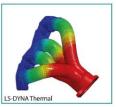
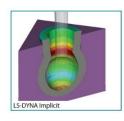
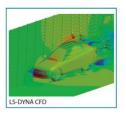
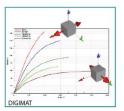
Simulation of Sheet Metal Forming using Solid Elements in LS-DYNA


Mikael Schill, DYNAmore Nordic AB



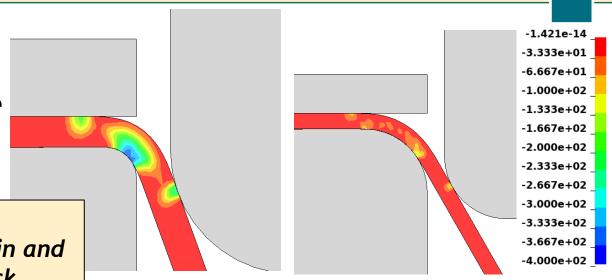

Contact - DYNAmore Nordic



- Support
 - Sales: <u>sales@dynamore.se</u>
 - E-mail: <u>support@dynamore.se</u>
 - Target to answer in 4 hours
 - Call: +46 13 236680
- Training & seminars including on-line & on-site: <u>www.dynamore.se</u>
- Secure file server: files.dynamore.se
 - Software and license download, <u>client area with guidelines and more</u>
- <u>www.dynamore.se</u> information on LS-DYNA, Seminars, Conferences
- <u>www.dynalook.com</u> Papers from international LS-DYNA conferenses
- www.dynasupport.com General support for LS-DYNA
- www.dynaexamples.com LS-DYNA example models from crash to DEM

Agenda

- Motivation
 - Why go for solids?
 - What are the obvious hurdles?
- Model specifics for solid elements
 - Element type
 - Contacts
 - Mass Scaling
- Material models for solid elements
 - Hill
 - YLD 2000
- Sheet metal forming specifics
 - Trimming
- Preprocess
 - Dynaform
 - LS-PREPOST
- Postprocessing
 - Thinning
 - FLD

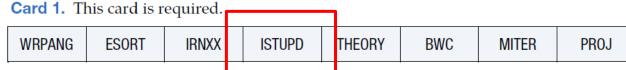


Why go for solids?

- Plane stress condition is not applicable
 - Decreasing radii introduces stresses in the thickness direction

Remember!

A thick sheet can be thin and a thin sheet can be thick.


Why go for solids?

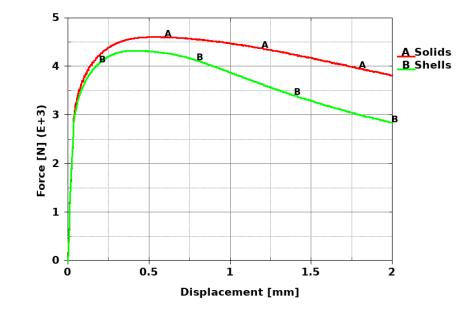
- Plane stress condition is not applicable
 - Decreasing radii introduces stresses in the thickness direction *control_shell

Stretch/bend relation is low, ironing

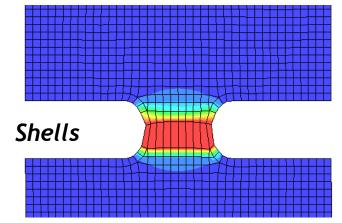
Thickness changes are caused by membrane straining for shells

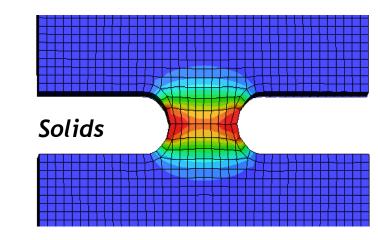
Card Summary:

Card 2. This card and all the following cards are optional.


Purpose: Provide controls for computing shell response.

ROTASCL	INTGRD	LAMSHT	CSTYP6	THSHEL			
---------	--------	--------	--------	--------	--	--	--




Why go for solids?

