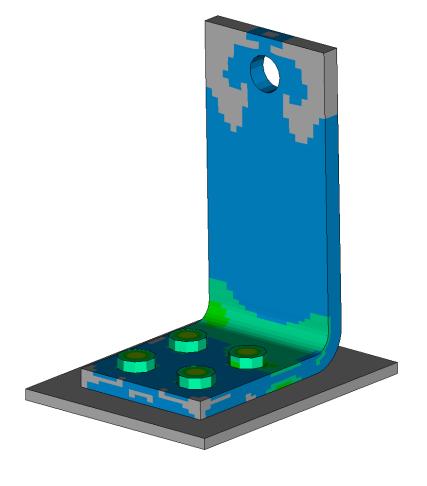
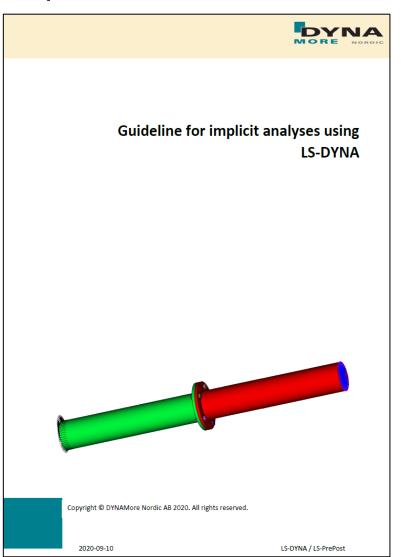

Pre-tensioning techniques in LS-DYNA implicit

Anders Jonsson



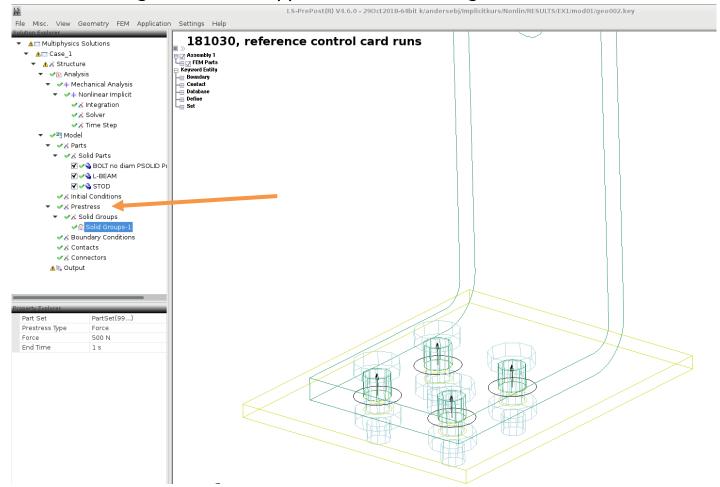
Pre-tensioning techniques in implicit LS-DYNA

- Implicit set up
- Pre-tensioning
 - Modelling of bolts in LS-DYNA
 - Parametrized bolt models in ANSA
- Press-fit
 - Grip in contacts
- Pre-stress
 - Stresses from previous analysis steps
 - For example forming

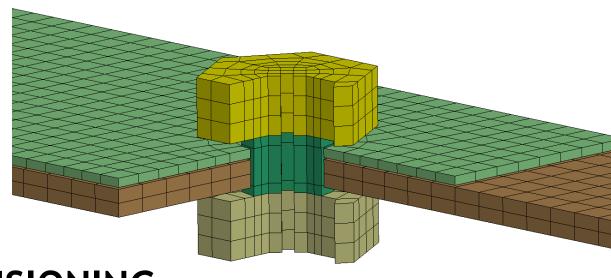

IMPLICIT SET-UP

Basic implicit set-up in LS-DYNA

1 Background 2 Overview 3 LS-DYNA database cards for different analysis types 4 Set-up of some common implicit analysis types 5 Element types 6 Contacts for implicit analyses 7 Material models 8 Loads and boundary conditions 9 Other implicit analysis types 10 Modifications of control card settings 11 References 12 Revision record 13 Appendix A: Rubber modeling for implicit analysis 14 Appendix B: Restart of analyses 15 Appendix C: Troubleshooting convergence problems 16 Appendix D: Converting an implicit model to explicit 17 Appendix E: Converting an explicit model to implicit 18 Appendix F: Implicit / explicit switching 19 Appendix G: Some comments on control card settings


Basic implicit set-up in LS-DYNA

- The Guideline for implicit analyses is available for download for Dynamore
 Nordic customers, from files.dynamore.se > Client Area
- The Appendix P of the LS-DYNA keyword manual (R9.0 and later) also provides recommendations, background and motivation to implicit control card settings.
- A very educational Webinar from Christoph Schmied, DYNAmore Germany:
 - YouTube https://www.youtube.com/watch?v=7SL321fO7_4&t=781s
- Dynamore / Ansys LST also gives courses in implicit analyses:
 - Non-linear implicit analysis in LS-DYNA (T. Borrvall)
 - From explicit to implicit (A. Jonsson)
 - Implicit analysis using LS-DYNA (DYNAmore Germany)
- see also: https://www.dynamore.de/en/training/seminars and https://www.dynamore.de/en/training/seminars



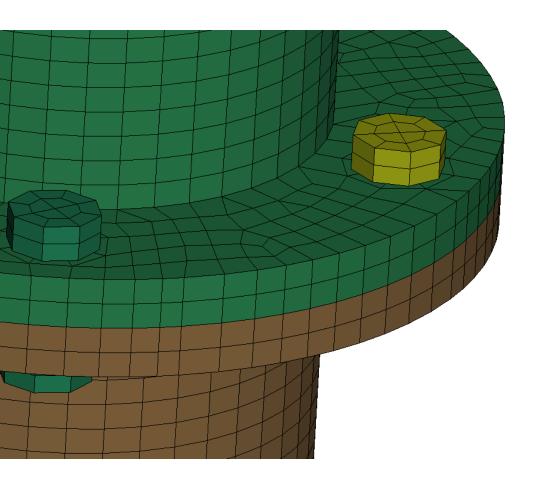
Pre-processing

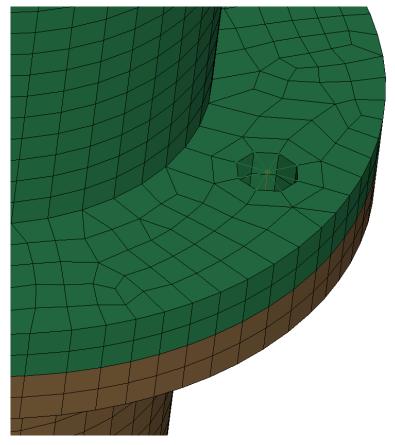
- GUI dedicated for implicit set up is available in LS-PrePost from v4.6
 - Including convenient support for Pre-stressing

