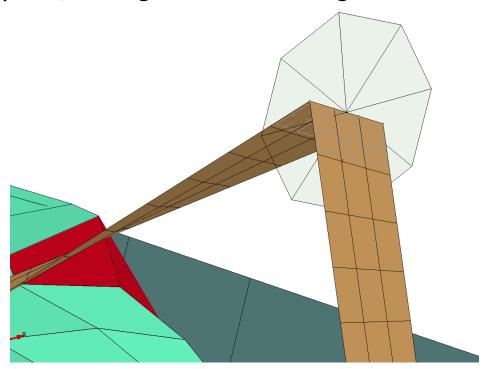
Belt modelling in LS-DYNA

A review of new features for belt modelling in LS-DYNA

Klas Engstrand, DYNAmore Nordic Webinar 2020-09-03

Paper

- Presentation held at the 16th International LS-DYNA® Users Conference (Virtual Event, 2020)
- Paper: https://www.dynalook.com/conferences/16th-international-ls-dyna-conference/aerospace-01-2/t1-2-b-aerospace-148.pdf
- Contributors:
 - Autoliv: Mikael Dahlgren, Abhiroop Vishwanatha, Anurag Soni
 - Ansys/LST: Isheng Yeh
 - DYNAmore Nordic: Klas Engstrand, Jimmy Forsberg


Outline

- Background
- Current issues with 2D belts
- Coating functionality
- Results
- Input parameters when using coating
- Other new features for 2D belts
 - Orthotropic membrane material behavior
 - Strain rate effects
 - Orthotropic friction properties (SOFT=2 contact)
- Conclusions
- Future

Background

- Belt modelling has in the past and the closest future included sliprings, which are points in space where the belt elements pass through
- Typically these points are located at sharp directional changes in the belt routing, e.g. B-pillar, D-ring and buckle tongue

Background

- Modelling physical sliprings is also possible, but the contact situation put requirements on element size and timestep size in the simulation model
- Hence the use of sliprings is still standard in most automotive simulations
- Belt modelling in LS-DYNA has evolved over time from 1D seatbelts to 2D seatbelts and hybrids variations
- A risk with hybrid belts is to run out of belt elements at sliprings, which will affect the results and likely cause an error termination

Background

- Currently 2D belt elements are frequently used and recommended
- 2D belt elements is a combination of 1D-belt elements along the length direction of the belt and 2D membrane elements made of *MAT_FABRIC
- The 2D membrane elements are made internally by LS-DYNA from *MAT_SEATBELT input
- Both 1D and 2D belt elements are assigned *MAT_SEATBELT, which is the only material compatible with sliprings
- It is the slipring functionality that inhibits users from using an ordinary element and material of their own selection to model the belt

Current issues with 2D belts

- Today, crash simulations that include a belted dummy are versatile
- It may include airbags, out of position occupants, secondary impact etc
- To meet the requirements dummy models get more refined and are discretized with decreasing element size
- In order to capture all effects in the crash, and still use sliprings, a decision was made to extend the 2D belt functionality in LS-DYNA

