Document information

Doc. no.: N/a

Revision: 1

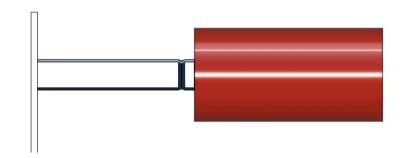
Prepared for: Public webinar

Project no.: N/a

Approved by: MG

Release date: 2022-06-16

Distribution: Approved for public release


DYNAmore Nordic AB Brigadgatan 5 SE-587 58 LINKÖPING

Sweden

Org. no. 556819-8997 EC VAT: SE556819899701 Phone: +46 (0)13 236680 Fax: +46 (0)13 214104 E-mail: info@dynamore.se Web: www.dynamore.se

Explicit Model Breakdown

Marcus Gustavsson, DYNAmore Nordic

DYNAmore Nordic

Support, training, guidelines, and more

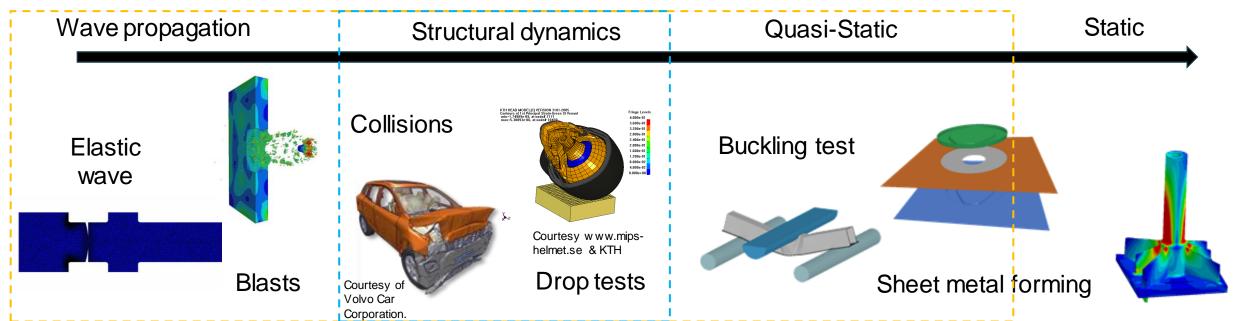
- Support
 - Support manager: Dr. Jimmy Forsberg
 - E-mail: <u>support@dynamore.se</u>
 - Target to answer in 4 hours, carried out
 - Call: +46 13 236680
- Training & seminars including on-line & on-site: www.dynamore.se
- Secure file server: files.dynamore.se
 - Software and license download, <u>client area with guidelines and more</u>
- <u>www.dynamore.se</u> information on LS-DYNA, Seminars, Conferences
- <u>www.dynalook.com</u> Papers from international LS-DYNA conferenses
- <u>www.dynasupport.com</u> General support for LS-DYNA
- <u>www.dynaexamples.com</u> LS-DYNA example models from crash to DEM.

Agenda

Webinar Content

- About explicit simulation
- LS-DYNA's keyword format & model structure
 - FE-geometry
 - Material
 - Boundary conditions
 - Control & output

LS-DYNA Explicit


Applications

- Dynamic problems
 - The mass inertia affects the results
 - Time is real

- Quasi-Static and Static problems
 - The mass inertia should not affect the results
 - The time should not affect the results

This webinar

Common explicit applications

LS-DYNA Explicit

DYNA

Time Integration

• Explicit schemes gives the configuration at time t_{n+1} as an explicit function of earlier configurations, i.e.,

$$\mathbf{x}_{n+1} = \mathbf{f}(\mathbf{x}_n, \mathbf{x}_{n-1}, ..., t_{n+1}, t_n, ...)$$

- Explicit conditionally stable, a sufficiently small time step needed
 - Critical time step size is dependent on the speed of sound

$$\Delta t_{
m critical} = rac{l_e}{c_e} \qquad c_e \sim \sqrt{rac{E_e}{
ho_e}}$$

- Smaller mesh ⇒ smaller time step ⇒ longer simulation time (wall clock time)
- No information can propagate across more than one element per time step

LS-DYNA Keyword Format

The Basics

- LS-DYNA's input files are called keyword files (.k, .key)
- Input is structured in "keywords" that start with "*"
- A comment card starts with "\$"

*PART	Key	word		Cards	title			
Tube	1							
\$#	pid	secid	mid	eosid	hgid	grav	adpopt	tmid
	1	1	1	0	1	0	0	0

Field

- 0 in a field most often result in a default value
- The number of cards and field formatting differ between keywords.
- The keyword file always start with *KEYWORD and end with *END
- Read more about formatting specifics in the latest LS-DYNA manual <u>www.dynasupport.com/manuals</u>

*KEYWORD

*TITLE

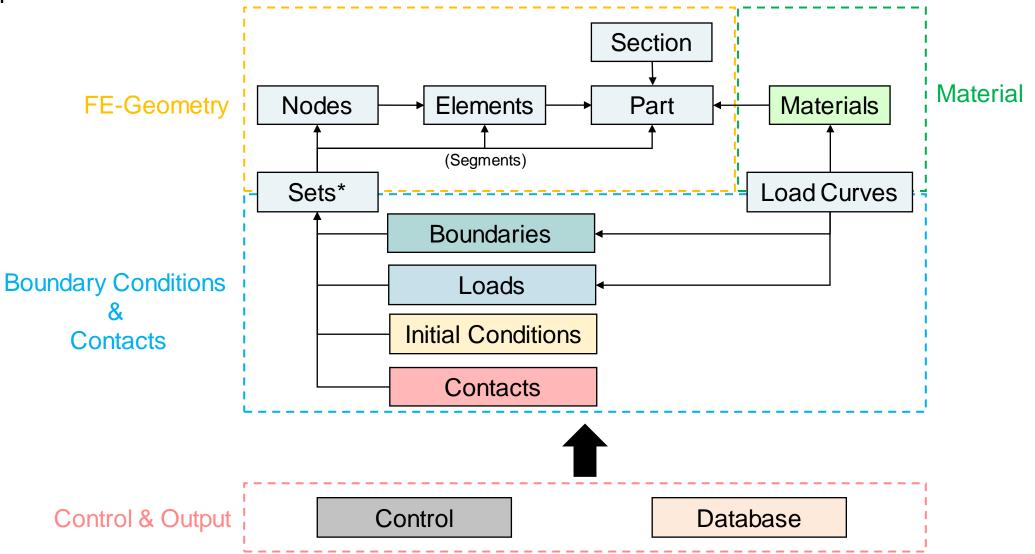
Test example

- \$ Define nodes and elements
- *NODE
- *ELEMENT SHELL
- \$ Define section and material
- *PART
- \$ Define element types and integration
- *SECTION SHELL
- \$ Define material properties
- *MAT ELASTIC
- \$ Define loads and BC
- *LOAD NODE
- *BOUNDARY PRESCRIBED MOTION RIGID
- *CONTACT AUTOMATIC SURFACE TO SURFACE
- \$ Define output of results
- *DATABASE BINARY D3PLOT
- *DATABASE GLSTAT
- \$ Control cards govern entire simulation
- *CONTROL TERMINATION
- *CONTROL TIMESTEP

*END

LS-DYNA Keyword Format

Consistent Units


- LS-DYNA has no fixed unit system
 - It simply requires units that are consistent with Newton's second law, F=ma
 - Unit system is implicitly defined by the units of material properties and model length that are input