BOLT PRE-TENSIONING

Bolt pre-tensioning

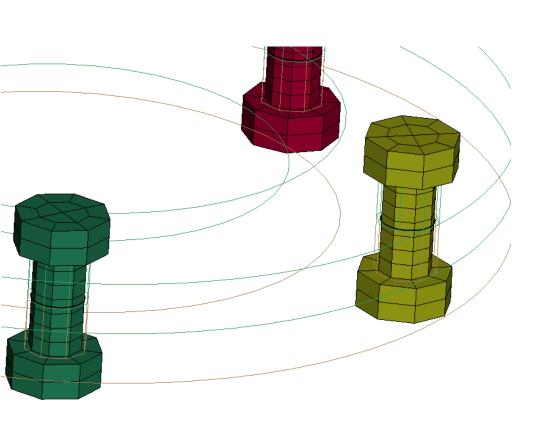
General background

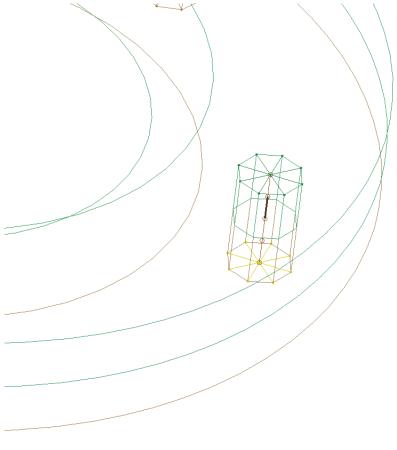

- See https://www.dynaexamples.com/show-cases/bolts
- For an extensive description of bolts modelling, see
 Karajan, N., et al., Modeling bolts in LS-DYNA using explicit and implicit time integration,
 15th Int. LS-DYNA Users Conf. (https://www.dynalook.com/15th-international-ls-dyna-c-using-explicit-and-implicit-time-integration)
- Webinar by J. Forsberg, Bolt pre-tensioning in LS-DYNA (2020-10-07), available from files.dynamore.se > Client Area > 7_Webinars


Bolt pre-tensioning

- Overview
- Solid bolts
- Beam bolts
- Some remarks on bending stiffness
- Bolt connections in ANSA
- Procedures for applying the pre-tensioning

Bolt pre-tensioning - overview





Solid bolts Beam bolts

Bolt pre-tensioning - overview

Solid bolts

Beam bolts

Bolt pre-tensioning - overview

Solid bolts

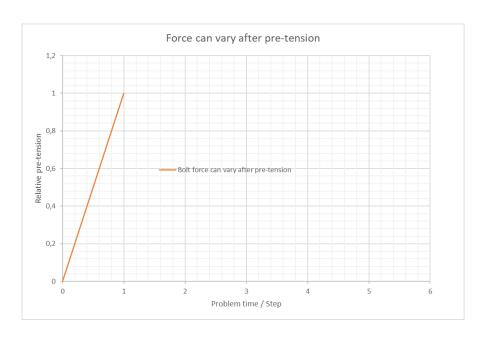
- Keyword:
 - *INITIAL_STRESS_SECTION and *DATABASE CROSS SECTION
- Applies a <u>stress</u>.
- Solid element formulations ±1, ±2
- Connected by contacts

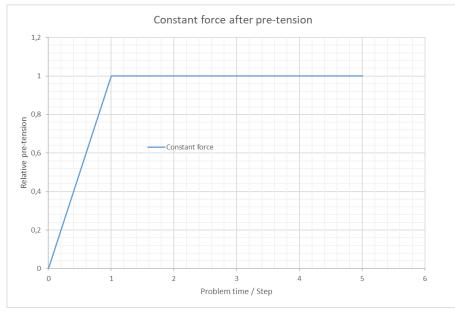
Beam bolts

- Keyword:
 - *INITIAL AXIAL FORCE BEAM
- Applies a <u>force</u>.
- Beam element formulation 9 and *MAT SPOTWELD
 - From R12.0.0, also beam element formulation 1 can be used, with any sensical material
- Connected by CNRBs

Bolt pre-tensioning - Load curves

- A load curve is required to apply the pre-tensioning.
- Let the curve end when the initialization is completed.
- For example, for pre-tensioning in implicit (solid bolts):

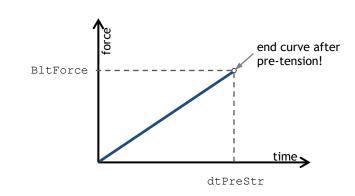

```
*DEFINE_CURVE_TITLE
Bolt pre-tensioning stress (MPa)
100,
0.,0.
1.,400.
```


- This means that the pre-tensioning is ramped up from t = 0 to t = 1. During this time, the force in the bolt is controlled according to the curve.
- For t > 1, the force in the bolt can change due to the external loading.

Bolt pre-tensioning - Load curves

- In order to end the pre-tensioning, let the load curve end
- Should a constant force be required, let the load curve continue on a constant level

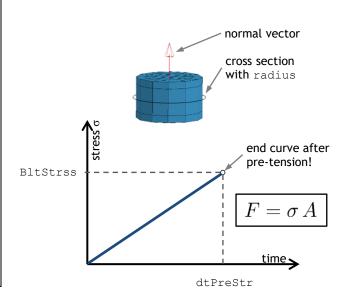
Bolt pre-tensioning - Load curves


- In order to end the pre-tensioning, let the load curve end
- Should a constant force be required, let the load curve continue on a constant level
- LS-DYNA will print an information message in the d3hsp file when the pretensioning is completed
 - For beams: "beam stress initialization is off"
 - For solids: "stress initialization is off"
 - For solids, from R12.0.0, additional information is printed "initial stress complete for cross-section N at time ..."

Bolt pre-tensioning - Beam bolts

- *INITIAL AXIAL FORCE BEAM for pre-tension of beam-style bolts. Applies a *force*.
- NOTE! Spotweld beam (elform 9) with *MAT SPOTWELD must be used.
 - From R12, also beam elform 1 is allowed, with any (reasonable) material
- Make sure that all DOFs of the beam end nodes are connected! Avoid release conditions on CNRB:s! If *CONSTRAINED INTERPOLATION is used, set DDOF = 123456

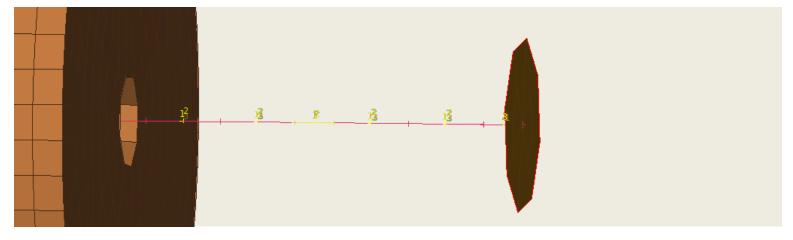
*INITIAL_AXIAL_FORCE_BEAM							
\$#	bsid	lcid	scale	kbend			
	100	100		1			
*DEFINE_CURVE_TITLE							
Pre-tension ramp							
\$#	lcid	sidr	sfa	sfo	offa	offo	
	100		&dtPreStr	&BltForce			
\$#		a1		01			
		0.0		0.0			
		1.0		1.0			


