
User-defined features in LS-DYNA

Anders Jonsson, DYNAmore Nordic AB

Copyright ©2022 DYNAmore Nordic AB. All rights reserved.

Overview

■ Guideline for user-defined interfaces in LS-DYNA

■ Seminar – 16/6: User defined materials in LS-DYNA

■ Register today!

■ Overview of available user-defined interfaces

■ Possibilities for customization and extended functionality

■ Getting started with user-defined feature development

■ Download the LS-DYNA usermat package

■ Fortran compilers and environment

■ Fortran programming

■ Incorporating user-defined features into LS-DYNA

■ Static vs. dynamic linking

2022-02-14User-defined interfaces in LS-DYNA 6

https://www.dynamore.se/en/training/seminars/material/user-defined-materials-in-ls-dyna

Guideline for user-defined interfaces in LS-DYNA

2022-02-14User-defined interfaces in LS-DYNA 7

2021-01-18

The Guideline contains examples of ...

2022-02-14User-defined interfaces in LS-DYNA 8

Hyperelastic material (umat45) in implicit

J2 Plasticity in explicit

The Guideline contains examples of ...

2022-02-14User-defined interfaces in LS-DYNA 9

User defined friction (mortar_usrfrc) User defined tied condition (mortar_usrtie)

The Guideline contains examples of ...

2022-02-14User-defined interfaces in LS-DYNA 10

User defined loading (loadsetud)User defined tiebreak contact
(mortar_usrtbrk)

The Guideline contains examples of ...

2022-02-14User-defined interfaces in LS-DYNA 11

Guideline for user-defined interfaces in LS-DYNA

■ Help for experienced LS-DYNA users to get started with creating user-defined
features

■ Detailed descriptions of some of the most commonly used features:
■ Material models

■ Friction models

■ Mortar weld tied contact

■ Mortar tiebreak contact

■ Loadings

■ Contains
■ Guideline in PDF format

■ Examples in the form of Fortran subroutines and

■ LS-DYNA keyword files

■ Available for download for DYNAMore Nordic customers, from
files.dynamore.se > Client Area > 1_LS-DYNA_Guidelines

■ To be extended and improved in coming releases
■ Your feedback is highly valuable!

2022-02-14User-defined interfaces in LS-DYNA 12

Overview of available user-defined interfaces

■ Material models
■ Complete user-defined material models

■ User-defined failure models for some of the built-in materials: MAT24, MAT103, MAT123, etc.

■ User-defined weld failure (MAT_SPOTWELD)

■ Elements

■ Friction
■ Contact conductance

■ User defined wear law

■ Tie condition for Mortar tied weld contact

■ Tiebreak contact (damage/failure model)

■ Loading
■ Boundary flux

■ Solution control

■ Interfaces control

■ Airbag sensor

■ ...

2022-02-14User-defined interfaces in LS-DYNA 13

Getting started with user-defined feature development

■ Required building blocks:

2022-02-14User-defined interfaces in LS-DYNA 14

LS-DYNA usermat package

Fortran compiler and

appropriate environment

Relevant physics

Ψ 𝐄 =
λ

2
tr𝐄 2 + μ𝑡𝑟𝐄2

Coding of Fortran

subroutines

Customized

LS-DYNA

executable

S
ta

tic

lin
k
in

g

Getting started with user-defined feature development

■ Required building blocks:

2022-02-14User-defined interfaces in LS-DYNA 15

LS-DYNA usermat package

Fortran compiler and

appropriate environment

Relevant physics

Ψ 𝐄 =
λ

2
tr𝐄 2 + μ𝑡𝑟𝐄2

Coding of Fortran

subroutines

Shared object

file

D
y
n
a
m

ic

lin
k
in

g

Standard

LS-DYNA

executable

ls-dyna_mpp_....mpi..._sharelibFor mpp/LS-DYNA

under Linux

Getting started with user-defined feature development

■ Download the LS-DYNA usermat package

■ Different packages for mpp, smp, double or single precision, of each version

■ Also the sse2, avx2 etc. extensions

■ For mpp, Linux: shared object or static linking

■ From your local LS-DYNA provider

■ For DYNAMore Nordic customers:

■ files.dynamore.se

2022-02-14User-defined interfaces in LS-DYNA 16

The LS-DYNA usermat package (Linux)

■ Fortran files: dyn21.f, dyn21cnt.f ...