- Plane stress condition is not applicable
 - Decreasing radii introduces stresses in the thickness direction
- Stretch/bend relation is low, ironing
 - Thickness changes are caused by membrane straining for shells

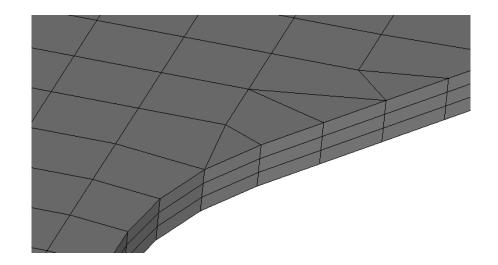
- Failure modelling
 - Localisation through the thickness generates a 3D stress state.

What are the obvious hurdles?

- Timestep
 - Need to discretize the thickness
- Number of elements
 - The model size increases #elements_through_the_thickness times
- Possibility to timescale/masscale
 - Masscaling in % to meet 0.5 e-6 s of timestep

Shell	Solid
1.67e-7	5.6e-8

Timestep 2mm thickness steel sheet with 5 intp. through the thickness


Shell	Solid
500 %	840 %

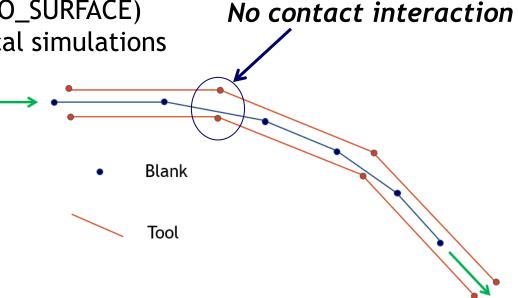
Mass scaling to meet 0.5e-6 s timestep

Model specifics when using Solid Elements - Element type

- Element type
 - Elements are easily created by element extrusion
 - 4 node shell becomes 8 node Hex
 - 3 node triangles becomes 6 node Pentas
- Use Underintegrated constant stress element type 1 for forming
 - If fully integrated element is used during forming use -1/-2 to avoid shear locking for bad aspect ratio elements
- Use Fully integrated element type 2 for springback
- Use ESORT=1 on *CONTROL_SOLID to automatically sort elements

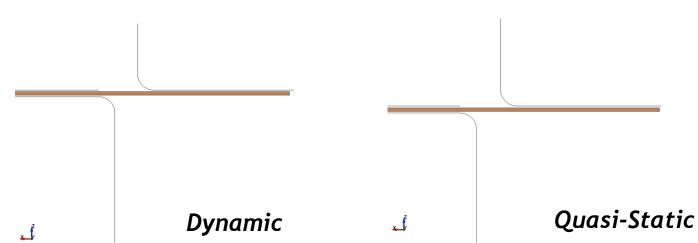
*CONTROL SOLID

VARIABLE	DESCRIPTION
ESORT	Automatic sorting of tetrahedral and pentahedral elements to avoid use of degenerate formulations for these shapes. See *SECTION_SOLID.
	EQ.0: No sorting (default)
	EQ.1: Sort tetrahedron to type 10; pentahedron to type 15; cohesive pentahedron types 19 and 20 to types 21 and 22,


respectively.

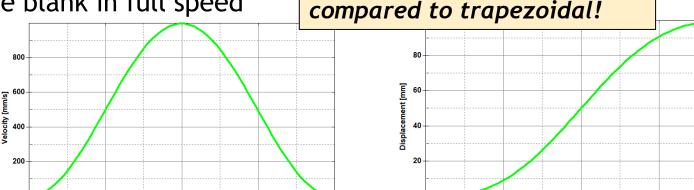
Model specifics when using Solid Elements - Contacts

Contact interfaces for forming in 3D:


- *CONTACT_FORMING_NODES_TO_SURFACE
- *CONTACT_FORMING_ONE_WAY_SURFACE_TO_SURFACE
- Tools are on the master side
- Blank is the slave side
- Master side thickness disabled
- .._ONE_WAY_ is unsymmetric contact (NODE_TO_SURFACE)
 that can be used for coupled thermo-mechanical simulations
- If blank self contacts:
 - *CONTACT_AUTOMATIC_SINGLE_SURFACE