MASS	LENGTH	TIME	FORCE	STRESS	ENERGY	DENSITY	YOUNG's	GRAVITY
kg	m	s	N	Pa	J	7.83e+03	2.07e+11	9.806
kg	cm	S	1.0e-02 N	Pa	J	7.83e-03	2.07e+09	9.806e+02
kg	mm	ms	kN	GPa	kN-mm	7.83e-06	2.07e+02	9.806e-03
g	cm	S	dyne	dyne/cm²	erg	7.83e+00	2.07e+12	9.806e+02
g	mm	S	1.0e-06 N	Pa	1.0e-09 J	7.83e-03	2.07e+11	9.806e+03
g	mm	ms	N	MPa	N-mm	7.83e-03	2.07e+05	9.806e-03
ton	mm	S	N	MPa	N-mm	7.83e-09	2.07e+05	9.806e+03
lbf-s²/in	in	S	lbf	psi	lbf-in	7.33e-04	3.00e+07	386
slug	ft	S	lbf	psf	lbf-ft	1.52e+01	4.32e+09	32.17

LS-DYNA Model Structure

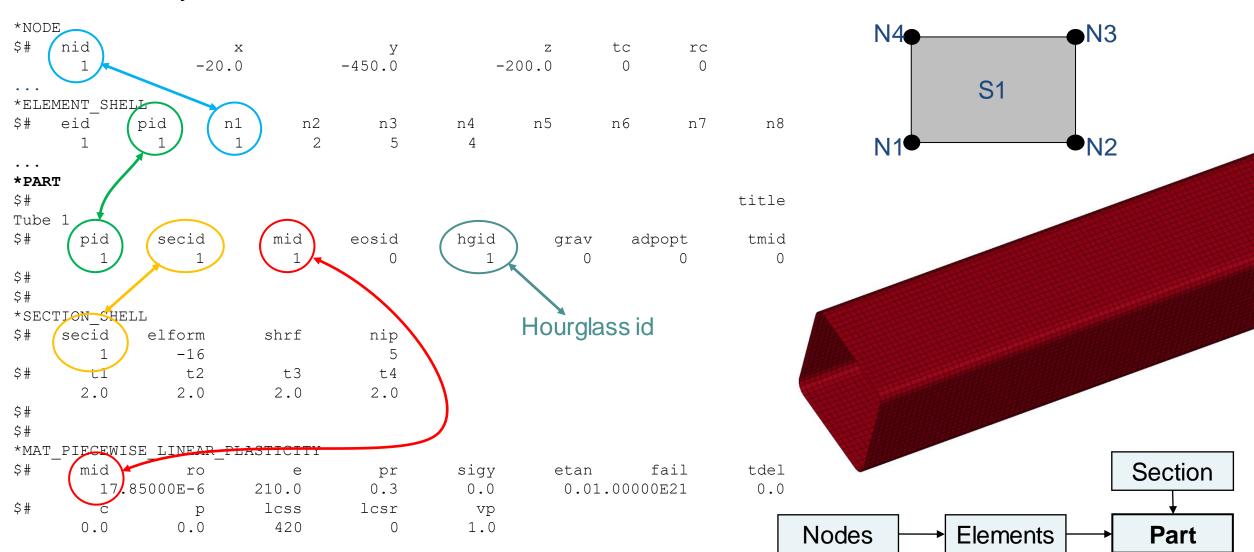
In Simple Terms

^{*} BC:s can also be directly applied to parts, elements, nodes, etc.

Explicit Model Breakdown

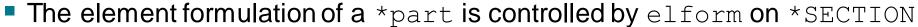
Crash Box Model

- Our model is a rather simple crash box based on the one from our explicit guideline
 - 100x100x500 mm, thickness 2 mm
- The system of units used in the model is mm, ms, kg, kN, GPa.
- The three boxes and impactors are identical but have different definitions for
 - Boundary conditions
 - Impactor movement
 - Crash box fixation
 - Contact definition


Rigid Impactor **Crash Box** Rigid Plate Part numbers (pid)

Client Area > 1_LS-DYNA_Guidelines > 1_LS-DYNA_Explicit_Guidelines

FE-Geometry


DYNA

***PART** – Always at the center

FE-Geometry

***SECTION** – Chose element type

• Multiple *part can use the same *SECTION id (secid)

Crash box solids use elform 1 and shells elform -16

*SE(CTION_SOL	JID						
\$#	secid	elform	aet	unused	unused	unused	cohoff	unused
	1	1						

elfrom (ex for solids):

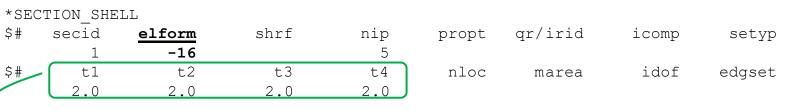
EQ.1: Constant stress solid element (default)

EQ.2: 8 point hexahedron

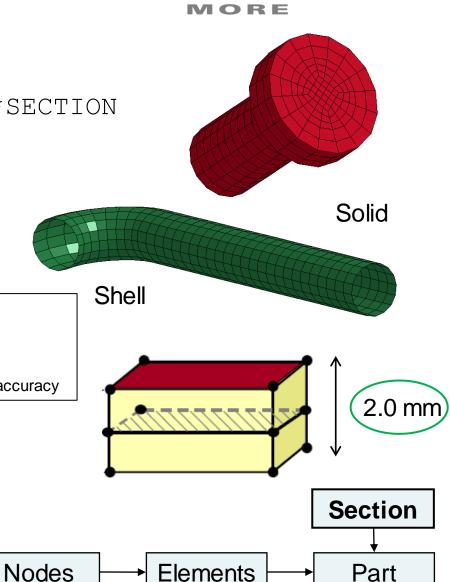
EQ.10: 1 point tetrahedron

EQ.13: 1 point nodal pressure tetrahedron

EQ.16: 4 or 5 point 10 - noded tetrahedron


elfrom (ex for shells):

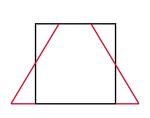
EQ.1: Hughes-Liu,

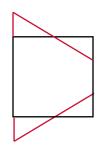

EQ.2: Belytschko-Tsay (default)

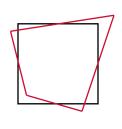
EQ.16: Fully integrated shell element

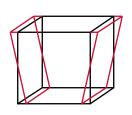
EQ.-16: Fully integrated shell element modified for higher accuracy

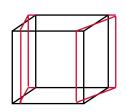
Geometrical attributes, such as thickness, are defined on *SECTION for shells (and beams)

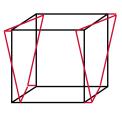


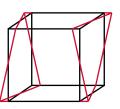

FE-Geometry




*HOURGLASS - Control Element Behaviour


- It is not uncommon to use under integrated elements in explicit simulation.
 - Inherit to under integrated elements are zero energy/stiffness modes, so called hourglass modes. In order to mitigate this an artificial stiffness is added via *HOURGLASS or *CONTROL_HOURGLASS

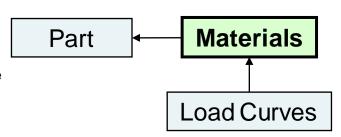


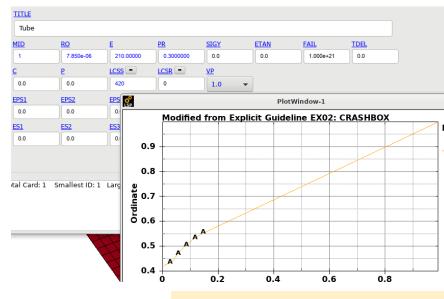


• For the Crash Box we use fully integrated shell type 16, however, we still use hourglass IHQ=8. This activates full projection warping stiffness for shell formulations 16 and -16, NOT "hourglass" per say.

