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■ State of the art digital process chain contains
■ (Hot) forming and press hardening simulations
■ Clamping simulations
■ Mechanical assembly steps, i.e. clinching, roller hemming, …
■ Thermal assembly steps, i.e. resistance spot welds, laser welds, line weld (MIG, MAG), … 
■ Springback analysis  

■ Closed virtual process chain within LS-DYNA by data transfer from one stage to the next
■ Assembly of whole side-panel of a car
■ Hundreds of spot-weld, dozens of parts and multiple level of assemblies

■ Tailored simulation strategies for each of the individual steps
■ As efficient as possible for each process, but without neglecting the critical effects
■ Keep track of material properties that might change significantly during process (e.g. phase evolution)

Motivation – Assembly Simulation

Thermo-Mechanical Coupling in LS-DYNA
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■ 2-way coupled approaches
■ Data transfer and simulation principles
■ Application example: laser cutting

■ Interlude: Hot forming and press-hardening simulations

■ 1-way coupled approaches
■ Motivation and data transfer
■ New keyword *LOAD_THERMAL_BINOUT
■ Application example

■ Prescribed thermal loading conditions for resistance spot welding
■ Motivation
■ New keyword *LOAD_THERMAL_RSW

Content

Thermo-Mechanical Coupling in LS-DYNA
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■ Default strategy in LS-DYNA is a 2-way coupling
■ Staggered weak approach
■ Two solvers run in parallel and share data
■ Thermal time step is independent of the mechanical time step

■ Data transfer

Data Transfer and Simulation Principles

Thermal Calculations
■ Based on current geometry, calculate:

■ Heat from plastic work and phase changes
■ Contact conductance from gap thickness and 

contact pressure
■ Heat from interface friction

■ Update temperature field

Mechanical Calculations
■ Based on current temperature, calculate:

■ Plastic work and phase changes
■ Part contact gap thickness
■ Temperature dependent material 
■ Thermal expansion

■ Update geometry

Thermo-Mechanical Coupling in LS-DYNA
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■ Strong coupling between structure and temperature field
■ local heating of a surface by a laser with a certain position and orientation
■ material evaporates and topology of cut part changes

■ LS-DYNA implementation with *BOUNDARY_FLUX_TRAJECTORY
■ surface flux boundary conditions that follows a prescribed path (node set) 
■ resulting surface heat distribution depends on base distribution and current orientation of laser and surface
■ element erosion based on maximum temperature
■ newly exposed segments are accounted for

2-way Coupled Application: Laser Cutting

Thermo-Mechanical Coupling in LS-DYNA
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■ *BOUNDARY_FLUX_TRAJECTORY
■ tilting changes projection on the surface
■ change of intensity can be balanced

■ nodal path not necessarily defined on the 
cut part

2-way Coupled Application: Laser Cutting

Thermo-Mechanical Coupling in LS-DYNA

ENFO=0

ENFO=1

F
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■ Motivation

■ Selected simulation topics
■ Thermal thick shell
■ Heat transfer in contact
■ Direct vs iterative solvers and tolerances

■ Material modeling
■ MAT_244
■ MAT_254

Interlude: Hot forming and press-hardening simulations

Thermo-Mechanical Coupling in LS-DYNA
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■ goal: benefit from the advanced 
characteristics of UHS steels

■ properties of the product are process 
dependent (mainly of cooling rate)

■ relatively well-known and well-
controlled environment

Motivation I: Steel Grades

[source: Hochholdinger 2012]

Workshop: Phase Trafo in Metals
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Motivation: “Real” Process

Thermo-Mechanical Coupling in LS-DYNA

Courtesy of Daimler AG
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■ Transfer
■ heat loss by

■ convection
■ radiation

■ Positioning
■ heat loss by

■ convection
■ radiation
■ contact to lower die

■ temperature gradient 
through blank

■ Hot forming & quenching
■ heat change by

■ contact conductance
■ contact friction
■ solid – solid phase transition
■ die cooling

Coupled Warmforming Simulations

Thermo-Mechanical Coupling in LS-DYNA
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■ Motivation

■ Selected simulation topics
■ Thermal thick shell
■ Heat transfer in contact
■ Direct vs iterative solvers and tolerances

■ Material modeling
■ MAT_244
■ MAT_254

Interlude: Hot forming and press-hardening simulations

Thermo-Mechanical Coupling in LS-DYNA
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■ standard shell element has a constant temperature over thickness
■ LS-DYNA features a twelve-node thermal thick shell element formulation 