Model specifics when using Solid Elements - Mass and timescaling

- Shorter simulation time is obtained by either of:
 - Increasing the tool movement velocity Timescaling
 - Increasing the mass of deformable parts Masscaling
- These two "solutions" are equivalent. Both reduces CPU-time while increasing dynamic effects
 - Check your internal/kinetic energy ratio
 - Check the overall behaviour. Does the behaviour look dynamic?
 - Convergence check



Model specifics when using Solid Elements - Mass and timescaling

How to get rid of dynamics

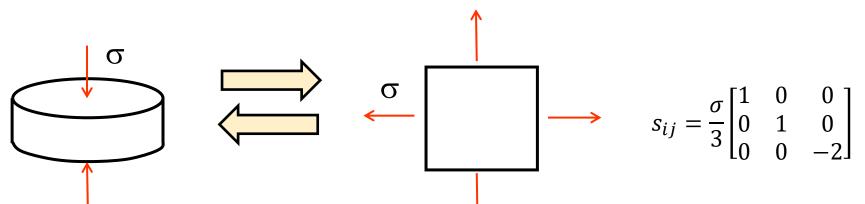
Make sure the tools are not hitting the blank in full speed

- Use "Smooth" tool velocity curves
- Decrease the maximum speed
- Reduce masscaling
- Switch to selective masscaling
 - Masscaling effect on rigid body motion is reduced
 - Selective mass- scaling is CPU intensive

Doubles the termination time

Time [s]

Time [s]


Material models for SMF with solid elements

- Two variants will be presented
 - *MAT_103/*MAT_ANISOTROPIC_VISCOPLASTIC Hill yield criterion
 - *MAT_133/*MAT_BARLAT_YLD2000 Barlat YLD 2000 yield criterion
- Both include
 - Isotropic elasticity
 - Anisotropic plasticity
 - Optional kinematic hardening
 - Explicit for forming simulation and Implicit for springback
- Other options of material models exist
 - *MAT_33 6 parameter Barlat criteria
 - *MAT_122_3D Hill yield criteria with orthotropic elasticity
 - *MAT_125 Transversely anisotropic Hill criteria with Ushida Uemori kinematic hardening
 - *MAT_199 YLD2004 Barlat criteria with up to 18 parameters
 - •••

Material parameter identification

- Fully 3D stress formulated Yield criteria require material data in the through thickness direction
- Although the sheet is considered to be "thick", such data is generally not available.
 - Use in-plane tensile test data (with assumptions)
 - Inverse modeling
 - Additional test e.g. layered compression/biaxial

Material models for solid elements - *MAT_103/*MAT_ANISOTROPIC_VISCOPLASTIC

Hill 48 Yield criterion

$$F(\sigma_{22} - \sigma_{33})^2 + G(\sigma_{33} - \sigma_{11})^2 + H(\sigma_{11} - \sigma_{22})^2 + 2L\sigma_{23}^2 + 2M\sigma_{31}^2 + 2N\sigma_{12}^2 = \sigma_f^2$$

$$F = G = H = \frac{1}{2} \text{ and } L = M = N = \frac{3}{2} \text{ yields isotropic yield criteria}$$

- Isotropic/kinematic mixture hardening with parameter alpha
 - 0 is pure kinematic and 1 is pure isotropic
- Hardening input by load curve or table(viscoplastic)

Material models for solid elements - *MAT_103/*MAT_ANISOTROPIC_VISCOPLASTIC

σ_{00}	σ_{45}	σ_{90}	R ₀₀	R ₄₅	R ₉₀	σ_b	R_b
45	40	50	0.8	1	1.2	55	0.9

$$F(\sigma_{22} - \sigma_{33})^2 + G(\sigma_{33} - \sigma_{11})^2 + H(\sigma_{11} - \sigma_{22})^2 + 2L\sigma_{23}^2 + 2M\sigma_{31}^2 + 2N\sigma_{12}^2 = \sigma_f^2$$