*HOU	RGLASS
\$#	hgid
	1

Overview

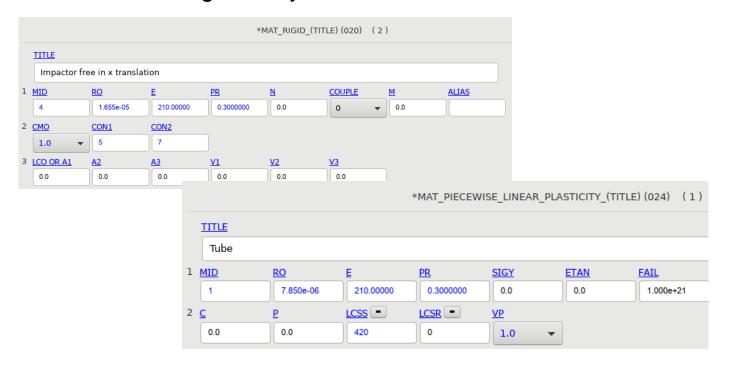


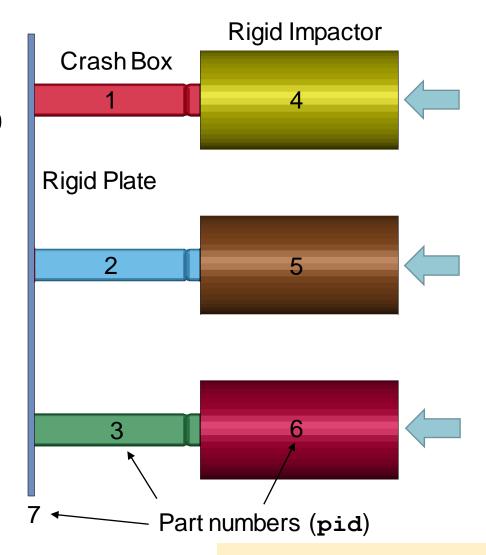

- 200+ material models in LS-DYNA that model different behaviors, plasticity, strain rate, failure, etc.
- Most materials are developed for modelling a specific material type, e.g., metals, composites, plastics; however, they are not bound to any specific physical material
- The complexity varies between material models, from the simplest isotropic elastic models to advanced elasto-plastic, rate-dependent, anisotropic models with failure. It is important to note that the more complex material model the more is required in terms of material testing and calibration
- In this webinar we consider two of the most used materials models
 - *MAT_020 A rigid material "model" that cannot deform.
 - *MAT_024 An elasto-viscoplastic material model

Short video - Material hardening — Dynamore Nordic AB

Webinar - Client Area > 2_webinars > 3_Material_and_Failure

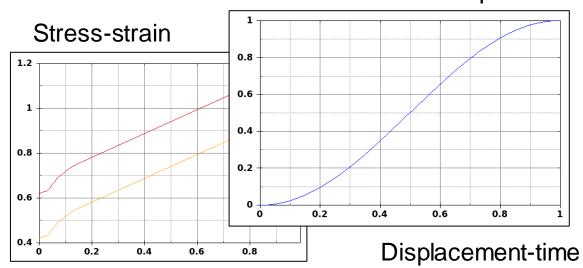
Webinars on numerous material types and phenomena;
failure, plastics, rubber, composites, and more.

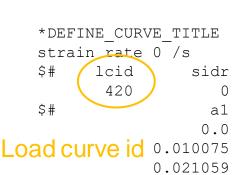


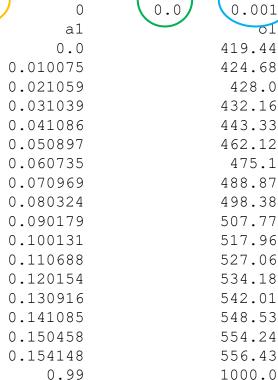


Crash Box Model

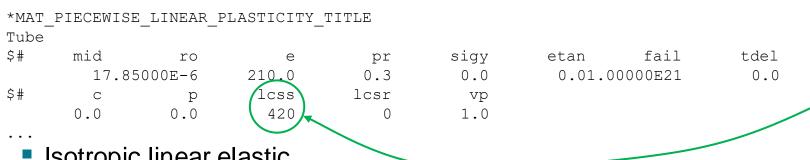
- Crash boxes (1,2,3) are assigned *MAT_024
 - Elasto-viscoplastic behavior is captured
- Impactors and the plate (4,5,6,7) are rigid and use *MAT_020
 - Undeformable geometry



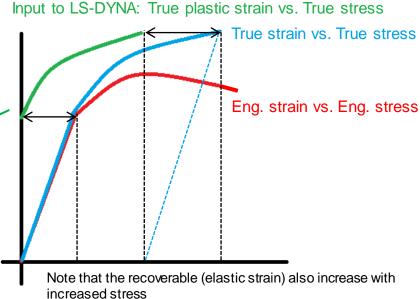

Curve Input


*DEFINE_CURVE

- Before we go on, we need to introduce*DEFINE CURVE
- Input of curve data for most things in LS-DYNA
 - Stress-strain for material (hardening)
 - Displacement-time for prescribed displacement
- Extent time-dependent curves beyond termination to ensure correct value at last time step!

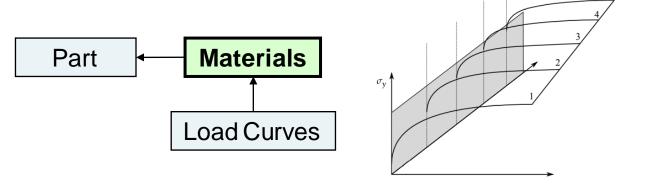

"x" scale factor

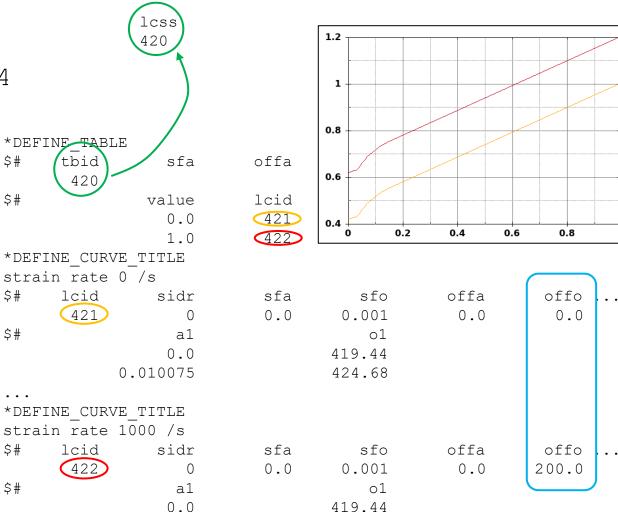
sfa


*MAT 024/*MAT PIECEWISE LINEAR PLASTICITY

- "The workhorse of LS-DYNA"
 - Captures the behavior of many materials adequately in many situations
 - Most metals in most situations and often adequate for plastics.

