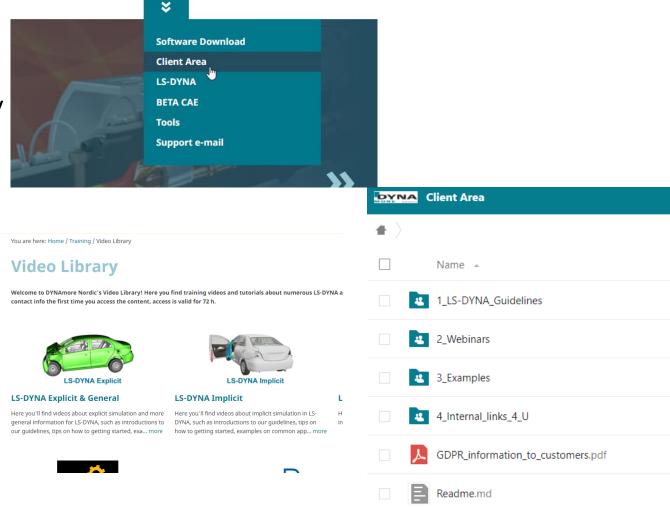
Exhaust manifold

- Thermo-mechanical simulation
 - Material: Steel
 - Environment: Air
 - Surrounding temp.: Room-temp.
 - Heat source temp.: 600 K
 - Pre-stressed bolts
 - Thermal contacts
 - Conductance is **not** dependent on interface pressure
 - Stress output not requested
 - Linear thermal properties
 - Conductivity & specific heat are not temperature dependent

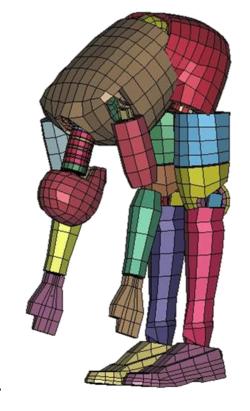


May use a linear, thermal only approach

Further information


- Dynalook (<u>www.dynalook.com</u>)
 - Papers from European and International conferences
- YouTube
 - Dynamore GmbH
 - Conjugate Heat Transfer Tool Cooling
 - •
- LS-DYNA Examples (www.dynaexamples.com)
 - Papers from European and International conferences

Related webinars and short videos



- Client Area and Short Videos
- Free of charge Webinar every other Thursday

Products Services Support Training Company News

Thank You

DYNAMore Nordic AB Brigadgatan 5 587 58 Linköping, Sweden

Tel.: +46 - (0)13 23 66 80 info@dynamore.se

www.dynamore.se www.dynaexamples.com www.dynasupport.com www.dynalook.com

© 2022 DYNAmore Nordic AB. All rights reserved. Reproduction, distribution, publication or display of the slides and content without prior written permission of the DYNAmore Nordic AB is strictly prohibited.

DYNAmore worldwide Germany - France - Italy - Sweden - Switzerland - USA Find us on