- bsid: beam set ID containing the (spot weld) beams to be pre-tensioned
- dtPreStr: parameter defining the initialization time of the pre-tension
- BltForce: parameter defining the pre-tension force
- Bending stiffness of bolt during initialization
 - kbend=0: no bending stiffness
 - kbend=1: beam has bending stiffness (from R10)

Bolt pre-tensioning - Solid bolts

Initialization of a normal stress in a cross section of the solid elements

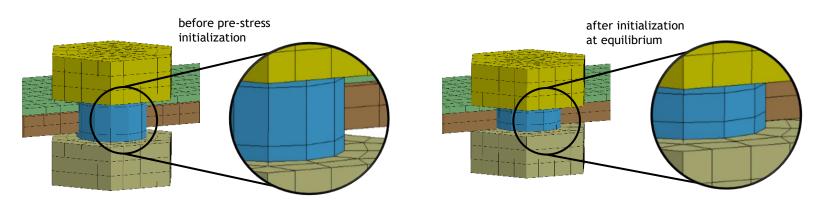
*INITIAL STRESS SECTION								
\$#	issid	csid	lcid	psid	vid	izshear		
	100	100	100	100		2		
*DEFINE_CURVE_TITLE								
Pre-tension stress ramp								
\$#	lcid	sidr	sfa	sfo	offa	offo	dattyp	lcint
	100	&d	tPreStr &B	ltStrss				
\$#		a1		01				
		0.0		0.0				
		1.0		1.0				
*DATABASE_CROSS_SECTION_PLANE_ID								
\$#	csid							title
	100 Cr	oss Sectio	n Bolt					
\$#	psid	xct	yct	zct	xch	ych	zch	radius
	100		-1.6			0.6		5.5
\$#	xhev	yhev	zhev	lenl	lenm	id	itype	



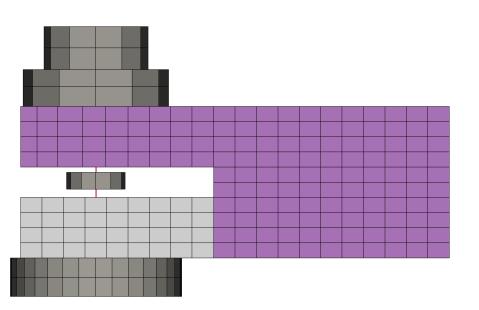
- psid: part set ID containing the solid elements to be pre-stressed
- vid: normal vector, required if *DATABASE CROSS SECTION SET defines the section
- [x,y,z]ct [x,y,z]ch: head and tail coordinate of normal vector of the cross section
- BltStress: the (normal) stress to be applied (provide reasonable value!)
- izshear: flag to activate shear (and bending) stiffness during pre-stressing phase

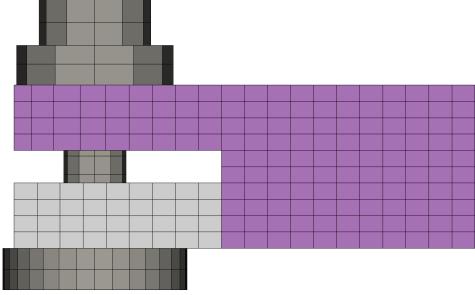
Bolt pre-tensioning - recommendations

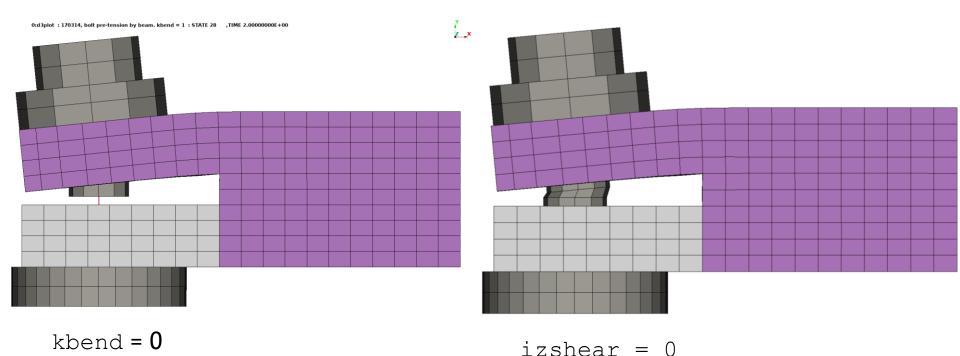
- If possible, minimize gaps between bolt heads / nuts and flanges
- If a beam bolt consists of many beam elements, apply
 *INITIAL_AXIAL_FORCE_BEAM to one beam element per bolt.
 - Set KBEND = 1 to account also for the bending stiffness of the beam

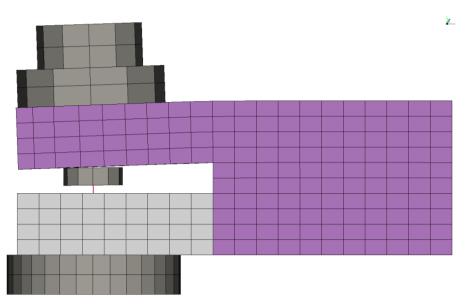


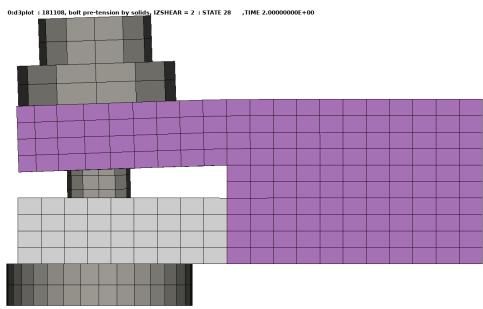
- Add *DATABASE_HISTORY_BEAM_SET for the beam elements which are being pre-tensioned.
 - Forces in spotweld beams (elform 9) are by default output in the swforc file, if *DATABASE_SWFORC is active


Bolt pre-tensioning - recommendations

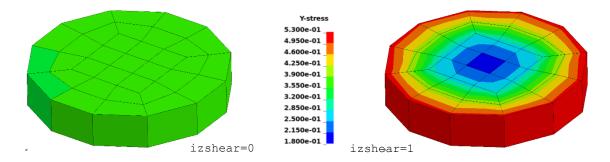

- Use an individual *DATABASE_CROSS_SECTION_PLANE for each
 *INITIAL_STRESS_SECTON for solid element bolts. By this, cross section
 forces and moments can be evaluated for each bolt individually from the
 secforc file.
- Including geometric stiffness effects (IGS = 1 on *CONTROL_IMPLICIT_GENERAL, active in User's guide control cards) may aid convergence for pre-tensioning of solid bolts.
- Beware that if the elements are initially (very) "small" and/or the structure surrounding the bolt is weak, there is a risk of ending up with Error termination due to Negative volume in solid element. The remedy is often simply to mesh the pre-tension section a bit coarser.