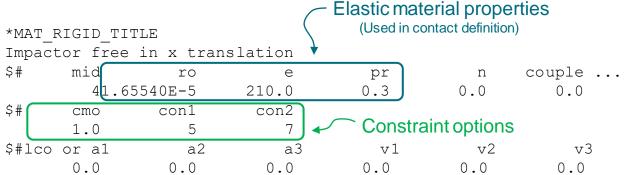
- Isotropic linear elastic
- Von Mises yield surface
- Plastic hardening
 - sigy & etan or
 - *DEFINE CURVE -> LCSS (true stress vs. true plastic strain)
 - Extrapolates linearly if $\varepsilon_{pl.} > \max(\varepsilon_{pl.curve})$, make sure final slope is appropriate
 - Only valid until necking
- Viscoplastic




Crash Box Model - *MAT 024

- The crash box use a viscoplastic input for *MAT 024
- Viscoplasticity is activaded by
 - Setting VP=1
 - Input two or more *DEFINE_CURVE on LCSS via *DEFINE_TABLE
 - Intermediate strain rate values in are interpolated between the curves

In the case of the crash box the same curve is used wit an offset

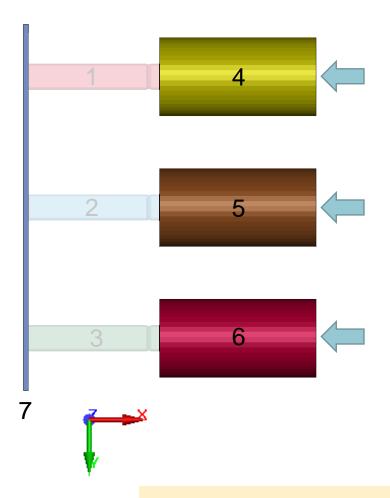


*MAT_020/*MAT_RIGID

- Assigned to a part just like any other mechanical material
 - The part becomes a rigid body and is bypassed in the element routine
- The rigid body formulation itself is a (real) constraint, penalty works well
 - Cannot be combined or connected to other constraints
- There are special boundary conditions for rigid bodies
- Constraints can also be defined directly on the material card

- Learn more from our webinars or short videos
 - Client Area > 2_webinars > 1_Explicit_and_General > LS-DYNA_Rigid_Bodies
 - Introduction to Rigid Body Materials in LS-DYNA Dynamore Nordic AB
 - Introduction to Rigid Body Joints in LS-DYNA— Dynamore Nordic AB

Crash Box Model - *MAT RIGID



- Constraints on the material cards are utilized
- Parts 4,5,6 use mid 4
- Part 7 use mid 7

*MAT_	*MAT_RIGID_TITLE										
Impactor free in x translation											
\$#	mid	ro	е	pr							
	41.6	5540E-5	210.0	0.3							
\$#	cmo	con1	con2								
	1.0	5	7								
	Only free in global x translation										
*MAT_	_RIGID_TI	TLE									
Plate	Э										
\$#	mid	ro	е	pr							
	77.8	5000E-6	210.0	0.3							
\$#	cmo	con1	con2								
	1.0	7	7								
	· · · Fixed in al DOF:s										

CON1:=Global translational constraint: EQ.0: no constraints, EQ.1: constrained x displacement, EQ.2: constrained y displacement, EQ.3: constrained z displacement, EQ.4: constrained x and y displacements, EQ.5: constrained y and z displacements, EQ.6: constrained z and x displacements, EQ.7: constrained x, y, and z displacements.

CON2:=Global rotational constraint: EQ.0: no constraints, EQ.1: constrained x rotation, EQ.2: constrained y rotation, EQ.3: constrained z rotation, EQ.4: constrained x and y rotations, EQ.5: constrained y and z rotations, EQ.6: constrained z and x rotations. EQ.7: constrained x, y, and z rotations.

Define Sets

DYNA

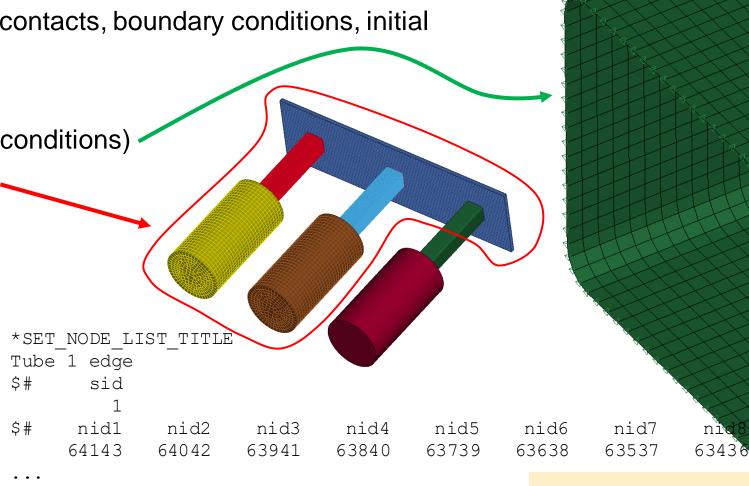
*SET - Collect FE-entities

*SET lets you define groups of nodes, elements, parts or segments

These sets can be used for defining contacts, boundary conditions, initial

conditions, and more

The crash box model use


*SET_NODE_LIST (for boundary conditions)

* *SET PART LIST (for contacts) _

There are many more options

- *SET BEAM
- *SET SHELL
- *SET SEGMENT
- * *SET ... ADD (combine sets)

- . . .

Contacts - Sliding

Surface to Surface

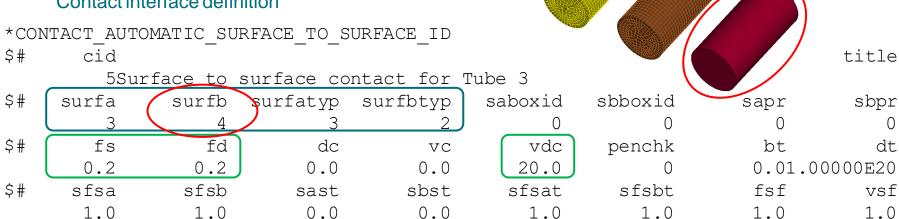
- There are many different contacts in LS-DYNA, well go through the basics of some common types
 - Huge number of inputs on *CONTACT, however, in most cases most of the fields are left to their defaults.
 - There are 3 mandatory cards, see below
- Contacts for explicit are generally on penalty formulation, meaning springs are introduced to mitigate penetration.
- For the crash box we have defined a surface-to-surface contact using a part set of the plate (7) and part id of impactor (6)
- Other than that, the most common settings are friction, fs & fd, and damping, vdc
 - Common starting values: fs = fd = 0.2, and damping, vdc = 20 (as used in the example)

ID type of SURFB:

EQ.0: Segment set ID

EQ.1: Shell element set ID

EQ.2: Part set ID

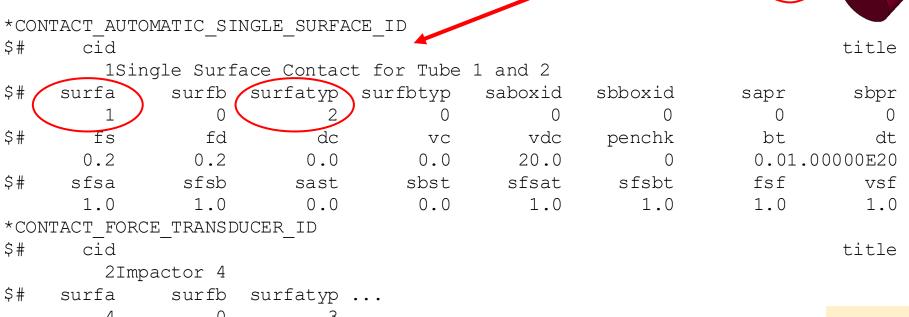

EQ.3: Part ID

EQ.5: Include all (SURFB field is ignored).

EQ.6: Part set ID for exempted parts. All are included in the contact.

