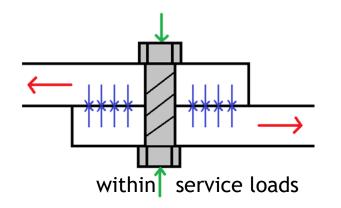
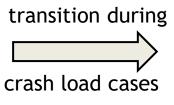
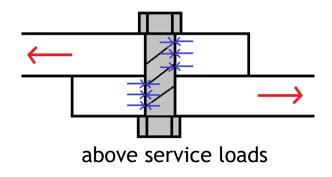
Bolt pre-tensioning in LS-DYNA


Jimmy Forsberg



Physical system - Bolted connections


- Shear load transfer using friction between clamped surfaces
 - Bolt is pre-tensioned, typically 70-90% of yield strength
 - Controlled through moment to tighten bolt
 - Overloads will subject to bolt to shear loads
- Washer may be used to distribute the contact pressure over larger area
- Failure in connection
 - Bolt shank
 - Shear overload
 - (Tension)
 - Connected sheets/parts
 - Pull-out

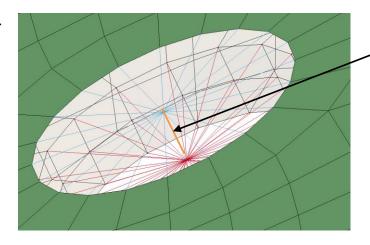
Courtesy Karajan et al.

Modelling techniques in LS-DYNA - Rigid

- Rigid connection
 - CNRB of complete connection. Mass element for added bolt mass.
 - + Simple connection
 - + Rigid connection to sheet → No vibrations through loose fitting and contact
 - Frictional functionality of bolted connection not captured
 - Overly stiff
 - Chock-wave distortion due to the nature of rigids (infinite speed of sound)
 - No contact requirements. Sheets in normal single surface contact algorithm.

Modelling techniques in LS-DYNA - Beam shank

- Deformable shank 1D element
 - CNRB/rigid patch for head and nut.
 - Beam element for shank of bolt.

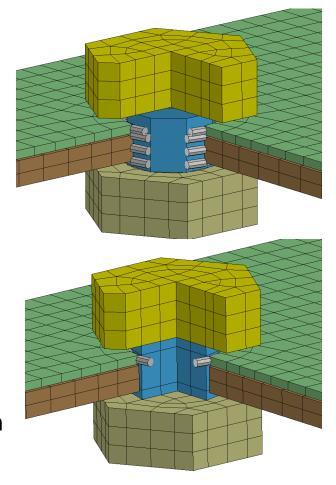

Beam connected to shell and solid modelled sheet with CNRB

- Overly stiff head and nut.
- Chock-wave distortion due to the nature of rigids (infinite speed of sound)
- Extra contact definition needed depending on connection (three+ layers)
- Extra nullbeams along intermediate sheets edges needed (both shell and solid modelled sheets)
- + Non-linear material models are available hence more physical
- + Rigid connection to sheets → No vibration through loose fitting and contact
- + Interface frictional behavior captured with pre-tensioning of bolt

Modelling techniques in LS-DYNA - Beam shank

- Deformable shank 1D element
 - 1 single surface contact for sheet parts
 - Possibly: Extra contact to capture edge contact between intermediate (third sheet) hole edge.
 - Coat edges of third sheet with null beams and use:
 *CONTACT_AUTOMATIC_GENERAL to capture contact between null beams and bolt.
 - CPARM8 to exclude beam contact within same part.

Beam connected to shell and solid modelled sheet with CNRB

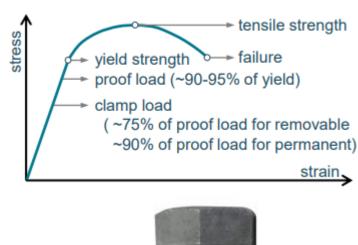

Modelling techniques in LS-DYNA - Solid meshed shank

- Deformable shank 1D element
 - CNRB/rigid patch for head and nut.
 - Solid elements for shank of bolt.
 - Overly stiff head and nut.
 - Chock-wave distortion due to the nature of rigids (infinite speed of sound)
 - Depending on global contact, if soft=1:
 - Extra contact definition needed depending on connection (three+ layers)
 - Extra nullbeams along intermediate sheets edges needed
 - + Non-linear material models are available hence more physical
 - + Rigid connection to sheets → No vibration through loose fitting and contact
 - + Interface frictional behavior captured with pre-tensioning of bolt