By default, LS-DYNA applies the pre-tensioning only in the axial direction.
 Stress gradients are not considered.




By default, LS-DYNA applies the pre-tensioning only in the axial direction. Stress gradients are not considered.

- For beam bolts, set kbend = 1 on the pre-tension card to account also for the bending stiffness of the beam.
- For solid bolts, set izshear = 2 on the pre-tension card to account also for the stress gradient across the pre-tension section.


kbend = 1, from R9

izshear = 2, R11.1

Bolt pre-tensioning - IZSHEAR

- izshear: Allow shear stresses to develop during the pre-stressing phase
 - Yields more realistic distribution of the normal stresses
 - Normal stress distribution in the bolt at equilibrium using LS-DYNA implicit (from R11.1)
 - izshear=0: yields homogeneous normal stress of 0.38 GPa
 - izshear=2: yields inhomogeneous normal stresses averaging 0.38 GPa over the cross section

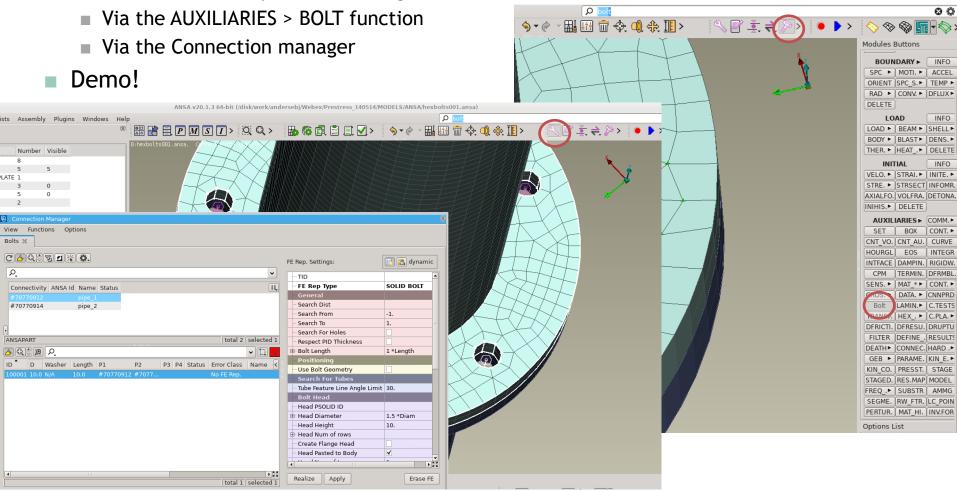
- Revised for implicit from R11.1
 - For explicit analysis this will be available as izshear=2
 - For implicit izshear=1 and izshear=2 are synonymous

For *INITIAL_AXIAL_FORCE_BEAM the bending stiffness in the beam can be accounted for by setting the flag KBEND = 1 (available from R10)

```
*INITIAL_AXIAL_FORCE_BEAM

$# bsid lcid scale kbend

123 1 70.E3 1
```


■ For*INITIAL_STRESS_SECTON the bending stiffness of the cross section can be accounted for by setting the flag IZSHEAR = 2 (available from R11.1).

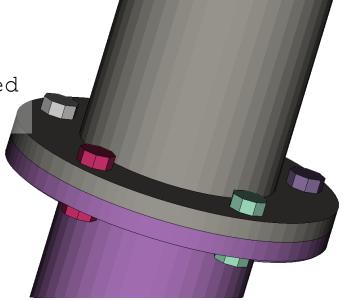
```
*INITIAL_STRESS_SECTION
$ issid csid lcid psid vid izshear
1 1 1002 101 2
```


Creating bolts in ANSA

There are two ways of creating bolts in ANSA

Procedures for applying the pre-tensioning

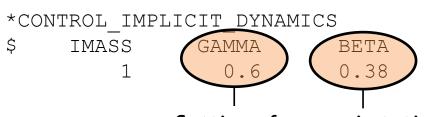
- Implicit static
- Implicit dynamics → implicit statics
- Dynamic Relaxation
 - Implicit
 - Explicit, followed by implicit
- (Explicit dynamics → implicit)

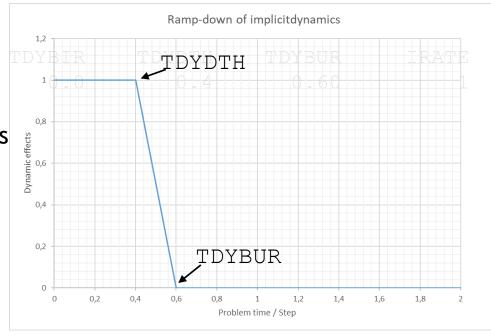

Pre-tensioning using implicit statics

- Pre-tensioning is applied just like "normal" load application.
 - Don't use a "too small" first time step size.
- Statics should work for beam bolts connected to the structure by constrained nodal rigid bodies.
 - Make sure that all DOFs of the beam nodes are connected! Avoid release conditions on CNRB:s! If *CONSTRAINED_INTERPOLATION is used, set DDOF = 123456
- If the assembly only is connected by the (solid) bolts and contacts, the model will have rigid body modes at t = 0.
 - LS-DYNA will print negative eigenvalue warnings.

*** Warning 60124 (IMP+124)

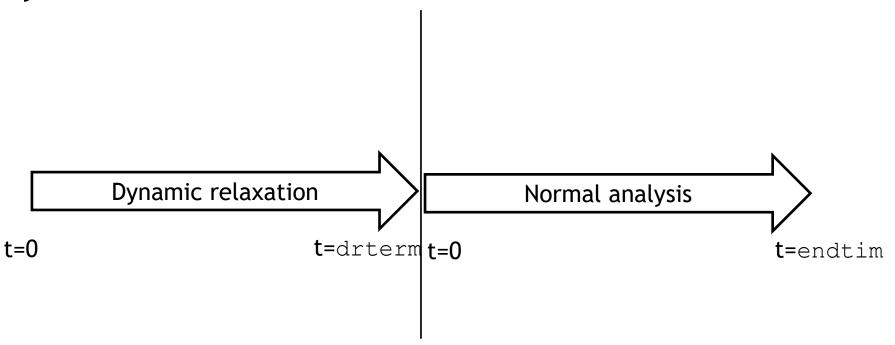
11 negative eigenvalues detected


Still, the pre-tensioning may converge.