EQ.7: Branch ID; see *SET_PART_TREE.

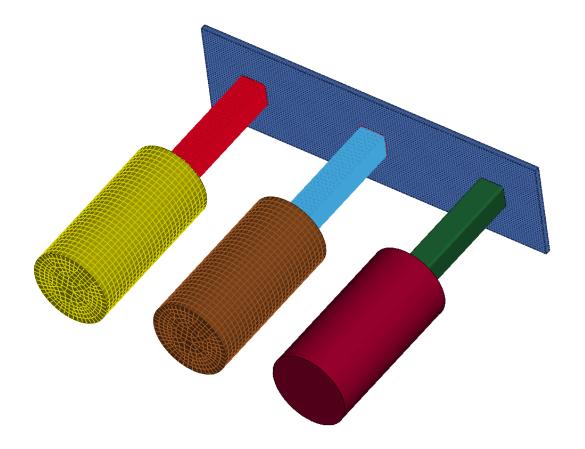
Contact interface definition



Contacts - Sliding

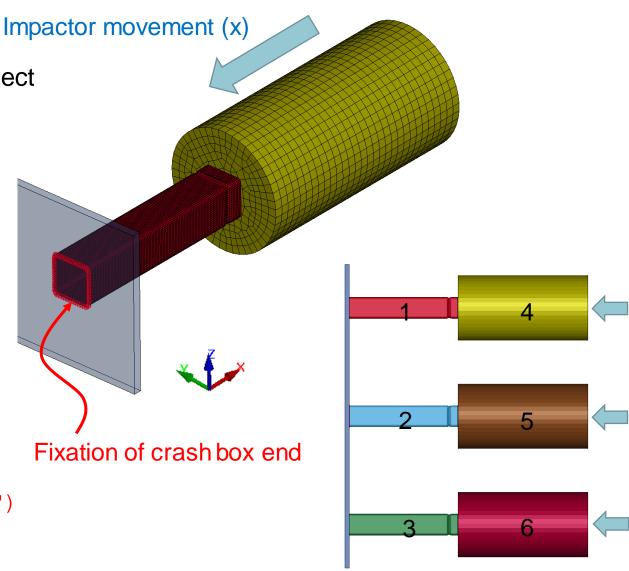
Single Surface

DYNA


- Then there are single surface contacts
 - Offers <u>self contact</u>, e.g., a part contacting itself
 - Input is very similar to surface to surface
 - One only have to define one side of the contact
 - This makes it possible to gather a large number of contact entities in one contact
 - By adding *FORCE_TRANSDUCER, one for each impactor, the force between each impactor and its corresponding crash box can be measured.

Contacts

• Feels like something is missing in crash box 3, but I can't figure out what...



Crash Box Model - Overview

 The crash boxes and impactors are identical but subject to different boundary conditions

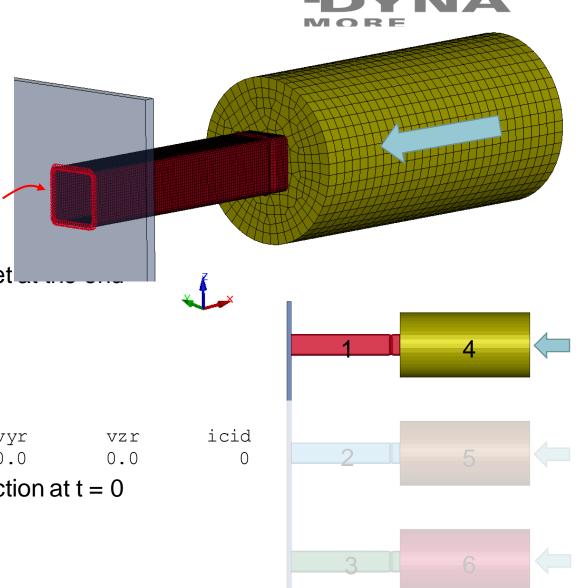
- Impactor movement
- Crash box fixation
- Recall, the rigid plate (7) is fixed and impactors (4,5,6) fixed except x-trans. through *MAT_RIGID
- **■** 1 4
 - *BOUNDARY SPC
 - *INITIAL VELOCITY(RIGID)
- **■** 2 5
 - * *CONSTRAINED NODAL RIGID BODY
 - *LOAD(_RIGID)
- **■** 3 6
 - * *CONTACT TIED NODES TO SURFACE(OFFSET)
 - *BOUNDARY PRESCRIBED MOTION(RIGID)

Crash Box Model – Crash Box 1 to Impactor 4

*BOUNDARY SPC(SET)

- The SPC (Single Point Constraint) is applied to a node set of the crash box
- It is fixed in all DOF:s (0=free, 1=fixed)
- INITIAL VELOCITY (RIGID)

```
*INITIAL VELOCITY RIGID BODY
$#
       pid
```

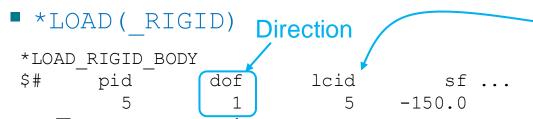

-8.3333

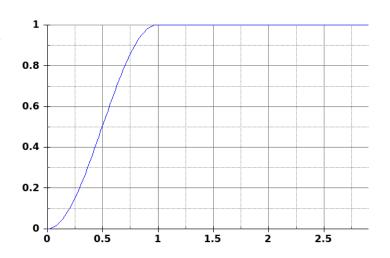
0.0

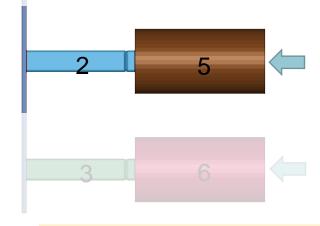
VZ0.0

VXY 0.0 vyr 0.0

- The impactor is given an initial velocity in negative x-direction at t = 0
- Assigned via the pid


Crash Box Model – Crash Box 2 to Impactor 5

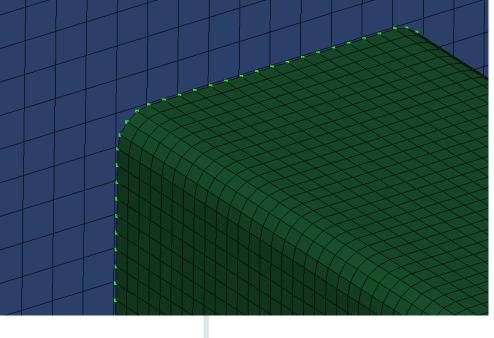



*CON	STRAINED_	NODAL_RIGII			
\$#	pid	cid	nsid	pnode	
	10	0	1	0	
\$#	cmo	con1	con2		
	1.0	7	7		
_					-

- Makes a set of nodes a rigid body via node set
 - Can be assigned to free nodes or nodes that belong to a deformable body
 - Constraints like *MAT_RIGID
 - Assign unique pid

- Try to use smooth curves
- Applied using pid
- Scale factor can be used (150 kN)

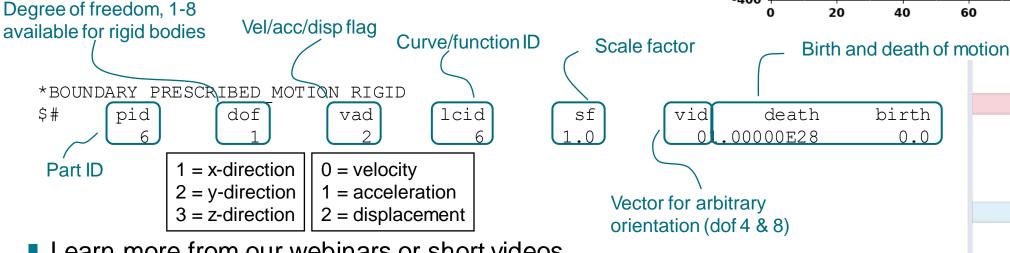
Crash Box Model – Crash Box 3 to Impactor 6