■ bi-linear shape functions in-plane, quadratic shape function in thickness direction
(G. Bergman & M. Oldenburg, Luleå University of Technology)

■ user only specifies standard four node shell element
■ LS-DYNA automatically generates top and bottom virtual nodes
■ new temperature degrees of freedom assigned to virtual nodes 

Thermal Thick Shell Element

Thermo-Mechanical Coupling in LS-DYNA

nodes provided by user 

virtual nodes
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■ Implications on initial and boundary conditions
■ shell has top, middle and bottom layer 

→ surface conditions have to be applied to the correct layer

■ each node ID occurs 3-times (top, middle, bottom) 
→ need input possibility for all three nodes to define nodal conditions

Thermal Thick Shell Element

NID1

NID1 bottom

NID1 top
top

bottom

1 2

34

nodes provided by user 

virtual nodes

Thermo-Mechanical Coupling in LS-DYNA



Slide 14 of 53

■ General keyword form of a thermal boundary/initial condition

■ LCID: load curve ID (function of time or temperature)
■ MULT: load curve multiplier 
■ LOC: shell / node layer (-1: bottom, 0: middle, 1: top)

Thermal Thick Shell Element

… LCID MULT LOC …

NID1

NID1 bottom

NID1 top
top

bottom

1 2

34

nodes provided by user 

virtual nodes

Thermo-Mechanical Coupling in LS-DYNA
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■ Heat transfer between contacting parts is influences by 
■ contact pressure (elastic/plastic deformation)
■ contact temperature 
■ material in gap (vacuum, gas, lubricant)
■ surface flatness
■ surface roughness
■ surface finish (e.g., oxide layer)

Contact conductance

Thermo-Mechanical Coupling in LS-DYNA
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■ Three modes of heat transfer: 
■ Conduction across fluid filling gap with variable gap thickness
■ Radiation across gap
■ (Metal-to-metal) contact with voids, i.e. closed contact

■ Heat exchange by radiation
■ Contact radiation, where a segment can see one surface on the

other body
■ Enclosure radiation, where a segment can see many other 

segments on the other body
■ Borderline between the above cases

Contact conductance

master

slave

conduction and radiation across gap

Thermo-Mechanical Coupling in LS-DYNA
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■ FORMING
■ do not account for master surface shell thickness
■ special mesh adaptivity algorithms available

■ ONE_WAY
■ only affects contact treatment of mechanical solver
■ consider only slave penetration into master surfaces

■ THERMAL
■ additional card required to input parameters for heat transfer across contact area
■ switch for thermal one-/two-way

■ FRICTION
■ additional card is expected
■ define coefficient of static and dynamic friction as function of temperature and pressure
■ define heat transfer coefficient as function of temperature and pressure 

*CONTACT_FORMING_ONE_WAY_SURFACE_TO_SURFACE_THERMAL_FRICTION

master
slave

Thermo-Mechanical Coupling in LS-DYNA
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Thermal contact keyword
1 2 3 4 5 6 7 8

Therm. K FRAD H0 LMIN LMAX FTOSLV BCFLAG ALGO

pd

h

closed contact

ℎrad = 𝑓𝑓rad(𝑇𝑇m + 𝑇𝑇s)(𝑇𝑇m2 + 𝑇𝑇s2)
PART 2

𝑙𝑙min 𝑙𝑙max

If 𝑙𝑙gap < 𝑙𝑙min
ℎ = ℎ0

If 𝑙𝑙min < 𝑙𝑙gap < 𝑙𝑙max
ℎ = ℎcond + ℎrad

If 𝑙𝑙gap > 𝑙𝑙max
ℎ = 0ℎcond=

𝑘𝑘
𝑙𝑙gap

Thermo-Mechanical Coupling in LS-DYNA
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■ There are two choices for structural contact between shells
■ die mid-plance (CAD defined surface) contacts blank surface

■ die surface contacts blank surface

Defining surfaces in contact

Blank
Die

Blank

Die

FE model

Thermo-Mechanical Coupling in LS-DYNA
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■ die mid-plane contacts blank surface

■ CAD software precisely defines the coordinates of the die mid-plane surface
■ activated with

■ *CONTACT_FORMING_SURFACE_TO_SURFACE
■ modelling technique

■ die is a rigid material and does not deform.
■ thermal analog is that the die does not change temperature (ALGO=1).
■ die is given a rigid body motion and a temperature boundary condition.
■ mid-plane of the die is the reference surface for mechanical and thermal contact.