■ Object files, required for linking: userinterface.mod (libdyna.lib ...)

■ Include files: iounits.inc, ...

2022-02-14User-defined interfaces in LS-DYNA 17

Linux

The LS-DYNA usermat package (Windows)

■ Fortran files: dyn21.f, dyn21cnt.f ...

■ Object files, required for linking: userinterface.mod (libdyna.lib ...)

■ Include files: iounits.inc, ...

2022-02-14User-defined interfaces in LS-DYNA 18

Windows

Getting started with user-defined feature development

■ Download the LS-DYNA usermat package

■ Unpack and inspect

■ Test-compile the provided package without any modifications

■ Set up compiler

■ Edit Makefile

■ run make (Linux) or nmake.exe (Windows)

■ Test run a small LS-DYNA example using the resulting binary

2022-02-14User-defined interfaces in LS-DYNA 19

DEMO!

Getting started with user-defined feature development

2022-02-14User-defined interfaces in LS-DYNA 20

Files of the LS-DYNA usermat package (R11.1 and later ...)

2022-02-14User-defined interfaces in LS-DYNA 21

■ Where to find a specific subroutine
User-defined feature Subroutine Fortran source code file

Material models

Damage/failure for some

materials

Thermal materials

umatXX, umatXXv

utanXX, utanXXv

matusr_24, matusr_103

thumatXX

dyn21umats.f,

dyn21umatv.f

dyn21utan.f

(dyn21umat.f)

dyn21.f

dyn21tumat.f

Elements (shells, solids) uXXX_bYYY, uXXX_eYYY dyn21ushl.f, dyn21usld.f

Friction

Tie condition for Mortar tie weld

User defined wear law

Tiebreak contact

Contact conductance

usrfrc, mortar_usrfrc

mortar_usrtie

userwear

mortar_usrtbrk, utb10X

usrhcon

dyn21cnt.f

dyn21.f

Loading

Solution control

Interfaces control

Airbag sensor

loadud, loadsetud

uctrl1

uctrl2

airusr

dyn21.f

Fortran compilers and environment

■ Recommended compiler depends on

■ LS-DYNA version

■ Operating system

■ For Redhat Linux, use Intel Fortran compiler

■ For Suse Linux, use PGI Fortran compiler

■ For Windows 10, use

■ Intel Parallel Studio

■ Microsoft Visual C++ x64 Cross Tools (for linking and access to standard libraries)

■ Microsoft MPI Software Development Kit (SDK) for mpp/LS-DYNA under Windows

2022-02-14User-defined interfaces in LS-DYNA 22

Fortran compilers and environment

2022-02-14User-defined interfaces in LS-DYNA 23

LS-DYNA version Linux Windows

R11 Intel Fortran 2016 Intel Parallel Studio XE 2017

Microsoft Visual C++ 2017 x64

Cross Tools
R12(1)

R13 Intel Fortran 2019 Intel Parallel Studio XE 2019

Microsoft Visual C++ 2019 x64

Cross Tools

Notes: (1) R12 with avx512 extension requires Intel Fortran 2018.

Getting started with user-defined feature development

■ Fortran programming will be needed

■ Translate physics into user-defined subroutines

■ Normally only basic functionality is required

■ Assignment and arithmetic operations

■ Conditional statements

■ Loops

■ Sample code is provided with the ...

■ LS-DYNA usermat package, look into the dyn21...f files,

■ Guideline package, look in the example subroutines

■ Internet resources

■ https://www.tutorialspoint.com/fortran/fortran_basic_syntax.htm

■ ...

2022-02-14User-defined interfaces in LS-DYNA 25

https://www.tutorialspoint.com/fortran/fortran_basic_syntax.htm

Fortran

■ Fortran statements are input in position 7 – 72 on a line

■ Case-insensitive input

■ Comments: put a C in position 1

■ Continuation line: put a character in position 6

■ The basic structure is

2022-02-14User-defined interfaces in LS-DYNA 26

PROGRAM name

declarations

executable statements

END

Fortran - Variables and arrays

■ Basic types: integer, real (floating point number), real*8 (double

precision floating point number), char, logical (.true. or .false.)