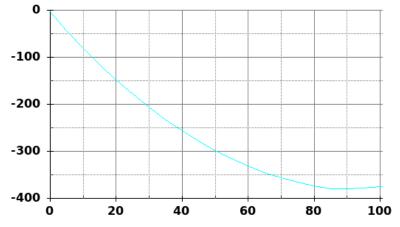

- *CONTACT TIED NODES TO SURFACE(OFFSET)
 - A tied contact is used to fixate the crash box end

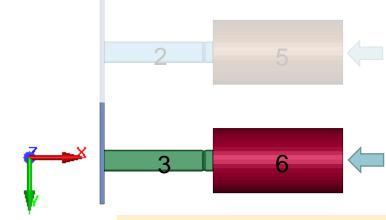
*BOUNDARY PRESCRIBED MOTION (RIGID)

- Assigned via node (box edge nodes) set to part (plate 7)
- Tied contacts are generally constraints
 - As the plate is a rigid body, we must add the _OFFSET option to invoke penalty formulation
- There are many different tied contacts for different purposes
 - For example, some transfer rotation and moment while others don't; therefore, it is important consider what contact situation you have.

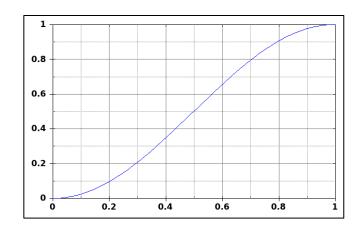
*CON \$#	CONTACT_TIED_NODES_TO_SURFACE_OFFSET_ID # cid 6end of Tube 3 tied to rigid plate							
\$#	surfa 3			surfbtyp 3		sbboxid 0		
\$#	fs	fd	dc	vc	vdc	penchk		
	0.0	0.0	0.0	0.0	0.0	0		
\$#	sfsa	sfsb	sast	sbst	sfsat	sfsbt		
	1.0	1.0	0.0	0.0	1.0	1.0		

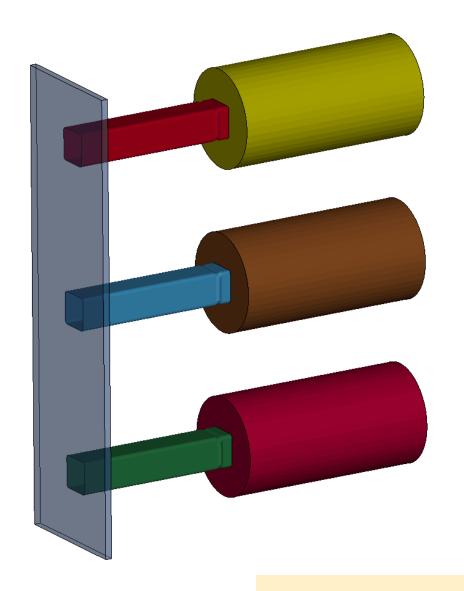

- sapr sbpr 0 0 bt dt 0.01.00000E20 fsf vsf 1.0 1.0
- **Learn more!** : Client Area > 2_webinars >
- Impactor movement is displacement controlled
 1_Explicit_and_General > Tied_and_Tiebreak_Contacts


Crash Box Model – Crash Box 3 to Impactor 6


- *CONTACT TIED NODES TO SURFACE (OFFSET)
 - A tied contact is used to fixate the crash box end
- *BOUNDARY PRESCRIBED MOTION (RIGID)
 - Impactor movement is displacement controlled

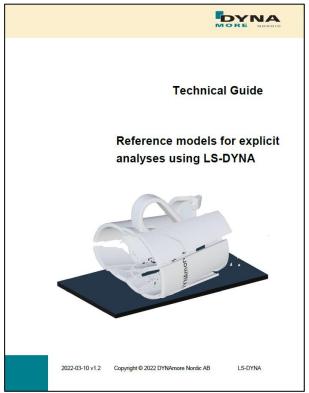
- Learn more from our webinars or short videos
 - Client Area > 2_webinars > 1_Explicit_and_General > LS-DYNA_Rigid_Bodies
 - <u>Introduction to Rigid Body Materials in LS-DYNA Dynamore Nordic AB</u>
 - Introduction to Rigid Body Joints in LS-DYNA Dynamore Nordic AB





Results Sneak peak

- General comments
 - Use prescribed motions instead of forces when possible
 - Use a smooth load curve
 - Consider inertial effects (loading rate)
 - Can't combine rigid bodies with (real) constraints



*CONTROL Cards

- Read and start from our recommended setting
 - Client Area > 1_LS-DYNA_Guidelines > 1_LS-DYNA_Explicit_Guidelines

*CONTROL_ACCURACY								
\$#	osu			iacc				
	1	4		. 0				
				restrict 09	SU to a par	t set.		
			r details.					
		LK_VISCOS						
\$#	q1	q2		btype				
	1.5	0.06	-2	0	0			
	ONTROL_CO							
\$#	slsfac	rwpnal		shlthk A		thkchg		
	0.1	1.0			1	1		0
\$#	usrstr	usrfrc	nsbcs e	interm 0	xpene			tiedprj
	. 0	.0	edc	vfc.	4.0 th	1		Θ
\$#	sfric	dfric				th_sf		
	0.0	0.0 frcena	0.0 skiprwa	0.0	0.0	0.0 spotdel		
\$#	ignore			outseg				
s#		nserod	0 rwgaps	0 rwadth	0 rwksf	icov	0.0 swradf	ithoff
Þ₩	isym 0	nseroa 0		rwgatn 0.0	1.0	1000	swradt 0.0	111011
s#	shleda	pstiff		tdcnof	ftall	unused		igacto
Þπ	Sirceag 0	pstiii	1 thent	e Cachor	11411	unusea	0.0	1gactc 0
***	ONTROL EN		0	0	1		0.0	0
s#	haen	rwen	elnten	rylen	iraan	maten		
911	2	2	2	2		1		
***			SITION AUTO		-			
		P IO LSTC		3131120				
		P IO NODU						
	ONTROL OU							
\$#	npopt		nrefup	iaccop	opifs	ipnint	ikedit	iflush
ľ	1	3	i	Θ.	0.0			5000
\$#	iprtf	ierode	tet10s8	msamax	ipcurv	gmdt	ip1dblt	eocs
ľ	. 0	1	2	50	. 0	0.0	. 0	Θ
\$#	tolev	newlea	frfreq	minfo	solsia	msafla	cdetol	
ľ	2	ő	i	0	ő	0	10.0	
\$#	phschng	demden	icrfile	spc2bnd	penout	shlsig	hisnout	engout
	Ö	0	0	. 0	. 0	ŏ	1	0
\$#	insf	isolsf	ibsf	issf	mlkbag			
	0	0	0	0	ő			
*c0	ONTROL_SH	ELL						
\$#	wrpang	esort	irnxx	istupd	theory	bwc	miter	proj
	30.0	1	-1	4	1	2	1	1
\$#	rotascl	intgrd	lamsht	cstyp6	thshel			
	1.0	- 0	Θ	1	0			
\$#	psstupd	sidt4tu	cntco	itsflg	irquad	w-mode	stretch	icrq
	. 0	0	1	ē	2	0.0	0.0	0
\$#	nfail1	nfail4	psnfail	keepcs	delfr	drcpsid	drcprm	intperr
	0	1		. 0	0	. 0	1.0	. 0
*c0	ONTROL_SO	LID						
\$#	esort	fmatrix	niptets	swlocl	psfail	t10jtol	icoh	tet13k
	1	Θ	4		. 0	0.0		Θ
\$#	pm1	pm2	pm3 pr	n4 pm5	pm6	pm7	pm8 pm!	9 pm10
	. 0	Θ	0	0 0	. 0	0	0 (9 9
\$#	tet13v							