Solving for stresses

$$\sigma_{00}$$
: $G + H = \left(\frac{\sigma_f}{\sigma_{00}}\right)^2$

$$\sigma_{45}: \qquad F+G+2N=\left(\frac{\sigma_f}{\sigma_{45}}\right)^2$$

$$\sigma_{90}$$
: $F + H = \left(\frac{\sigma_f}{\sigma_{90}}\right)^2$

$$\sigma_b$$
: $F + G = \left(\frac{\sigma_f}{\sigma_b}\right)^2$

No description for L and M

Biaxial test gives no additional information

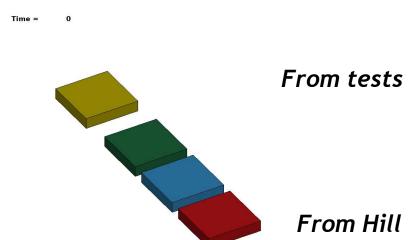
Solving for R values

$$R_{00}$$
: $\frac{H}{G} = R_{00}$

$$R_{45}$$
: $\frac{G+F-2N}{-2G-2F} = R_{45}$

$$R_{90}$$
: $\frac{H}{F} = R_{90}$

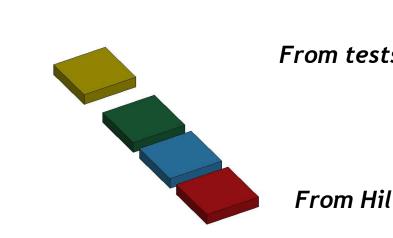
$$R_b$$
: $\frac{G}{F} = R_b$


Material models for solid elements - *MAT 103/*MAT ANISOTROPIC VISCOPLASTIC

σ_{00}	σ_{45}	σ_{90}	R ₀₀	R ₄₅	R ₉₀	σ_b	R_b
45	40	50	0.8	1	1.2	55	0.9

Stress [MPa]

Time [s] (E-03)


• Choosing σ_{00} as reference direction yields F=0.37, G=0.555, H=0.444, L=1.5, M=1.5, N=1.3888

Solving for stresses

$$\sigma_{00} = 45$$
 $R_{00} = 0.8$
 $R_{45} = 1.0$
 $R_{90} = 1.2$

$$\sigma_{45} = 46.8$$

 $\sigma_{90} = 50.$
 $\sigma_b = 46.8$
 $R_b = 1.5$

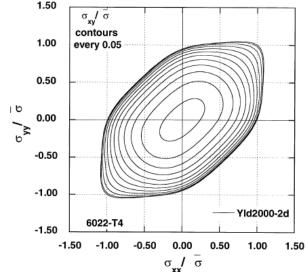
Material models for solid elements - *MAT 133/*MAT BARLAT YLD2000

Published by Barlat et. Al 2003

(Barlat et. al. 2003, Plane stress yield function for aluminium alloy sheets - Part 1:Theory)

$$\Phi' + \Phi'' = 2(\bar{\sigma})^a$$

where
$$\Phi' = |X_1' - X_2'|^a$$


where
$$\Phi' = |X_1' - X_2'|^a$$
 $\Phi'' = |2X_2'' + X_1''|^a + |2X_1'' + X_2''|^a$

and
$$X' = L's$$

$$X'' = L''s$$

- Formulated with 8 unknown parameters which can be reduced to 6 or 7 anisotropy parameters by assuming symmetry in the linear transformation matrices.
- Can be used for thermo- mechanical simulations with temperature dependent anisotropy parameters.
- Material parameter identification in the material model.
- Isotropic/kinematic mixture hardening with parameter beta
 - 0 is pure isotropic and 1 is pure kinematic
- Kinematic hardening according to Chaboche-Roussilier
- Hardening input through load curve, table (viscoplastic) or 3D table (temperature dependent and viscoplastic)