Defining surfaces in contact

Blank
Die discretized shell surfaces

Thermo-Mechanical Coupling in LS-DYNA
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■ offset die surface contacts blank surface

■ activated with
■ *CONTACT_FORMING_SURFACE_TO_SURFACE
■ *CONTACT_SURFACE_TO_SURFACE
■ *CONTROL_CONTACT attribute THOFF=1

■ Modeling technique
■ die is a rigid material or an elastic material.
■ die is given an initial temperature.
■ due to contact, a temperature gradient is calculated through the die thickness.

Defining surfaces in contact

Blank
Die

discretized shell surfaces

Thermo-Mechanical Coupling in LS-DYNA
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■ Situation so far:
■ heat transfer only available for surface to surface type contact formulations
■ for shell contacts only heat flux normal to shell surface implemented

■ Thermal thick shells allow for reconstruction of two 
four-node surfaces at each shell edges for contact

Heat Transfer over Shell Edges in Contact

Thermal Solver - Recent Updates
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■ For non-linear problems, a Newton’s method is applied
■ iterative solution scheme to find the root of a function
■ sequence of linear problems to be solved
■ solution always with respect to a certain tolerance 

■ Linear solution controlled by *CONTROL_THERMAL_SOLVER
■ direct and iterative solvers are available
■ direct solvers 

■ find “exact” root up to numerical precision
■ relatively high CPU and memory consumption

■ iterative solvers 
■ efficient in terms of CPU and memory 
■ iteration converged if error is below a given tolerance

■ Tolerances of iterative solvers problem and unit system specific

Linear Solver Settings for thermal solution in LS-DYNA

Thermo-Mechanical Coupling in LS-DYNA
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■ Motivation

■ Selected simulation topics
■ Thermal thick shell
■ Heat transfer in contact
■ Direct vs iterative solvers and tolerances

■ Material modeling
■ MAT_244
■ MAT_254

Interlude: Hot forming and press-hardening simulations

Thermo-Mechanical Coupling in LS-DYNA
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■ based on the work by P. Åkerström

■ tailored for hot stamping / press hardening processes
■ accounts for austenite decomposition into ferrite, pearlite, bainite, and martensite as well as re-

austenitization

■ mechanical features:
■ elasto-plastic material with a von-Mises plasticity model
■ temperature and strain-rate effects
■ transformation induced strains and plasticity
■ thermal expansion

■ any mechanical quantity 𝛼𝛼 is determined by a rule of mixtures based on the current phase fractions 𝑥𝑥𝑖𝑖 and 
the quantity 𝛼𝛼𝑖𝑖 of phase 𝑖𝑖: 

*MAT_UHS_STEEL / *MAT_244 – Overview

Thermo-Mechanical Coupling in LS-DYNA

𝛼𝛼 = ∑𝑖𝑖=15 𝑥𝑥𝑖𝑖𝛼𝛼𝑖𝑖
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■ User input:
■ alloying elements in mass percent

B, C, Co, Mo, Cr, Ni, V, W, Cu, P, Al, As, Ti
■ latent heats for phase change reaction
■ activation energy for phase transformation
■ initial grain size
■ yield curves for each phase 
■ coefficients of thermal expansion

■ material output
■ current phase fraction of ferrite, pearlite, bainite and martensite
■ computed Vickers hardness
■ resulting yield strength

*MAT_UHS_STEEL / *MAT_244 – Overview

Thermo-Mechanical Coupling in LS-DYNA

recalculated CCT diagramm
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■ Process limitations
■ tailored for hot stamping / press hardening processes
■ basic welding functionality with a ghosting apporach has been added
■ only limited capability for phase transformations during heating phases
■ no methodology for tempering available 

■ Material limitations
■ restriction to five phases
■ only feasible for 22MnB5:

■ heuristic formulas for start and end temperatures of phase transformation
■ empirical equations for the phase transformation parameters

*MAT_UHS_STEEL / *MAT_244 – Limitations

Thermo-Mechanical Coupling in LS-DYNA
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■ up to 24 individual phases (= 552 possible phase change scenarios)
■ phase changes in heating, cooling or in a temperature window
■ user can chose from a list of phase change models for each scenario

■ basic mechanical features:
■ elasto-plastic material with a von-Mises plasticity model
■ temperature and strain-rate effects
■ transformation induced strains and plasticity
■ thermal expansion