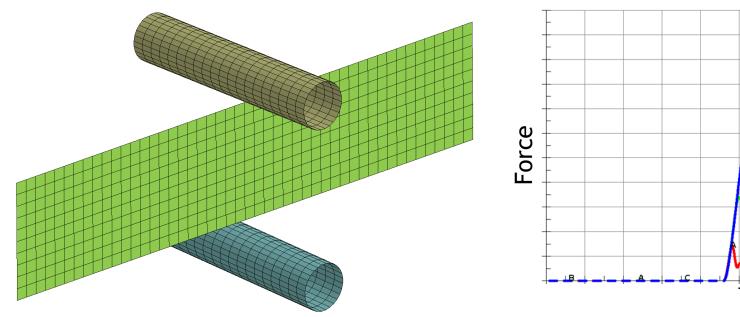
Current issues with 2D belts

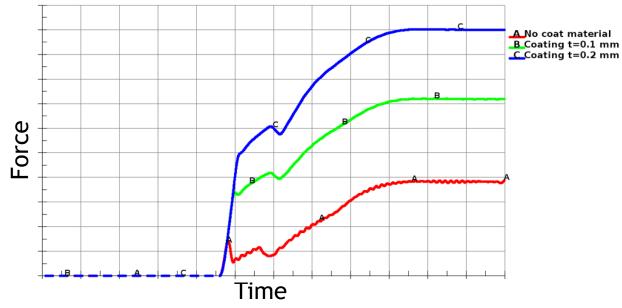
- A first step was to decrease the element size of the belt to match dummy models, which would give better belt-to-dummy interaction
- However, decreasing the element size of a 2D belt will mean that it will collapse more easily since 2D belt elements (and 1D) are membrane and does not carry bending loads
- A decision was therefore made to port the coating functionality of *MAT_FABRIC to *MAT_SEATBELT_2D

Additional	card for I							
Card 7	1	2	3	4	5	6	7	8
Variable	LCAA	LCBB	Н	DT		EC0AT	SC0AT	TCOAT
Туре	1	1	F	F		F	F	F
						•	•	•

*MAT_FABRIC coating

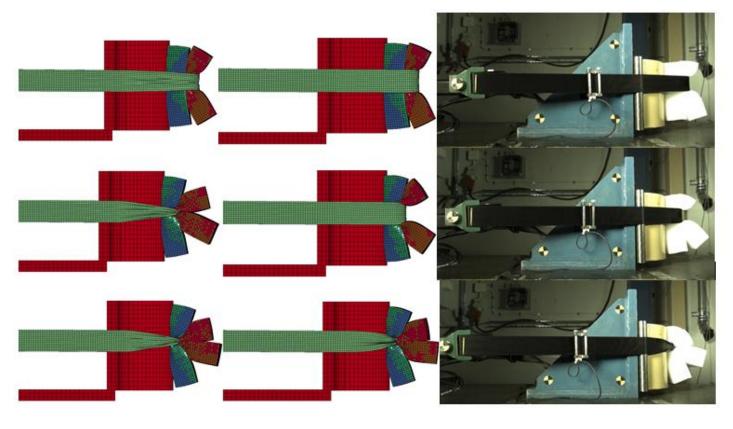
Coating functionality


- In *MAT_FABRIC coating can be added to the membrane elements if FORM=-14 is used
- The new extension of *MAT_SEATBELT_2D in LS-DYNA utilize the coating functionality of MAT_FABRIC, FORM=-14
- The coating can be visualized as an added layer of elasto-plastic material on the surfaces of the membrane element
- This new layer enables the membrane to transfer bending loads



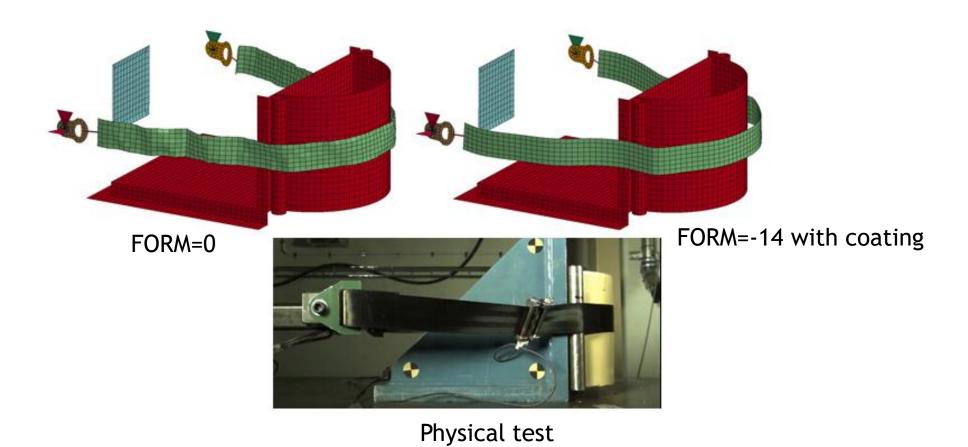
Coating functionality

- The isotropic elasto-plastic hardening properties of the coating are defined by thickness,
 Young's modulus and yield strength parameters
- A proposed set-up for determining the parameters are shown below. The belt should be loaded in tension at a typical load level found during crash