- Common *CONTROL cards
 - *CONTROL ACCURACY
 - INN = 4 Invariant node numbering
 - *CONTROL BULK VISCOCITY
 - *CONTROL CONTACT
 - *CONTROL ENERGY
 - *CONTROL OUTPUT
 - *CONTROL SHELL/SOLID
 - ESORT = 1 (mixed meshes, quad & tria / hex & penta)
 - *CONTROL SOLUTION
- In main.k
 - * *CONTROL TERMINATION
 - Define simulation termination time
 - *CONTROL TIMESTEP

Explicit Time Control

- LS-Dyna will <u>automatically</u> identify the minimum time step and use this for the simulation
- The 100 smallest timesteps with corresponding element can be found in the ASCII file d3hsp
- A safety factor is used for the critical time step. The safety factor can be changed in
 *CONTROL TIMESTEP (TSSFAC)

$$\Delta t = 0.9 \Delta t_{
m critical}$$
 Default safety factor $\Delta t = 0.67 \Delta t_{
m critical}$ Recommended for high explosives

The simulation time step changes due to deformed elements

```
1 t 0.0000E+00 dt 5.52E-07

1 t 0.0000E+00 dt 5.52E-07

1876 t 9.9962E-04 dt 5.04E-07

3920 t 1.9999E-03 dt 4.84E-07

5000 t 2.5189E-03 dt 4.80E-07

6046 t 2.9996E-03 dt 3.52E-07

8630 t 3.9997E-03 dt 3.52E-07

10000 t 4.4709E-03 dt 3.39E-07

11540 t 4.9999E-03 dt 3.38E-07

14428 t 5.9998E-03 dt 3.38E-07

15000 t 6.1934E-03 dt 3.39E-07

17317 t 6.9998E-03 dt 3.55E-07

20000 t 7.9439E-03 dt 3.45E-07
```

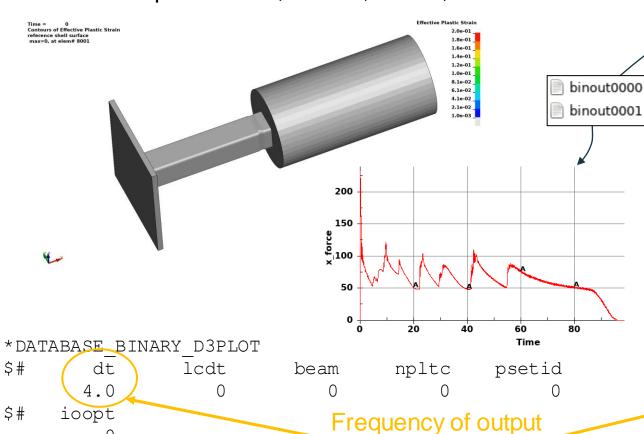
DYNA

Explicit Time Control – Time & Mass Scaling

- Termination time is set on *CONTROL TERMINATION (endtime)
- Mass scaling can be used to increase the time step

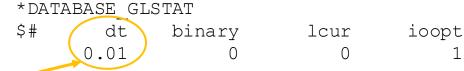
$$\Delta t_{\text{critical}} = \frac{l_e}{c_e} \qquad c_e \sim \sqrt{\frac{E_e}{\rho_e}} \qquad \qquad \rho_e \qquad \Longrightarrow \quad \Delta t_{\text{critical}} \qquad \qquad$$

- The mass scaling is activated in *CONTROL TIMESTEP
- Set the time step in DT2MS. Use a negative value to only scale the elements that needs mass scaling


						RMINATION	NTROL_TEF	*CO
		nosol	endmas	endeng	dtmin	endcyc	endtim	\$#
		0	.000000E8	0.01.	0.0	0	100.0	
						MESTEP	NTROL_TIM	*CO
ms1st	erode	lctm	dt2ms	tslimt	isdo	tssfac	dtinit	\$#
0	0	0	-1.0E-3	0.0	0	0.9	0.0	
ihdo	unused	rmscl	unused	unused	imscl	dt2mslc	dt2msf	\$#
1		0.0			0	0	0.0	

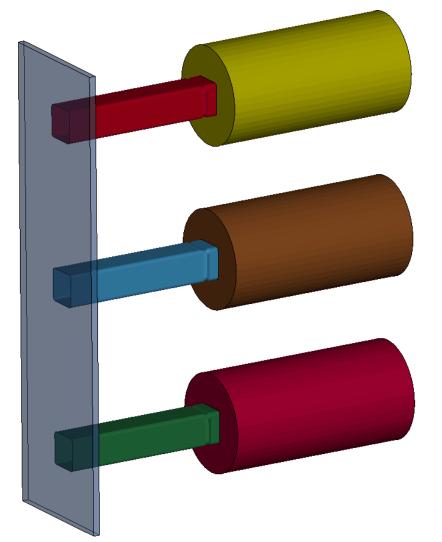
Webinar - Client Area > 2_webinars > 1_Explicit_and_General > Masscaling_and_Subcycling

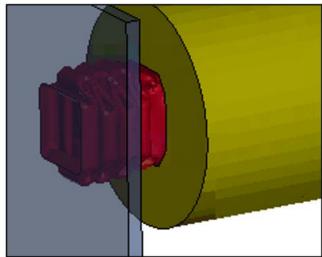
D3PLOT & BINOUT

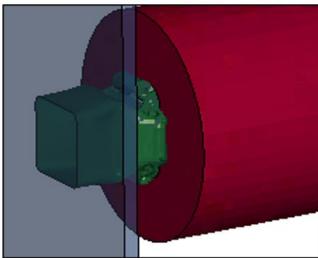


- D3PLOT 3D data
 - View displacements, strains, stress, etc.

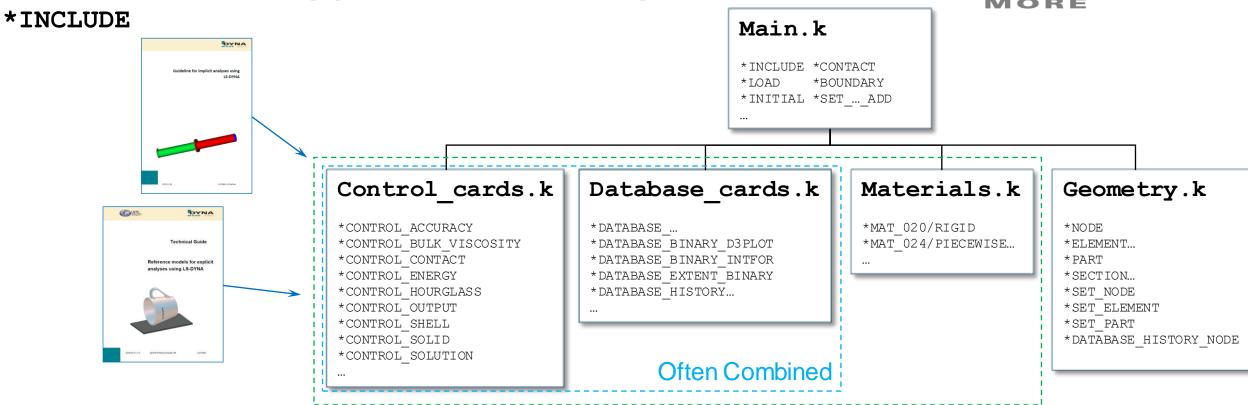
(output time step)


- BINOUT Scalar data
 - GLSTAT (global data)
 - MATSUM (material energies)
 - RCFORC (resultant interface/contact forces)
 - SLEOUT (sliding interface energy)
 - NODOUT (nodal point data)
 - ELOUT (element data)
 - SECFORC (cross section forces)
 - SPCFORC (SPC reaction forces)
 - BNDOUT (boundary condition force/ energy)
 - RBDOUT (rigid body data)
 - and many more...