■ any mechanical quantity 𝛼𝛼 is determined by a rule of mixtures based on the current phase fractions 𝑥𝑥𝑖𝑖 and 
the quantity 𝛼𝛼𝑖𝑖 of phase 𝑖𝑖: 

*MAT_254 – Overview

Thermo-Mechanical Coupling in LS-DYNA

𝛼𝛼 = ∑𝑖𝑖=124 𝑥𝑥𝑖𝑖𝛼𝛼𝑖𝑖



Slide 29 of 53

1 2 3 4 5 6 7 8
Card 1 MID RHO N E PR MIX MIXR

Card 2 TASTART TAEND TABCTE DTEMP 

Card 3 PTLAW PTSTR PTEND PTX1 PTX2 PTX3 PTX4 PTX5

Card 4 PTTAB1 PTTAB2 PTTAB3 PTTAB4 PTTAB5 PTTAB6

Card 5 PTEPS TRIP NUSHIS GRAI T1PHAS T2PHAS

Card 6 FUNUSH1 FUNUSH2 FUNUSH3 FUNUSH4 FUNUSH5 FUNUSH6 FUNUSH7 FUNUSH8

Card 7 LCY1 LCY2 LCY3 LCY4 LCY5 LCY6 LCY7 LCY8

Card 8 LCY9 LCY10 LCY11 LCY12 LCY13 LCY14 LCY15 LCY16

Card 9 LCY17 LCY18 LCY19 LCY20 LCY21 LCY22 LCY23 LCY24

*MAT_254 / *MAT_GENERALIZED_PHASE_CHANGE

Thermo-Mechanical Coupling in LS-DYNA

■ very general material implementation to capture micro-structure evolution
■ implementation available for solids and shells and for explicit and implicit
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■ elaborate features:
■ latent heat algorithm
■ calculation and output of additional pre-defined post-processing  histories 
■ calculation and output of additional user-defined history values

■ refers to *DEFINE_FUNCTION keyword
■ Possible input: 

time, user-defined histories, phase concentrations, temperature, peak temperature, temperature rate, stress 
state, plastic strain data

■ enhanced annealing option by evolution equation for plastic strain depending on time and temperature

*MAT_254 – Overview

Thermo-Mechanical Coupling in LS-DYNA
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■ microstructural phase evolution
■ up to 24 individual phases 
■ parametrization of the phase transformation to be given in a 

matrix-like structures (*DEFINE_TABLE_2D/3D) 
■ matrix input for

■ phase transformation law (2D)
■ start and end temperatures (2D)
■ transformation constants (2D)
■ temperature dependent  parameters (3D)

*MAT_254 – Phase transformation

Thermo-Mechanical Coupling in LS-DYNA

1 2 3 4 5 6 7 8
Card 3 PTLAW PTSTR PTEND PTX1 PTX2 PTX3 PTX4 PTX5
Card 4 PTTAB1 PTTAB2 PTTAB3 PTTAB4 PTTAB5
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■ Johnson-Mehl-Avrami-Kolmogorov (JMAK):
■ Evolution equation:

𝑑𝑑𝑥𝑥𝑏𝑏
𝑑𝑑𝑑𝑑

= 𝑛𝑛 𝑇𝑇 𝑘𝑘𝑎𝑎𝑎𝑎𝑥𝑥𝑎𝑎 − 𝑘𝑘𝑎𝑎𝑎𝑎′ 𝑥𝑥𝑏𝑏 ln
𝑘𝑘𝑎𝑎𝑎𝑎 𝑥𝑥𝑎𝑎 + 𝑥𝑥𝑏𝑏
𝑘𝑘𝑎𝑎𝑎𝑎𝑥𝑥𝑎𝑎 − 𝑘𝑘𝑎𝑎𝑎𝑎′ 𝑥𝑥𝑏𝑏

𝑛𝑛 𝑇𝑇 −1.0
𝑛𝑛(𝑇𝑇)

*MAT_254 – Phase transformation

Thermo-Mechanical Coupling in LS-DYNA

1 2 3 4 5 6 7 8
Card 3 PTLAW PTSTR PTEND PTX1 PTX2 PTX3 PTX4 PTX5
Card 4 PTTAB1 PTTAB2 PTTAB3 PTTAB4 PTTAB5 PTTAB6

■ Parameter:
■ PTTAB1: 𝑛𝑛(𝑇𝑇)
■ PTTAB2: 𝑥𝑥𝑒𝑒𝑒𝑒(𝑇𝑇)
■ PTTAB3: 𝜏𝜏0(𝑇𝑇)
■ PTTAB4: 𝑓𝑓(𝑇̇𝑇)
■ PTTAB5: 𝑓𝑓𝑓(𝑇̇𝑇)
■ PTTAB6: 𝛼𝛼(𝜀𝜀𝑝𝑝)