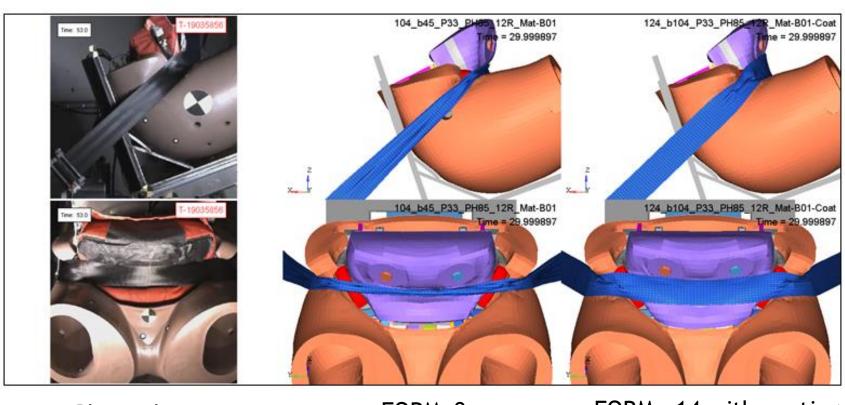


- The two major results achieved by adding coating to the belt are
 - 1) improved performance in bending over the width of the belt
 - 2) more stable unloading behavior
- The effect becomes more obvious if the belt is finely meshed
- Added coating in combination with finer mesh belt clearly improves the interaction between belt and dummy

Loading of belt into foam blocks at three instants in time


FORM=-14 with coating

Physical test



After peak load behavior

Belt-to-dummy interaction at 30 ms into the event

FORM=0

FORM=-14 with coating

Input parameters when using coating

*SECTION_SHELL

	1	2	3	4	5	6	7	8
Card 1	SECID	ELFORM	SUP	NID	POPI	QIV (IRID	ICOMP	SETVP
Card 2	T1	T2	Т3	T4	MOE	MAREA	>>0	EDGSET
Card 3	B1	B2						

- When using FORM=-14 set ICOMP=1 (it will invoke Card 3)
- Set B1=0 and B2=90
- The under-integrated membrane element (ELFORM=5) is recommended
- T1 is the thickness of the belt

Input parameters when using coating

*MAT_SEATBELT_2D

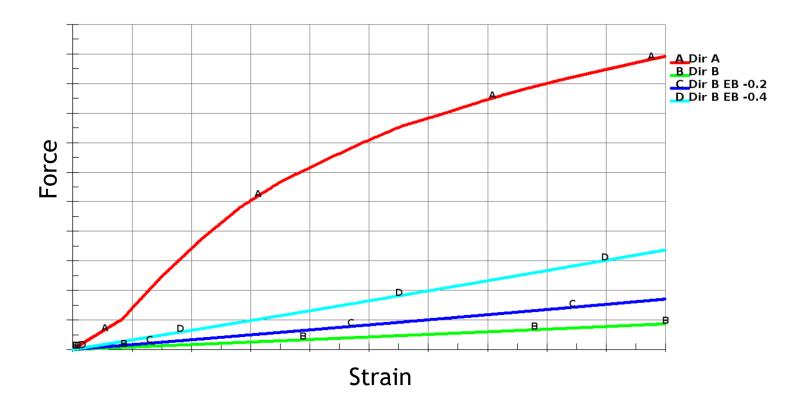
	1	2	3	4	5	6	7	8
Card 1	MID	MPUL	LLCID	ULCID	LMIN	CSE	DAMP	
Card 2	$>\!\!<$	><	><	\ <u>\</u>	><	>	> <	
Card 3	P1DOFF	FORM	ECOAT	TCOAT	SCOAT	EB	PRBA	PRAB
Card 3	GAB							