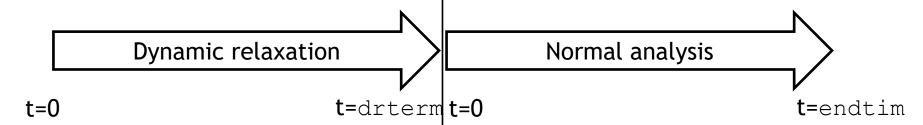


Pre-tensioning using implicit dynamics

- Initial rigid body modes will be taken care of by the dynamics.
 - When dynamics is active, time means "physical time". The time to ramp up the pretensioning becomes important.
 - For example, if the model is in the mm ms kg system, time is ms, and a ramp-up time of perhaps 100 ms may be required.
- Dynamic effects can then be ramped down, as the contacts establish, and the rest of the analysis can be performed as static.



Settings for quasi-statics


Dynamic relaxation

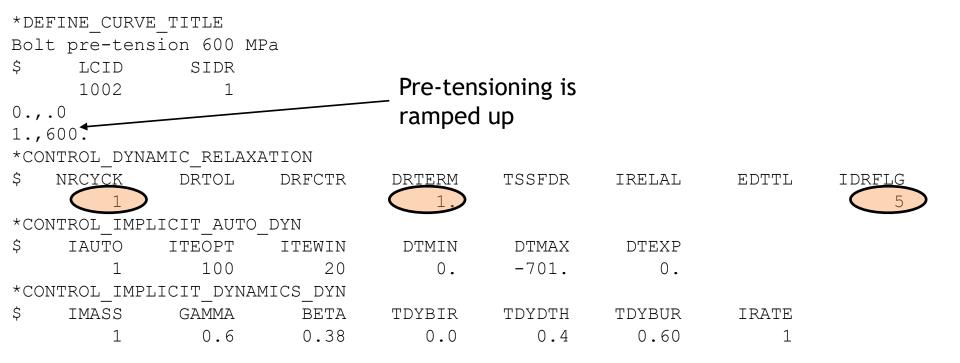
- Dynamic Relaxation (DR) is a way of splitting a LS-DYNA analysis into two "phases".
- In the first phase, the Dynamic Relaxation, pre-loading can be applied
- The "actual" loading of the structure (including pre-load) then takes place in the Normal analysis

Dynamic relaxation

- Load curves with SIDR = 1, 2 active
- Separate implicit settings are possible *CONTROL IMPLICIT ... DYN
- Output may be requested by *DATABASE BINARY D3DRLF

Load curves with SIDR = 0, 2 are active

- For bolt pre-tensioning, DR is "easy" to set up (bolt pre-tension is complete when the force/stress load curve ends, so only a load curve using SIDR = 1 is required) but care must be taken in the general case.
- Also take care with "birth" and "death" time of for example contacts and prescribed displacements (if applicable)


Pre-tensioning using implicit dynamic relaxation (DR)

- Implicit dynamic relaxation can be static and/or dynamic.
- Set SIDR = 1 on the pre-tension load curve to activate DR
- Set DRTERM on *CONTROL_DYNAMIC_RELAXAITON to specify the end time of the Dynamic Relaxation
 - Also set NRCYCK = 1 to make sure that convergence is checked after each iteration
- From R11, it is possible to specify separate implicit settings for the DR
 - *CONTROL IMPLICIT GENERAL DYN
 - *CONTROL IMPLICIT AUTO DYN
 - *CONTROL IMPLICIT DYNAMICS DYN
 - *CONTROL_IMPLICIT_SOLUTION_DYN

Pre-tensioning using implicit dynamic relaxation (DR)

- Set SIDR = 1 on the pre-tension load curve
 - Other load curves that are to be active during DR should have SIDR = 1 or 2 for example to specify variation of max time step

Pre-tensioning using explicit dynamic relaxation (DR)

- Can be very efficient for structures with many loose parts.
- Add contact damping to aid "convergence" (VDC = 20 40) of explicit DR.
- Set SIDR = 1 on the pre-tension load curve.
- In case of an implicit analysis, also setting IDRFLG = 1 on *CONTROL_DYNAMIC_RELAXATION will be required to activate explicit DR.
- *CONTROL_TIMESTEP is also recommended. Use moderate mass scaling (< 10 15 %) by dt2ms < 0.
- Explicit DR Applies similar to a mass damping to reduce nodal velocities
 - DRFCTR can be set on *CONTROL DYNAMIC RELAXATION, default is 0.995

$$\alpha = \frac{(1 - DRFCTR)}{\Delta t}$$

Adding stiffness damping (~ 2.5 %) to parts in contact and up to 10 % to parts being pre-tensioned is recommended

Pre-tensioning using explicit dynamic relaxation (DR)

- For explicit Dynamic relaxation, it is often most efficient to apply the pretension instantaneously, or using a very sharp ramp (~ 1 ms)
 - Try to minimize gaps between the parts subjected to pre-tension

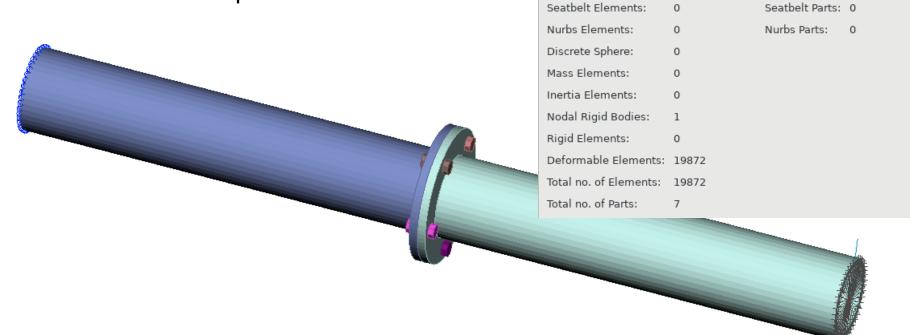
2

FD

```
*DEFINE CURVE TITLE
Bolt pre-tension 600 MPa
      LCID
                SIDR
      1002
                                      Pre-tensioning is
0.,600.
                                      constant
1.,600. ←
*CONTROL TIMESTEP
                                               DT2MS
     TDTNT
              TSSFAC
                           TSDO
                                   TSLIMT
                                             -5.E-04
*CONTROL DYNAMIC RELAXATION
   NRCYCK
               DRTOL
                         DRFCTR
                                              TSSFDR
                                                        TRELAT
                                                                    EDTTI.
                                                                              IDRFLG
                                   DRTERM
*DAMPING PART STIFFNESS SET
*CONTACT AUTOMATIC SINGLE SURFACE ... ID
  1900001Global contact
```