F. Barlat et al. | International Journal of Plasticity 19 (2003) 1297-1319

Fit to Barlat vld2000-2d material ID= 4

Comparison of test data with fit for material ID= 4

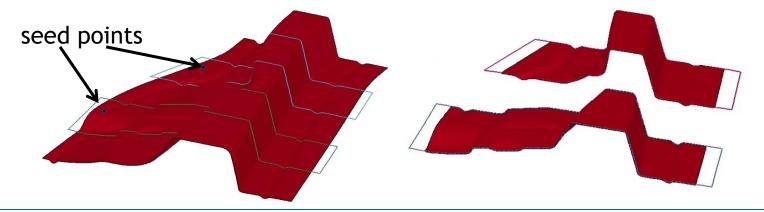
Yield stress i	n 00 directi	ion:		
Test data=	0.4339E+02	Fitted	data=	0.4339E+02
Yield stress i	n 45 directi	ion:		
Test data=	0.4987E+02	Fitted	data=	0.4987E+02
Yield stress i	n 90 directi	ion:		
Test data=	0.3990E+02	Fitted	data=	0.3990E+02
R-value in 00	direction:			
Test data=	0.8000E+00	Fitted	data=	0.8000E+00
R-value in 45	direction:			
Test data=	0.1100E+01	Fitted	data=	0.1100E+01
R-value in 90	direction:			
Test data=	0.1200E+01	Fitted	data=	0.1200E+01

Generalizing to 3D - *MAT 133/*MAT BARLAT YLD2000

- From R12, *MAT_133 is extended to 3D according to Dunand et al. 2012 Experiments and modeling of anisotropic aluminium extrusions under multi-axial loading Part 1: Plasticity.
- Keeping the original α_1 α_8 and adding α_9 α_{12} for the out of plane shear stresses.
- Utilizing $s'_{zz} = -(s'_{xx} + s'_{yy})$ and $s''_{zz} = -(s''_{xx} + s''_{yy})$ and assuming symmetry with respect to x, y and z is possible to reduce the transformations to 8 parameters.
- Formulation properties:
 - Reduces to YLD 2000 2d for the plane stress case.
 - For plane stress calibration, the anisotropic parameters are the same.
 - It is convex
 - Pressure independent
 - It does not reduce to an isotropic function for α_1 = 1. except for the plane stress case.

Material models for solid elements - *MAT_133/*MAT_BARLAT_YLD2000

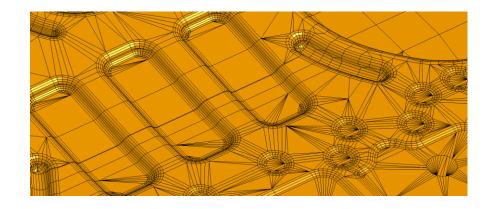
	σ_{00}		σ_{45}	σ_{90}		R_{00}	R_4	·5	R_{90}	σ_b	R_b	
	45		40	50		0.8	1		1.2	55	0.9	
ΊΑΤ	BARLAT_Y	/LD2000						·	15	50		
	mid —	ro	е	pr	fit	beta	iter	iscale				
	17.8	80000E-9	210000.0	0.3	1.0	0.0	0.0	0.0	10	00 C	C A A	C A
-	k	e0	n	С	р	hard	a		_	c A B P	В	-
	0.0	0.0	0.0	0.0	0.0	-2	8.0			50		
	sig00	sig45	sig90	r00	r45	r90			/Pa]	0		
	45.0	40.0	50.0	0.8	1.0	1.2			Stress [MPa]			
:	sigxx	sigyy	sigxy	dxx	dyy	dxy	1		Stre	50		
	55.0	55.0	0.0	1.0	-0.9	0.0				- О		
	aopt	offang	p4	htflag	hta	htb	htc	htd	-10	00 D	D D	
	0.0	0.0	0.0	0	0	0	0	0	-15	=0		D
+	null	null	null	a1	a2	a 3			-13	0 2 4	6 8	
	0.0	0.0	0.0	0.0	0.0	0.0				T	ime [s] (E-03)	
ŧ	v1	v2	v3	d1	d2	d3	usrfail					
	0.0	0.0	0.0	0.0	0.0	0.0	0		1	1.2 C C	C C	_CA _B
							Time = 0			1 B B	ВВВ	_0
								_	•	D.8 - A A	D D	D
									e n	J.8 -		
									R value 0	0.6		-
										0.4		
									0	0.2		
									Ď	,,E		

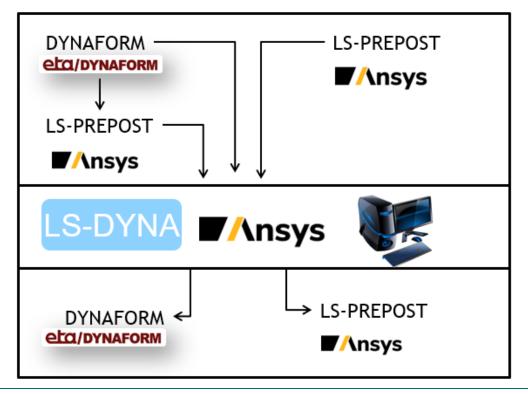

Time [s] (E-03)