𝑘𝑘𝑎𝑎𝑎𝑎 = 𝑥𝑥𝑒𝑒𝑒𝑒 𝑇𝑇
𝜏𝜏 𝑇𝑇,𝜀𝜀𝑝𝑝

𝑓𝑓 𝑇̇𝑇 , 𝑘𝑘𝑎𝑎𝑎𝑎′ = 1.0−𝑥𝑥𝑒𝑒𝑒𝑒 𝑇𝑇
𝜏𝜏 𝑇𝑇,𝜀𝜀𝑝𝑝

𝑓𝑓′ 𝑇̇𝑇 ,
𝜏𝜏 𝑇𝑇, 𝜀𝜀𝑝𝑝 = 𝜏𝜏0 𝑇𝑇 ⋅ 𝛼𝛼(𝜀𝜀𝑝𝑝)
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*MAT_254 – Phase transformation validation

Thermo-Mechanical Coupling in LS-DYNA

■ influence of parameter 𝑛𝑛(𝑇𝑇) on isothermal transformation

𝑛𝑛 ↑
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*MAT_254 – Phase transformation validation

Thermo-Mechanical Coupling in LS-DYNA

■ influence of parameter 𝑥𝑥𝑒𝑒𝑒𝑒(𝑇𝑇) on isothermal transformation

𝑥𝑥𝑒𝑒𝑒𝑒 ↑
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*MAT_254 – Phase transformation validation

Thermo-Mechanical Coupling in LS-DYNA

■ influence of parameter 𝜏𝜏(𝑇𝑇) on isothermal transformation

τ ↑
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■ Different steel grades in welding simulations

■ New UHS steels in press-hardening and hot forming

■ Bake hardening of aluminum 6xxx 

Applications

Thermo-Mechanical Coupling in LS-DYNA
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■ 2-way coupled approaches
■ Data transfer and simulation principles
■ Application example: laser cutting

■ Interlude: Hot forming and press-hardening simulations

■ 1-way coupled approaches
■ Motivation and data transfer
■ New keyword *LOAD_THERMAL_BINOUT
■ Application example

■ Prescribed thermal loading conditions for resistance spot welding
■ Motivation
■ New keyword *LOAD_THERMAL_RSW

Content

Thermo-Mechanical Coupling in LS-DYNA
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■ For some assembly stages the effect of structural deformation 
onto the thermal simulation is negligible
■ Distortion and/or material phase evolution due the thermal distribution 

are of interest to the user 

■ Results of a thermal run serves as loading for structure simulation with *LOAD_THERMAL_D3PLOT
■ Evolution in time of temperature distribution linearly interpolated between the output time steps
■ Thermal thick shell feature is supported also for the structure-only simulation
■ Temperature results are read from the d3plot file of the thermal run
Challenges with this approach:
■ Complex input file format (d3plot) to be generated by a mapping tool
■ Meshes (models!) for both simulations have to coincide
■ Time scaling has to match as well

■ Implemented more flexible *LOAD_THERMAL_BINOUT to read data from one or more LSDA database(s) 

Motivation for 1-way Coupling

Thermo-Mechanical Coupling in LS-DYNA
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■ Aims and scope of the new keyword
■ Use flexible and open LSDA data format to define thermal loading of a structure
■ Required structure of LSDA files matches the TPRINT section in LS-DYNA binout file, so results from thermal and 

from coupled LS-DYNA runs can be used without further modification
■ Only partial overlap between meshes should be required
■ Allow for a sequential thermal loading and for an easy modification of the sequence

*LOAD_THERMAL_BINOUT

1 2 3 4 5 6 7 8

Card 1 DEFTEMP

Card 2 Filename

Card 3 START TSF

Thermo-Mechanical Coupling in LS-DYNA
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■ File name of thermal run given in keyword
■ Thermal thick shells are accounted for
■ Time step sizes do not have to match

*LOAD_THERMAL_BINOUT

Thermo-Mechanical Coupling in LS-DYNA

Welding Example:
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■ File name of thermal run given in keyword 
■ Thermal thick shells are accounted for
■ Time step sizes do not have to match