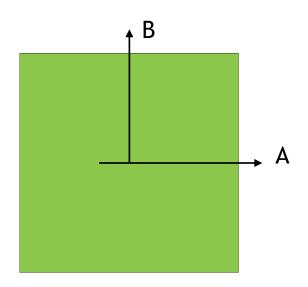
- FORM=-14 for coating functionality
- It is recommended to use all three parameters E, T and SCOAT for coating
- ECOAT Young's modulus of coat material
- TCOAT Thickness of coat material
 - Coating will add to membrane in-plane stresses unless TCOAT is set to a negative value
- SCOAT Yield stress of coat material

Other new features for 2D belts

- Orthotropic membrane material behavior
- Strain rate effects
- Orthotropic friction properties

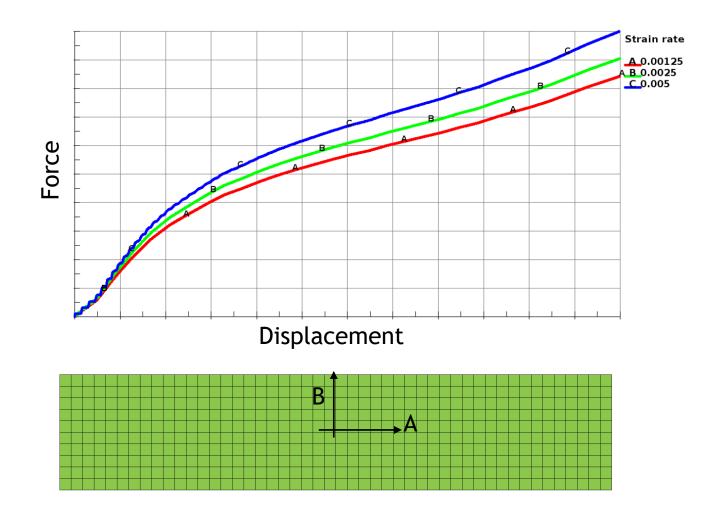
Orthotropic membrane material behavior


- A real belt has orthotropic membrane properties
- With the new parameters EB, PRAB, PRBA and GAB on *MAT_SEATBELT_2D the user can control the material properties to be applied in the perpendicular direction of the 2D belt


*MAT_SEATBELT_2D

	1	2	3	4	5	6	7	8
Card 1	MID	MPUL	LLCID	ULCID	LMIN	CSE	DAMP	
Card 2	\nearrow	\times	><	AC		NA NA		
Card 3	P1DOFF	FORM	ECOAT	TCOAT	SCOAT	EB	PRBA	PRAB
Card 3	GAB							

Orthotropic membrane material behavior



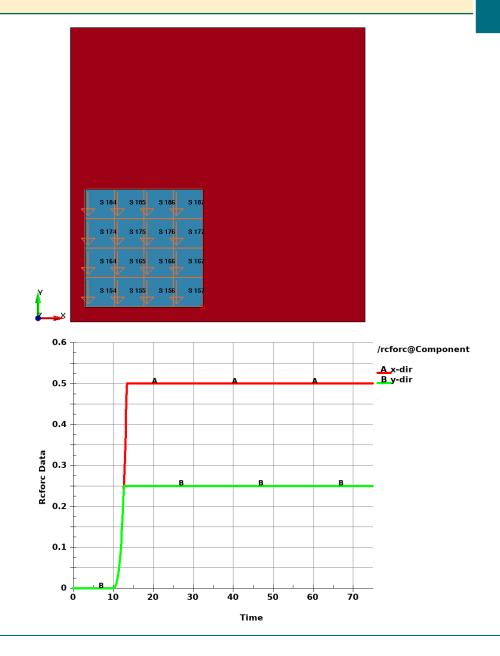
Strain-rate effects

- Strain-rate effects has been available for 1D belt elements
- Recently strain-rate dependency was made available also for 2D belt elements
- It is applied in the length direction of the belt only
- Strain-rate effects enables to capture the behavior and injury levels at different impact speeds
- Strain-rate dependency is applied by referencing a table ID on LLCID (MAT_SEATBELT_2D)