Sheet metal forming specifics - Trimming

- Trimming is done as usual with *DEFINE_CURVE_TRIM_NEW for 2D trim and *DEFINE_CURVE_TRIM_3D for laser cutting.
- Parts to be trimmed are defined in *ELEMENT TRIM
- If necessary, seed points are defined using *DEFINE_TRIM_SEED_POINT_COORDINATES
- Adaptive refinement along the trim curve is not available

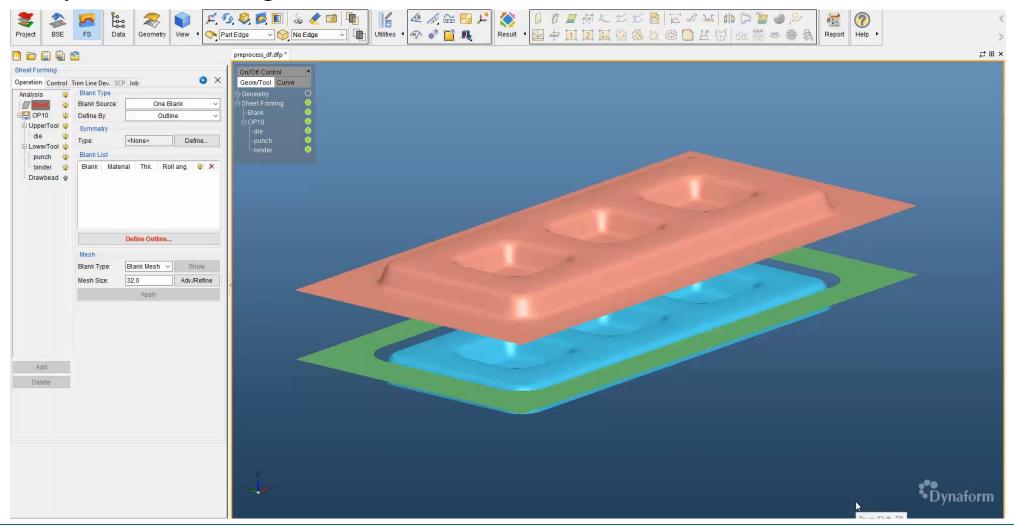
	2D (along one direction)	3D (element normal)	2D & 3D Double Trim	Adaptive mesh
Shell	Yes	Yes	Yes	Yes
Solids	Yes	Yes	Yes	N/A