111

FS


0.1

VDC

40

Procedures for applying the pre-tensioning in implicit

- Implicit static
- Implicit dynamics → Statics
- Using dynamic relaxation (DR)
 - Implicit dynamics → Statics
 - Explicit
- Solution times comparison

General Info

30445

19872

Beam Parts:

Shell Parts:

TShell Parts:

Solid Parts:

SPH Parts:

Discrete Parts: 0

State: Nodes:

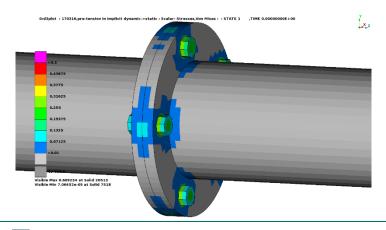
Beams:

Shells:

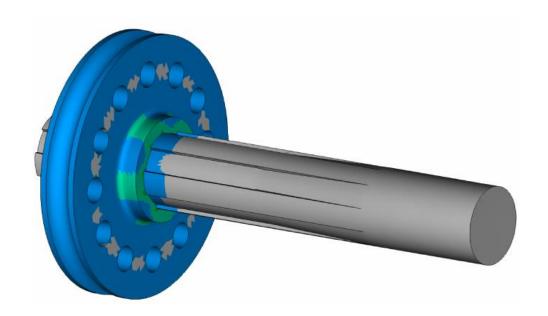
TShells:

Solids:

SPH Nodes:


Discrete Elements:

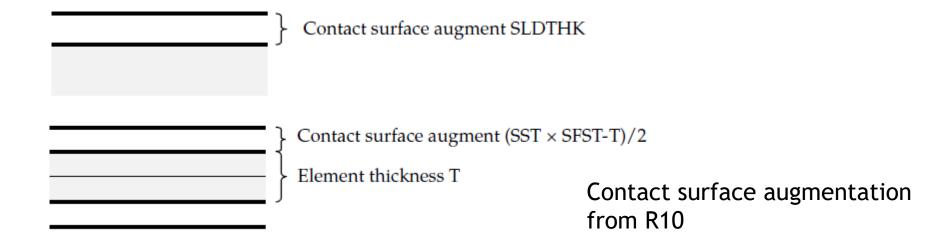
Possible procedures for applying bolt pre-tensioning


Solution timesfor the pipe example. Run on 4 cores on Dynamore's newest cluster nodes, using mpp/LS-DYNA R11.1 and IZSHEAR = 0

Option	Time / seconds	Comment	Keyword file example
Dynamic → Static implicit	52	No negative eigenvalues	pretens002.key
Implicit DR	52 ⁽¹⁾ / 70 ⁽²⁾	Same time for boltpre as in Normal time	pretens004.key
Implicit static	79	11 negative eigenvalues during first time step	pretens001b.key
Explicit DR	32 ⁽¹⁾ / 56 ⁽²⁾	The fastest boltpre!	pretens003.key

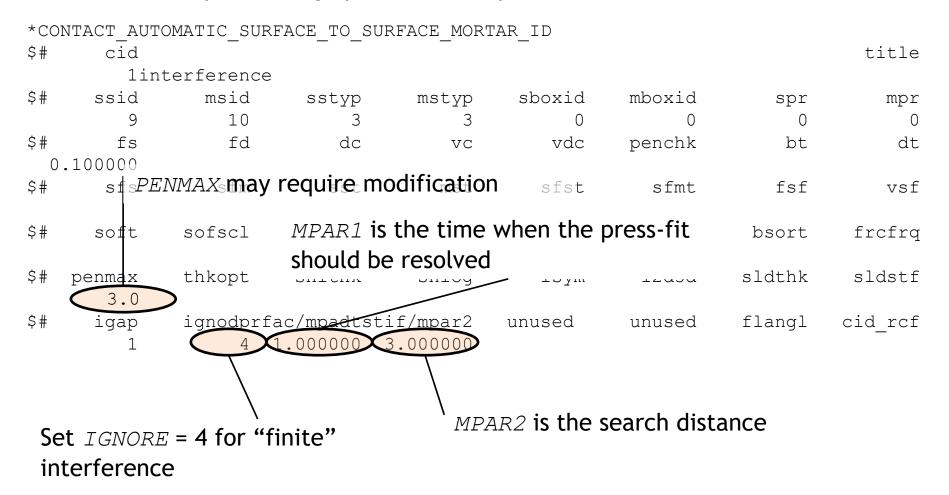
Notes: (1) Time for bolt pre-tensioning. (2) Total time to normal termination, run 1 time unit with no additional loading

PRESS-FIT


- Use Mortar contacts for implicit analyses,
 *CONTACT AUTOMATIC...SURFACE MORTAR ID
- Mortar contact can also resolve press-fit
- Parameters on Optional Card C
 - MPAR1 to specify time to resolve the initial penetrations.
 - MPAR1 < -1.0: |MPAR1| is the ID of a curve defining the relative penetration reduction as function of time.
 - IGNORE = 3 for "small" penetrations (found in normal contact search)
 - IGNORE = 4 for "finite" penetrations, and MPAR2 to specify search distance for penetrating nodes.
 - The solid contact thickness (PENMAX on Optional Card B) may require adjustment

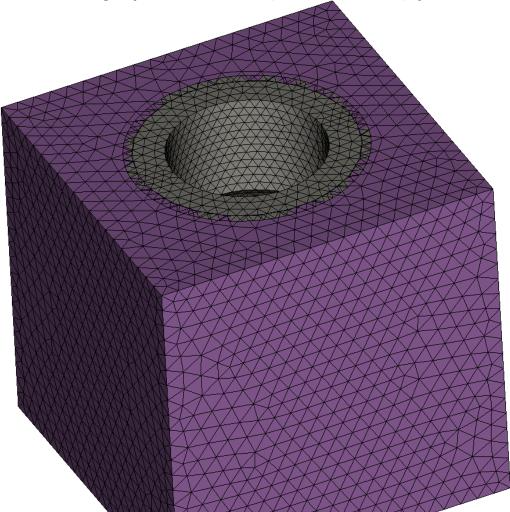
- Use Mortar contacts for implicit analyses,
 *CONTACT AUTOMATIC...SURFACE MORTAR ID
- Mortar contact can also resolve press-fit
- The contact surface is adjusted at t = 0 so that no initial penetrations exist
- The contact surface is then moved out to coincide with the meshed surface
- It is possible to parametrize the grip by contact surface augmentation. For solids, the parameter SLDTHK (optional card B of the contact definition) can be used to directly specify the thickness increase.