Strain-rate effects

Orthotropic friction properties

- A new option for "ORTHO_FRICTION" when using SOFT=2 contact
- If master surface static properties are set to zero for both the 1 and 2 direction, then the slave surface properties and sliding direction on the slave surface is used to determine Coulomb friction values
- The zeroed values must be FS1_M, LC1_M, FS2_M, and LC2_M



Orthotropic friction properties

Slave side is belt

*CO	NTACT_AUT	DMATIC_SUB	PACE_TO_SU	RFACE_ORTH	HO_FRICTION	I_ID		
\$#	cid							title
		lt-co-dummy						
\$#	ssid	msid	sstyp	mstyp	sboxid	mboxid	spr	mpr
.		2	,U	U	,U	U	. 0	0
\$#	fs	fd	dc	νc	vdc	penchk	bt	dt
.	0.0	0.0	0.0	0.0	10.0	0	0.0	0.0
\$#	sfs	sfm	sst	mst	sfst	sfmt	fsf	vsf
A.11	1.0	1.0	1.0	1.0	0.0	0.0	0.0	0.0
\$#	fs1_s	fd1_s	dc1_s	vc1_s	lc1_s	oacs_s	lcfs	lcps
A.11	0.25	0. 25	0.0	0.0	1 0	U	U	0
\$#	fs2_s	fd2_s	dc2_s	vc2_s	lc2_s			
A 11	0.5	0.5	0.0	0.0	U		1.6	1
\$#	fs1_m	fd1_m	dc1_m	vc1_m	lc1_m	oacs_m	lcfm	lcpi
ο.и	0.0	0.0	0.0	0.0	0	U	U	T T
\$#	fs2_m	fd2_m	dc2_m	vc2_m	1c2_m			
سام	0.0	0.0	0.0	0.0	U	double	h	
\$#	soft 2	sofscl 0.0	lcidab N	maxpar 0.0	sbopt 3.0	depth	bsort 1	frefrq
\$#	penmax	thkopt	shlthk	snlog		i2d3d	sldthk	sldstf
φ#	0.0	ankope 0	211177117	311100	isym O	12030	0.0	0.0
\$#		ignore	dprfac	dtstif	unused	unused	flangl	cid_rcf
Q#	igap N	1911016	0.001	0.0	aiuseu	aiasea	0.0	010_101
\$#	q2tri	dtpchk	sfnbr	fnlscl	dnlscl	tcso	tiedid	shledq
Q#	42011	0.0	0.0	0.0	0.0	0	OTEGIA	1
	,	0.0	0.0	0.0	0.0	0	0	1

Master friction properties are zero

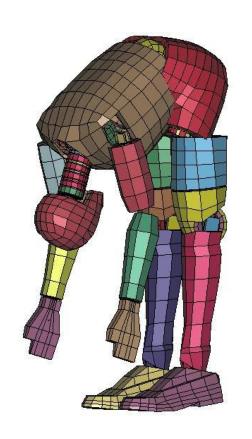
Conclusions

The new implementation of *MAT_SEATBELT_2D allows for

- orthotropic membrane behavior (R12.0)
- isotropic bending behavior (R10_dev, R11_dev, R12.0)
- strain-rate effects (R12.0)
- use of sliprings

By using coating functionality for 2D belt elements the following was found

- 1) improved performance in bending over the width of the belt
- 2) more stable unloading behavior
- A new feature allows for orthotropic friction based on belt directions (R12_dev)


Future

- It has been foreseen that in the future and for detailed analysis of sliprings a traditional model utilizing normal contact definition will be used
- Then the use of *MAT_SEATBELT will not be mandatory
- Hence a need for a coupled material/element model to separate bending/tension will be desirable
- Currently this is accomplished with double layer elements. Membrane/shell for inplane/bending properties, respectively

Thank you!