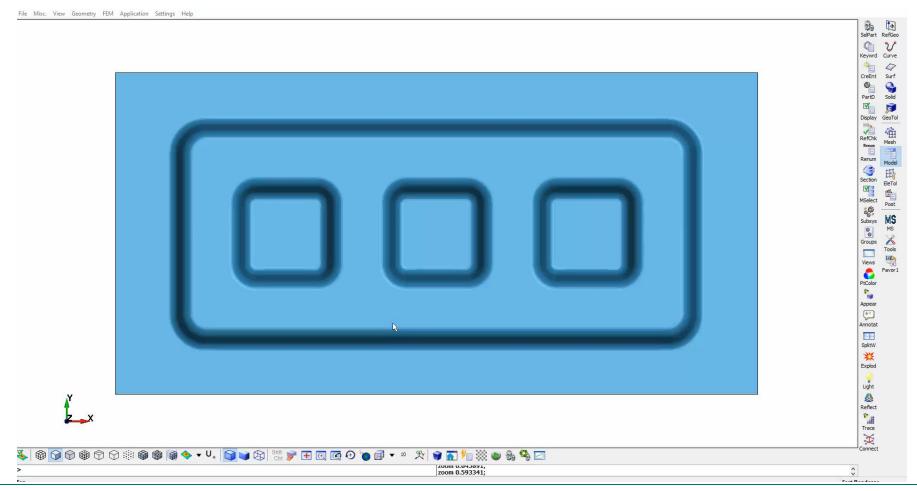


Preprocessing General

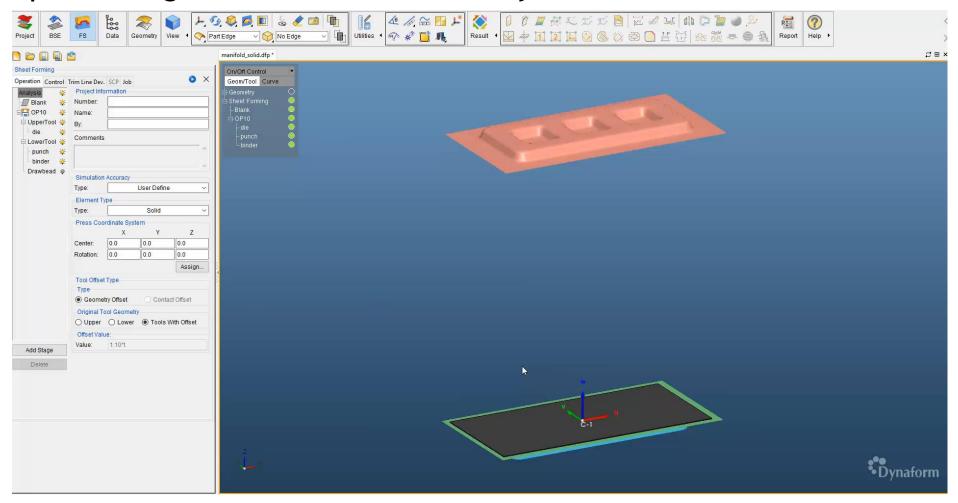
- Tools modeled as rigid using shells
 - IGES/STEP
 - Outer surfaces
- Tool movement
 - Tailored pre- processors
- Blankholder force
 - Constant
 - Gas/Coil springs
- Contacts with friction
- Drawbeads
 - Analytical/Physical



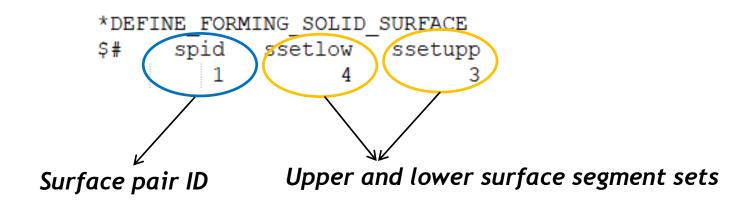
Pre- processing - Dynaform


In Dynaform, using shells or solids is seamless.

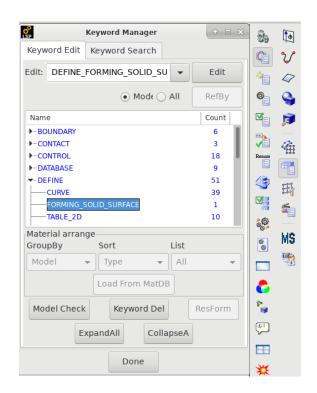
Pre- processing - LS-PREPOST

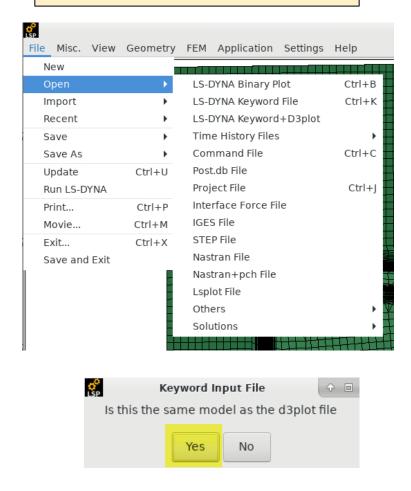

 Using LS-PREPOST (or similar) is less tailored, but parameterization can reduce manual work substantially.