- It is possible to parametrize the grip by contact surface augmentation. For solids, this is most conveniently done in R10, where the parameter SLDTHK (optional card B of the contact definition) can be used to directly specify the thickness increase. Note that both master and slave side will be augmented!
- NOTE! SLDTHK < 0 is also allowed</p>

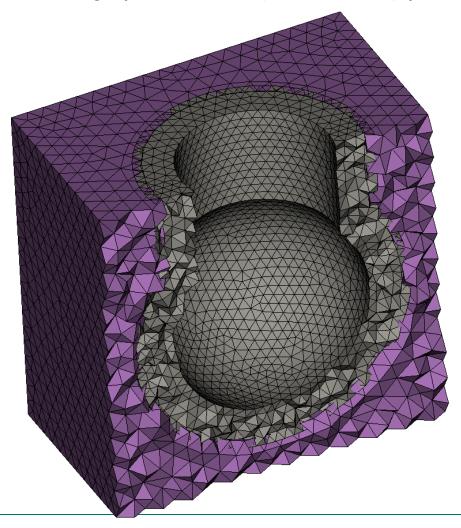

Mortar example for small penetration / press-fit

```
*CONTACT AUTOMATIC SURFACE TO SURFACE MORTAR ID
$#
       cid
                                                                               title
         1interference
$#
      ssid
                msid
                                              sboxid
                                                         mboxid
                          sstyp
                                    mstyp
                                                                       spr
                                                                                 mpr
                   10
$#
                  fd
        fs
                             dc
                                                 vdc
                                                         penchk
                                                                        bt
                                                                                  dt
                                        VC
  0.100000
$#
       sfs
                 sfm
                                                sfst
                                                           sfmt
                                                                       fsf
                            sst
                                      mst
                                                                                 vsf
                       MPAR1 is the time when the press-fit
              sofscl
$#
      soft
                                                                    bsort
                                                                              frcfrq
                         should be resolved
$#
              thkopt
                                                                    sldthk
                                                                              sldstf
    penmax
$#
              ignodprfac/mpadtstif/mpar2
                                             unused
                                                                   flangl
                                                                             cid rcf
      igap
                                                         unused
                    3 \times 1.000000
```

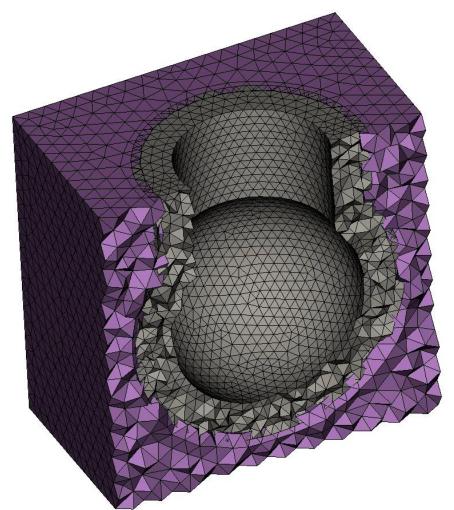
Set IGNORE = 3 for "small" interference

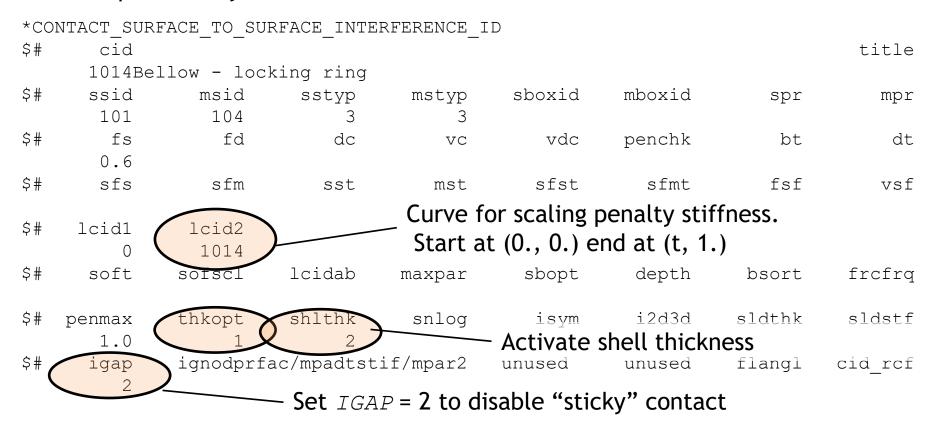


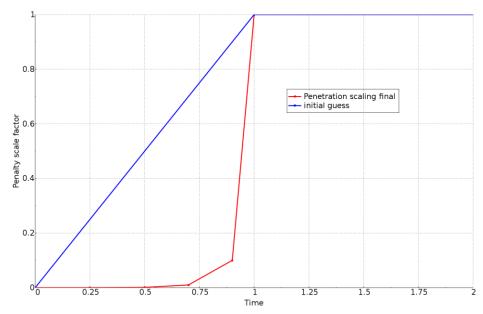
Mortar example for large penetration / press-fit



Mortar example for large penetration (IGNORE = 4) press-fit

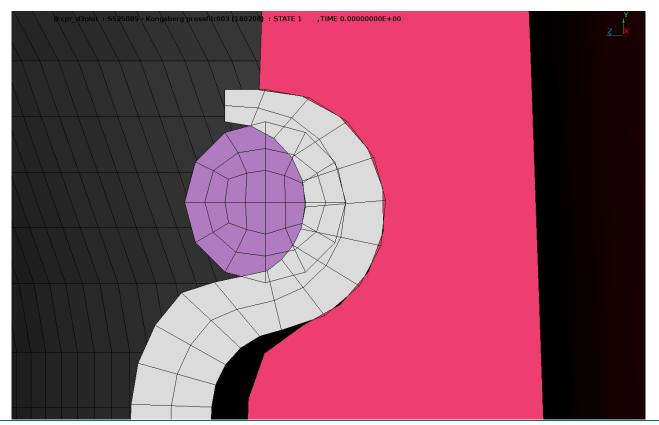

Mortar example for large penetration (IGNORE = 4) press-fit


Mortar example for large penetration (IGNORE = 4) press-fit



- In some cases for press-fit (often finite penetrations, IGNORE = 4) analyses using the Mortar contact may run into (convergence) problems.
- An option to try out is then

- *CONTACT_SURFACE_TO_SURFACE_INTERFERENCE_ID
- A curve starting at (0., 0.) is given for scaling the penalty stiffness up to 1.
 - May need some iterations to find the "right" curve. Start with linear ramp



- Set IGAP = 2 to disable "sticky" contact
- Activate shell thickness by THKOPT = 1, SHLTHK = 2
- Check orientation of shells in contact

- In some cases for press-fit (often finite penetrations, IGNORE = 4) analyses using the Mortar contact may run into (convergence) problems.
- An option to try out is then