Modelling techniques in LS-DYNA - Head/Nut

- Contact between head/nut and sheets
 - Head/nut modelled using shell/solid elements
 - Head/nut rigid or deformable
 - Shank modelled using beam or solid element.
 - Head/nut into global contact single surface
 - Shank modelled using beams
 - Extra contact according to shank modelled beam
 - Shank modelled using solid elements
 - Extra contact if using soft=1 for global contact
 - No extra contact needed if using soft=2 and edge contact turned on
 - PRE-STRESS connection!!!

Courtesy Karajan et al.


Pre-tension of bolts - Why?

- More realistic simulation model!
- Reduce the noise in results
 - Bolts vibrating
- Increase robustness of simulation model
 - Contact pairs are initiated
 - Energy dissipation through sliding

Pre-tensioning of bolts

- Typical elasto-plastic material
 - The pre-tension defined as %-age if yield strength
 - Transfer loads by friction of the clamped surface
 - Overload of connection → bolt carries more load
- Pre-tensioning possibilities in LS-DYNA
 - Thermal material
 - Initial axial force beam (beam elform=9)
 - Initial stress section
 - Pre-simulation (Dynain file)
 - Parameter on element card (old element discrete)
 - Material law possibilities
 - Ref. N Karajan, A Gromer, M Schenke, T Borrvall, K Pydimarry: 'Modelling bolts in LS-DYNA using explicit and implicit time integration', 15th German LS-DYNA Forum, Bamberg Germany, 2018
- Solid elements, Initial stress section!

Basic parameters model - solid elements for bolt

*SECTION

■ Underintegrated solid - elform=1, only hex-element

*HOURGLASS

■ Formulation 6, QM=0.1

*CONTACT_AUTOMATIC_SINGLE_SURFACE - Global contact

Card 1	SSID (X)	MSID (0)	SSTYP (2)	MSTYP (0)	SBOXID (0)	MBOXID (0)	SPR (0)	MPR (0)
Card 2	FS (0.3)	FD (0.3)	DC (0)	VC (0)	VDC (30)	PENCHK (0)	BT (0)	DT (0)
Card 3	SFS (1.0)	MFS (1.0)	SST (0)	MST (0)	SFST (0)	SFMT (0)	FSF (0)	VSF (0)
Opt. A	SOFT (2)	SOFSCL (0)	LCIDAB (0)	MAXPAR (0)	SBOPT (3)	DEPTH (35)	BSORT (0)	FRCFRQ (0)
Opt. B	PENMAX (0)	THKOPT (0)	SHLTHK (0)	SNLOG (0)	ISYM (0)	I2D3D (0)	SLDTHK (0)	SLDSTF (0)
Opt. C	IGAP (0)	IGNORE (2)	DPRFAC (0)	DTSTIF (Y)			FLANGL (0)	CID_RCF (0)
Opt. D	Q2TRI (0)	DTPCHK (0)	SFNBR (-1)	FNLSCL (0)	DNLSCL (0)	TCSO (0)	TIEDID (0)	SHLEDG (1)
Opt. E	SHAREC (0)	CPARM8 (0)	IPBACK (0)	SRNDE (0)	FRICSF (0)	ICOR (0)	FTORQ (0)	REGION (0)
Opt. F	PSTIFF (-1)	IGNROFF (0)		FSTOL (0)	2DBINR (0)	SSFTYP (0)		

Basic input pre-stressing

*INITIAL_STRESS_SECTION

Control stress initiation methodology

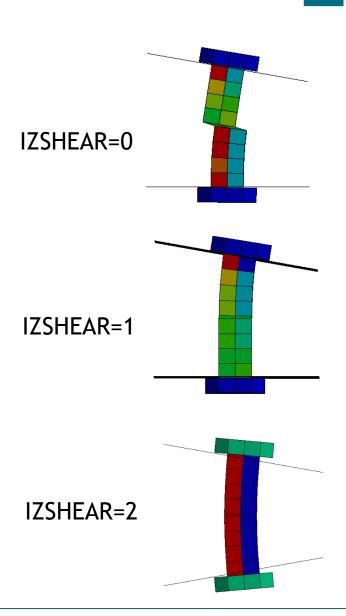
 1
 2
 3
 4
 5
 6
 7
 8

 Card 1
 ISSID
 CSID
 LCID
 PSID
 VID
 IZSHEAR
 ISTIFF

- Elements selected by being in partset and touched by the cross-section
- *DATABASE CROSS SECTION PLANE ID