*LOAD_THERMAL_BINOUT

Thermo-Mechanical Coupling in LS-DYNA

Thermal run:
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*LOAD_THERMAL_BINOUT

Thermo-Mechanical Coupling in LS-DYNA

Structure run with thermal loading:

Temperature von Mises stress
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■ File name of the input is to be given in the keyword
■ Thermal thick shells are accounted for
■ Time step sizes do not have to match

■ Only partial overlap of the meshes is required
■ Data transfer based on user given ID of the nodes
■ Default temperature is used for those nodes of the 

structure simulations that are not included in the 
thermal run

*LOAD_THERMAL_BINOUT

Thermo-Mechanical Coupling in LS-DYNA

Thermal Run:
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*LOAD_THERMAL_BINOUT

Thermo-Mechanical Coupling in LS-DYNA

Structure Run with partial overlap and DEFTEMP:

Temperature von Mises stress
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■ Multiple thermal runs can be read in
■ Each thermal run with time offset START
■ Compensation for a scaling in time with TSF

*LOAD_THERMAL_BINOUT

Thermo-Mechanical Coupling in LS-DYNA

Thermal Runs:
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*LOAD_THERMAL_BINOUT

Thermo-Mechanical Coupling in LS-DYNA

Structure Run:

Temperature von Mises stress
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*LOAD_THERMAL_BINOUT

Thermo-Mechanical Coupling in LS-DYNA

Structure Run: 

Temperature von Mises stress
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■ 2-way coupled approaches
■ Data transfer and simulation principles
■ Application example: laser cutting

■ Interlude: Hot forming and press-hardening simulations

■ 1-way coupled approaches
■ Motivation and data transfer
■ New keyword *LOAD_THERMAL_BINOUT
■ Application example

■ Prescribed thermal loading conditions for resistance spot welding
■ Motivation
■ New keyword *LOAD_THERMAL_RSW

Content

Thermo-Mechanical Coupling in LS-DYNA
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■ Modelling approaches for resistance spot welding (RSW)
■ Use a detailed and coupled (EM, thermal, structure) simulation
■ Use an equivalent heat source and calibrate power 

■ For large assemblies and hundreds of spot welds neither 
approach is feasible

■ *BOUNDARY_TEMPERATURE_RSW
■ Direct temperature definition (Dirichlet condition) for the weld nugget 

and the heat affected zone for the thermal solver
■ Constraint condition only active during the welding
■ Very good prediction of deflections in large assemblies
■ A HAZ can be additionally accounted for

Motivation

Thermo-Mechanical Coupling in LS-DYNA

OPTION = 0

OPTION = 1
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■ temperature in the weld nugget
■ prescribed at the center, boundary of nugget, and boundary of HAZ
■ quadratic approximation inside the nugget
■ linear approximation in the HAZ

■ boundary condition active between BIRTH and DEATH times

■ load curve input (LCIDT) for temperature scaling factor as
function of normalized time

■ To further increase the efficiency, customers want to imprint the
temperature field in the weld nugget directly as thermal load 
in the structure solver 

Motivation

Thermo-Mechanical Coupling in LS-DYNA

linear temp increase,
BIRTH=0.1, DEATH=0.9

peak temp. profile, horizontal
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*LOAD_THERMAL_RSW

Thermo-Mechanical Coupling in LS-
DYNA

■ Thermal loading condition for the structure solver, 
i.e. no thermal calculation required

■ Temperature profile in the weld nugget same as in the 
temperature boundary condition
■ Prescribed at the center, boundary of nugget, and boundary of HAZ
■ Quadratic approximation inside the nugget
■ Linear approximation in the HAZ

■ Outside the HAZ a default temperature is assumed
peak temp. profile, horizontal

linear temp increase,
BIRTH=0.1, DEATH=0.9
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■ Presented thermal-mechanical coupling schemes realized within LS-DYNA for assembly simulations

■ Discussed new functionality *LOAD_THERMAL_BINOUT for 1-way coupled simulation
■ Uses the flexible and open LSDA data format for data transfer
■ Mapping of temperatures based on user node ID requires only partial overlap of meshes
■ Time offset and scaling functionality for easy modification of weld ordering

■ Future work
■ Provide a tailored LSDA output file to reduce memory consumption
■ Implement thermal loading conditions for further line welding process simulations in early design phases

Summary and Outlook

Thermo-Mechanical Coupling in LS-DYNA
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