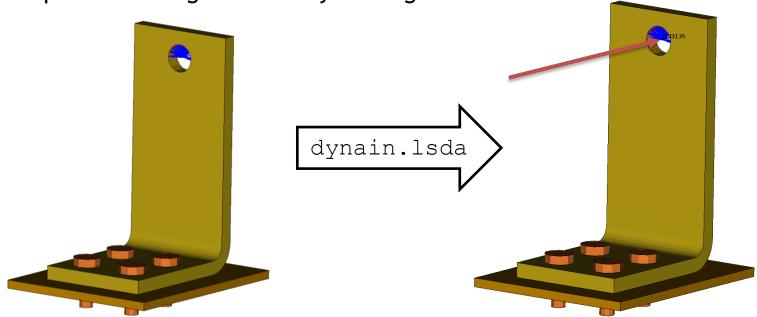
*CONTACT_SURFACE_TO_SURFACE_INTERFERENCE_ID

- *CONTACT AUTOMATIC_...SURFACE_MORTAR_ID
 - Developed for implicit
 - No "sticky" option, it is always off
 - Contact surface is "moved" away until no initial penetrations exist, then "moved" back to the original position
 - Cannot be used with Dynamic Relaxation (in current versions)
- *CONTACT .. INTERFERENCE ID
 - Developed for explicit
 - Separate option to resolve interference in Dynamic Relaxation
 - "Sees" all penetrations. Contact stiffness is ramped up to resolve them.
 - This contact has the "sticky" option on by default. Set IGAP = 2 to disable.

STRESS INITIALIZATION

Stress initialization

- The classical application of implicit: Springback after forming
- Use *INTERFACE SPRINGBACK LSDYNA to request dynain file
 - ASCII keyword format or LSDA Binary format
- LS-DYNA will output the deformed geometry and residual stresses. Keywords:


```
*NODE, *ELEMENT_..., *INITIAL_STRESS_...
```

- Note: Hyperelastic materials, like rubbers (MAT_77, MAT_181 ...) and foams, are initialized by *INITIAL FOAM REFERENCE GEOMETRY
- May be useful for multi-step simulations, assembly in several steps
- May require re-pretension of bolts to obtain correct pre-tension, due to loss of information regarding contact status
- From R11.2, a binary format including contact state for Mortar contacts is available
 - Re-pretension should not be required
 - Should account for hyperelastic materials
 - Binary format under development, may be missing features

Stress initialization example

Bolt pre-tensioning followed by loading

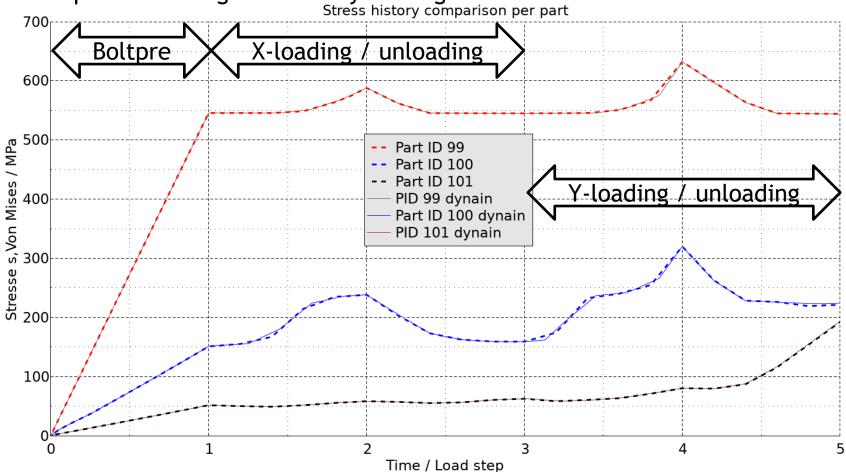
Step 1: Bolt pre-tension

*INITIAL STRESS_SECTION

*INTERFACE SPRINGBACK LSDYNA

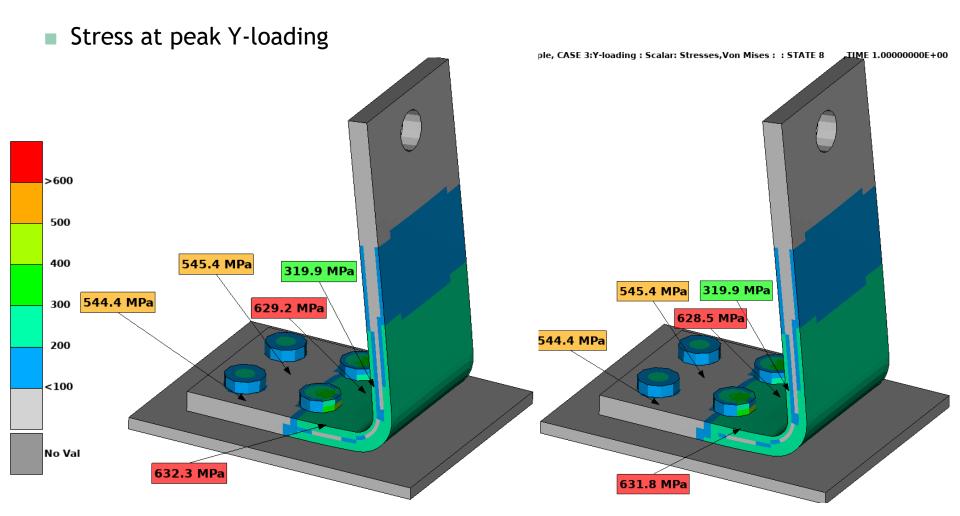
Step 2, 3: Loadings

*INCLUDE


dynain.lsda

*LOAD NODE SET

Stress initialization example


Bolt pre-tensioning followed by loading

Stress history comparison: dynain.lsda w. solid lines, all-in-one with dashed

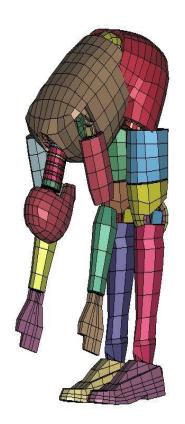
Stress initialization example

Peak stress all-in-one

Peak stresses using dynain.lsda

Summary

- Main keywords in LS-DYNA for bolts pre-tensioning
 - *INITIAL_AXIAL_FORCE_BEAM for pre-tension of beam-style bolts. Applies a <u>force</u>.


 Requires a spotweld beam (elform 9) with *MAT_SPOTWELD. To obtain an elastic beam bolt, specify a high yield stress.
 - From R12, also beam elform 1 works.
 - *INITIAL_STRESS_SECTON for solid element bolts. Applies a <u>stress</u>. Works for the solid element formulations ±1, ±2
- For press-fit in contacts, use MORTAR contact with IGNORE = 3 ("small" penetrations) or 4 ("finite penetrations")
 - *CONTACT_...INTERFERENCE may be an option in some cases for "finite" penetrations
- Stress initialization can be used in a stepwise simulation process, using dynain - files (*INTERFACE SPRINGABACK LSDYNA)

Thank you!

Your LS-DYNA distributor and more