Postprocessing - Dynaform

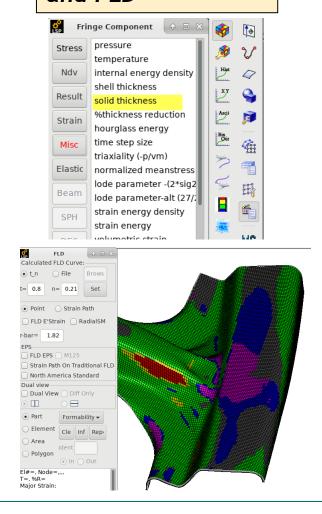

Postprocessing is done in the same way for shells and solids

Postprocessing - LS-PREPOST


- To be able to fringe plot the thickness and FLD, LS-PREPOST needs information on what is the top and bottom surface.
- This is done using the novel keyword *DEFINE_FORMING_SOLID_SURFACE where the upper and lower surfaces of the blank is identified by *SET_SEGMENT
- The keyword is implemented in LS-DYNA from version R13 and v4.9 of LS-PREPOST.
- The keyword file need to be imported into the postprocessing session.

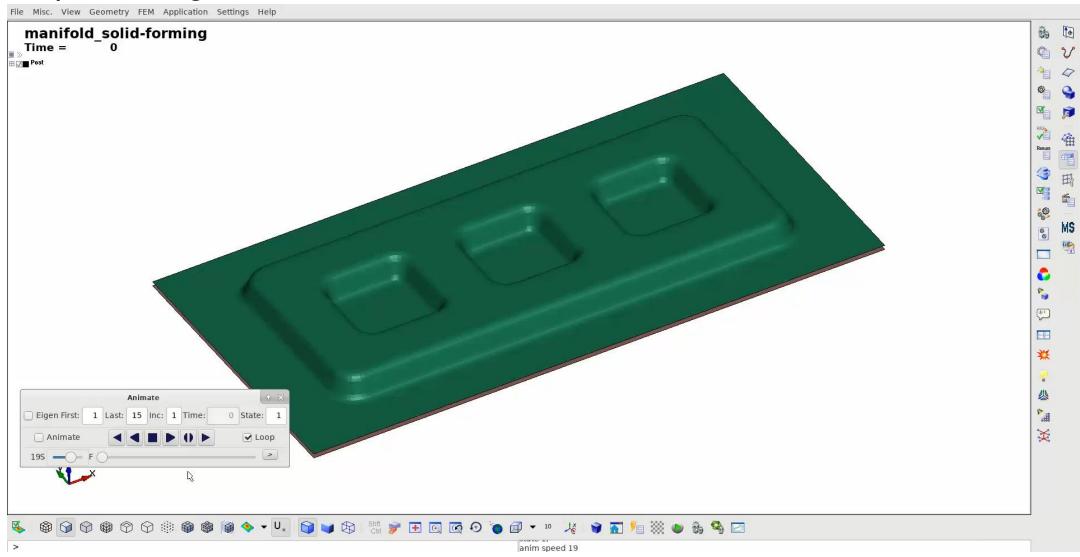

Postprocessing - LS-PREPOST

Define upper and lower surface segment sets



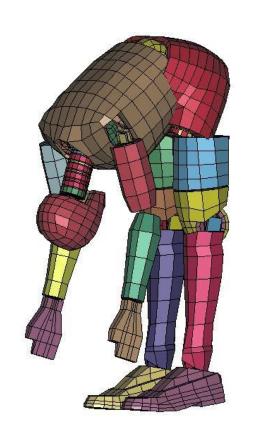
NOTE! This can be done after the simulation is done!

Open the keyword file in the postprocessing session



Plot solid thickness and FLD

Postprocessing - LS-PREPOST


Conclusion

- Solid elements is necessary if the plane stress condition does not apply or where the thinning is not correctly described by the membrane strains.
- The challenges with using solid elements is the increase in model size and the reduction in timestep.
- The basic setup is the same as with shells regarding boundary conditions, contacts, element types and constraints.
- The material models need to be formulated in 3D. Here, finding material parameters through the thickness can be an issue.
- LS-DYNA has several suitable material models, but YLD2000 has a very convenient formulation where the input is the same as for the plane stress case.
- Preprocessing can be done by "any" preprocessor but tailored software makes it a lot easier.
- Evaluating blank thickness and FLD with solids in LS-PREPOST are accomplished using the novel keyword *DEFINE FORMING SOLID SURFACE.

Thank you!