Results

Open Model



Limited creasing in crash box 3 (green) due to missing self contact

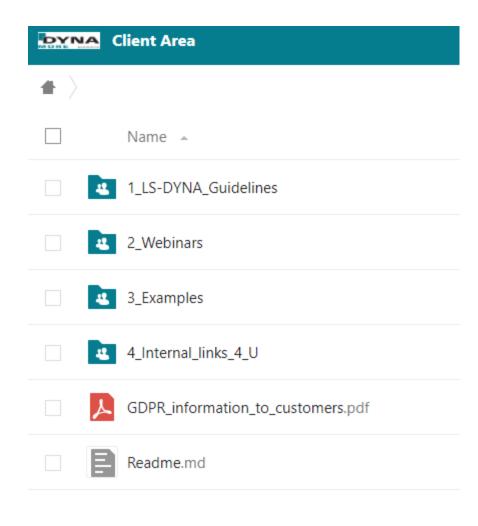
Final notes - Suggested Modelling Structure

- Make use of *INCLUDE!
- * *INCLUDE TRANSFORM
 - Use multiple instances of the same part, e.g., bolts
 - Unit conversion, e.g., for including material database...

- Few errors are introduced.
- Rarely changed ⇒ All normal results are always available.
 - Prepare settings for different types of analyses.

Final Notes

- Explicit LS-DYNA is usually run using single precision
 - For long time events double precision may be required to mitigate accuilative errors
 - Rigid body rotations with small increments may be require double precision
- Some things that didn't make it into the webinar but can be good to know about
 - Damping Remove unwanted oscillations or introduce energy dissipation
 - Short video <u>Damping in LS-DYNA</u> <u>Dynamore Nordic AB</u>
 - Webinar Client Area > 2_webinars > 1_Explicit_and_General > Damping_in_LS-DYNA
- Preload/pre-tensioning
 - Webinar Client Area > 2_webinars > 1_Explicit_and_General > Bolt_Pretension
 - Webinar Client Area > 2_webinars > 1_Explicit_and_General > Pretension_and_Dynamic_Relaxation
 - Short video <u>Initializing models with Dynamic Relaxation Dynamore Nordic AB</u>
- Time scaling for quasi-static simulation
- For more in-depth recommendations about specific settings for certain applications in explicit LS-DYNA we urge you to read our Technical guide for Explicit, "Reference models for explicit analyses using LS-DYNA", that you find on our client area!


Final Notes – Training Resources

Client Area

- Comprehensive training and guideline material for LS-DYNA
- All our customers have access
- Password: *Contact support@dynamore.se*
 - NOTE! Password is changed each 6 months. Contact support again for the new password.
- Use link <u>files.dynamore.se/shares/client_area</u>, or find it via our webpage

Final Notes – Training Resources

Summary

Courses at Seminars — Dynamore Nordic AB

- Short videos on www.dynamore.se/en/training/video-library for inspiration and overview
- Client Area, files.dynamore.se/shares/client area, guidelines, webinars, and examples.
- Explicit Guideline: Client Area > 1 LS-DYNA Guidelines > 1 LS-DYNA Explicit Guidelines
- www.dy nasupport.com, a site where you will find answers to many questions related to LS-DYNA.
- **Explicit Time Control**
- Client Area > 2_webinars > 1_Explicit_and_General > Masscaling_and_Subcycling
- General
- Client Area > 2_webinars > 1_Explicit_and_General > Model_Checking
- Damping
- Short video Damping in LS-DYNA Dynamore Nordic AB
- Client Area > 2 webinars > 1 Explicit and General > Damping in LS-DYNA
- Rigid bodies
- Short video Introduction to Rigid Body Materials in LS-DYNA Dynamore Nordic AB
- Short video Introduction to Rigid Body Joints in LS-DYNA Dynamore Nordic AB
- Client Area > 2 webinars > 1 Explicit and General > LS-DYNA Rigid Bodies
- Preloading
- Client Area > 2_webinars > 1_Explicit_and_General > Bolt_Pretension
- Client Area > 2_webinars > 1_Explicit_and_General > Pretension_and_Dynamic_Relaxation
- Short video Initializing models with Dynamic Relaxation Dynamore Nordic AB
- Short video Material hardening Dynamore Nordic AB
- Client Area > 2_webinars > 3_Material_and_Failure
 - Webinars on numerous material types and phenomena; failure, plastics, rubber, composites, and more.
- Client Area > 2_webinars > 1_Explicit_and_General > Tied_and_Tiebreak_Contacts
- Client Area > 2 webinars > 1 Explicit and General > Mortar In Explicit Simulation

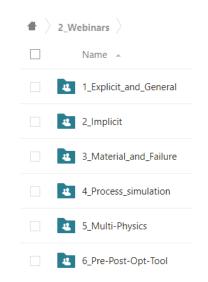
Video Library

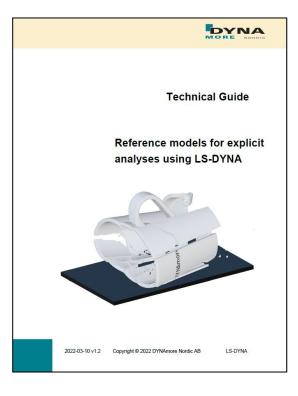
Welcome to DYNAmore Nordic's Video Library! Here you find training videos and tutorials about numerous LS-DYNA applications and all other products that DYNAmore Nordic provides. All for free, all you have to do is enter you

general information for LS-DYNA, such as introductions to DYNA, such as introductions to our guidelines, tips on

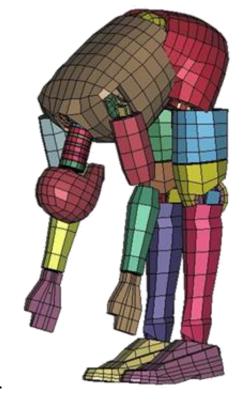
elated software, sheet metal forming, welding, forging,

LS-DYNA in LS-PrePost, tutorials on general use, scripting, DYNA models with Beta CAE's ANSA, everything from how DYNA results with Beta CAE's META, everything from how


LS-DYNA Multi-Physics



Moldex3D (External Resource)



Thank You

DYNAMore Nordic AB Brigadgatan 5 587 58 Linköping, Sweden

Tel.: +46 - (0)13 23 66 80 info@dynamore.se

www.dynamore.se www.dynaexamples.com www.dynasupport.com www.dynalook.com

© 2022 DYNAmore Nordic AB. All rights reserved. Reproduction, distribution, publication or display of the slides and content without prior written permission of the DYNAmore Nordic AB is strictly prohibited.

DYNAmore worldwide Germany - France - Italy - Sweden - Switzerland - USA Find us on