■ Arrays are fields of variables, and declared as (for example)

■ Declaration is not mandatory but strongly recommended! Use

implicit none

■ Assignment examples

2022-02-14User-defined interfaces in LS-DYNA 27

integer ii(20)

real*8 sigma(6), sdev(6), mat(3,3)

kk = 10

ii(kk) = 5

sdev(1:3) = sigma(1:3) – sum(sigma(1:3))/3.0

“Fortran 90” style

Fortran – Useful statements

■ Loop

■ Conditional execution

2022-02-14User-defined interfaces in LS-DYNA 28

do varaible=first,last

statements ...

enddo

if condition then

statements

elseif condition then

statements

else

statmenets

endif

Incorporating user-defined features in LS-DYNA

■ Static linking

■ Currently the only option for smp, and Windows

■ In Linux, download the LS-DYNA usermat package called
ls-dyna_.....usermat.tar.gz

■ A customized LS-DYNA executable is built

■ Contains all built-in functions plus the additional user-defined features

■ Dynamic linking

■ Available in Linux, for mpp/LS-DYNA only

■ Download the LS-DYNA usermat package called
ls-dyna_mpp....sharelib.usermat.tar.gz

■ A shared object (dynamic library) is built, containing the user-defined features

■ The shared object is dynamically linked to a standard LS-DYNA executable, for example

ls-dyna_mpp_d_R11_1_0_x64_centos65_ifort160_avx2_intelmpi-2018_sharelib

2022-02-14User-defined interfaces in LS-DYNA 29

Incorporating user-defined features in LS-DYNA

■ Static linking

■ Currently the only option for Windows

■ A customized LS-DYNA executable is built

■ Dynamic linking

■ Available in Linux for mpp/LS-DYNA

■ A shared object (dynamic library) is built, containing the user-defined features

■ The shared object is dynamically linked to a standard LS-DYNA executable

■ Both approaches require that user-defined features be re-compiled for new

LS-DYNA versions

■ Download the corresponding LS-DYNA usermat package

■ Transfer previous user-defined subroutines

■ Shared objects need to match a specific LS-DYNA version.

NOTE! Also single precision vs. double precision! sse2, avx2, avx512 must also match!

2022-02-14User-defined interfaces in LS-DYNA 30

Dynamic linking, shared objects and *MODULE

■ The shared object is “plugged in” by the *MODULE_{OPTION} keywords.

■ *MODULE_PATH

■ Specify where LS-DYNA should search for the shared object

■ *MODULE_LOAD

■ For loading shared objects, and assigning an ID

■ *MODULE_USE

■ Specify which feature to use from a specific shared object

■ By the use of shared objects, customized features from different sources
(external 3rd party companies, internal developments, etc.) can be included in
the same LS-DYNA analysis.

■ An example follows:
■ An internally developed material model (umat41) has been developed and built as a

shared object: sharedobje01.so

■ Another company has developed a material model (umat41) and delivered that as a
shared object: sharedobje02.so

2022-02-14User-defined interfaces in LS-DYNA 31

2022-02-14User-defined interfaces in LS-DYNA 33

*MODULE_PATH

… path_to_modules …

*MODULE_LOAD

$#1 MDLID TITLE

1 Library 1

$#2 FILENAME

sharedobje01.so

*MODULE_LOAD

$#1 MDLID TITLE

2 Library 2

$#2 FILENAME

sharedobje02.so

*MODULE_USE

$#1 MDLID

1

$#2 TYPE PARAM1 PARAM2

UMAT 41 1001

*MODULE_USE

$#1 MDLID

2

$#2 TYPE PARAM1 PARAM2

UMAT 41 1002

Dynamic linking, shared objects and *MODULE

“From shared object 1, use

UMAT 41 as User defined material model ID 1001”

“From shared object 2, use

UMAT 41 as User defined material model ID 1002”

Summary

■ LS-DYNA offers many possibilities for the user to create customized
functionality

■ User defined
■ material models

■ damage/failure models for some built-in materials

■ elements

■ friction models

■ loading

■ etc.

■ A Guideline has been developed in order to make it easier getting started
with user-defined features in LS-DYNA
■ Including examples in the form of Fortran code and LS-DYNA keyword files

■ Download it from files.dynamore.se (DYNAMore Nordic Customers)

■ Fortran compiler is required from external supplier

2022-02-14User-defined interfaces in LS-DYNA 34

Thank you!

Your LS-DYNA distributor and

more

2022-02-14User-defined interfaces in LS-DYNA 38