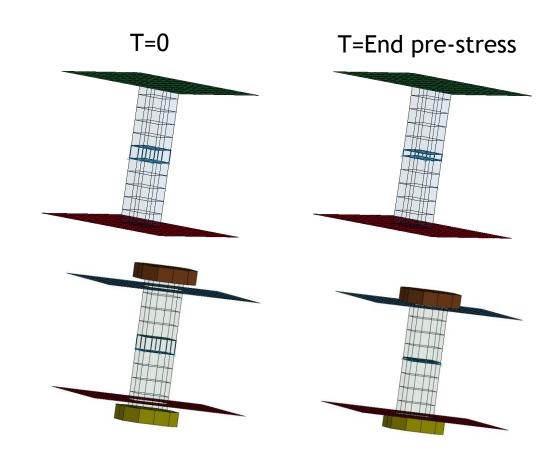
ID	CSID	HEADING						
Card 1	PSID	XCT	YXT	ZCT	XCH	YCH	ZCH	RADIUS
Card 2	XHEV	YHEV	ZHEV	LENL	LENM	ID	ITYPE	

Recommended

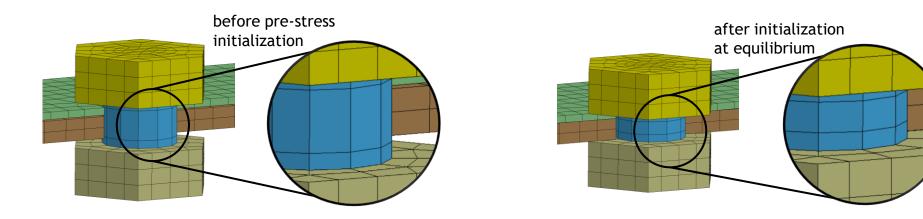

*DATABASE_CROSS_SECTION_SET_ID

ID	CSID	HEADING							
Card 1	NSID	HSID	BSID	SSID	TSID	DSID	ID	ITYPE	

Prestress of solid meshed bolts - history

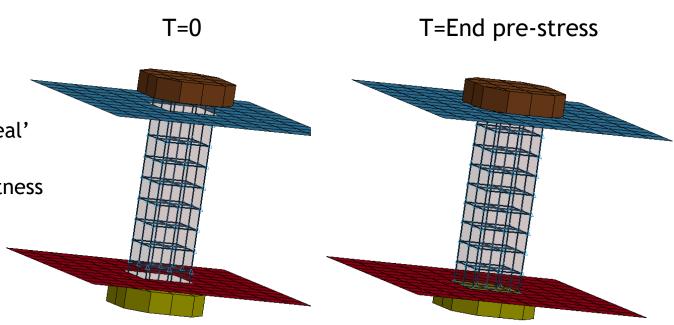

- Progress in LS-DYNA
 - IZSHEAR=0
 Prescribe the normal stress, other terms=0
 - IZSHEAR=1
 Prescribe normal stress in element, other terms from material response
 - IZSHEAR=2
 Prescribe average normal stress in section, other terms from material respnse
- Still only applied on one element row along shank

Problems with one row of elements

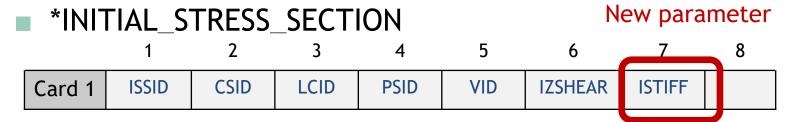

- One element row will be distorted in order to induce requested stress state. Problems occur if:
 - High stress state wanted
 - Plastic deformation of bolt shanks
 - Small element sizes
 - Gaps in model

One row of element work-around for pre-tension

- Manually account for pre-tension distortion: Make the layer of elements 'longer'
 - Need to know of much distortion there will be in advance...



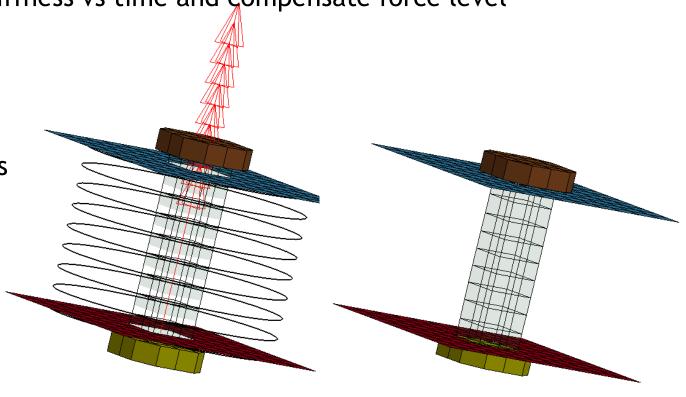
Courtesy Karajan et al.


Distribute the deformation along the shank - manually

- Double defined elements
 - DATABASE_CROSS_SECTION_SET
 - Small stiffness to extra elements
 - How large stiffness?
 - Too large → affects stress level in 'real' elements.
 - Too small → affects numerical robustness
 - Treatment of failed elements?

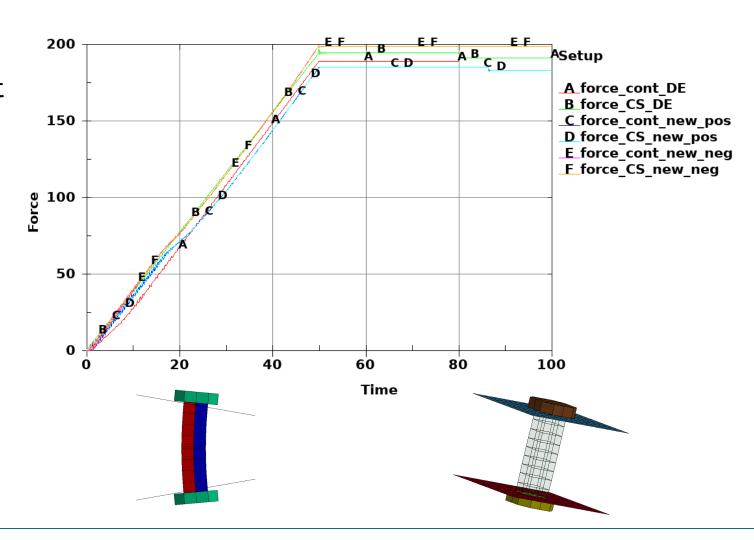
Basic input pre-stressing

Elements selected by being in partset and touched by the cross-section


ISTIFF

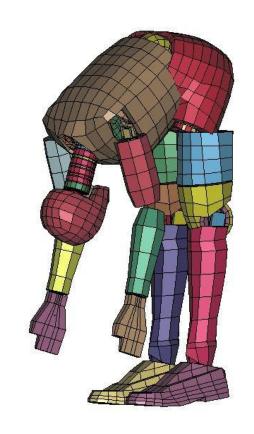
- Positive LCID for stiffness fraction as function of time
- Negative |LCID|for stiffness fraction as function of time with correction

Current ISTIFF implementation in LS-DYNA


- INITIAL_STRESS_SECTION
 - ISTIFF>0 → LCID for ghost element stiffness vs time
 - ISTIFF<0 \rightarrow LCID for ghost element stiffness vs time and compensate force level
- DATABASE_CROSS_SECTION_PLANE
 - One for each prescribed element row
 - Works for 1-point integrated elements

Force levels obtained for different options of ISTIFF

- Force should be ~200
 - DE→ Double elements manually
 - Cont → measure force in contact
 - CS → measure force in crosssection
 - A/B curves shows jump when double elements are deleted.
 - C/D curves with ISTIFF>0 shows too low achieved force level
 - E/F curves with ISTIFF<0 shows great results


Future investigations for ISTIFF options

- Industrial environment
- Appearance of stiffness curve for ISTIFF
 - Time frame?
 - How to apply pre-stress?
- Eroding elements?
- Poisson's ratio effects?
- User friendliness of implementation to be improved.
- Available in R12 needs to be tested by user applications.

Thank you!

