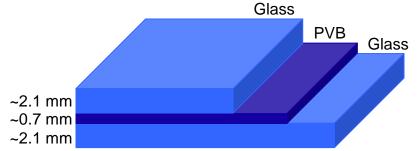
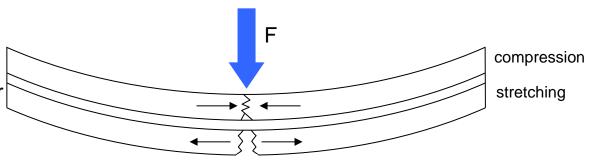
Glass modeling in LS-DYNA

Dr. Andrea Erhart DYNAmore GmbH, Stuttgart April 2020

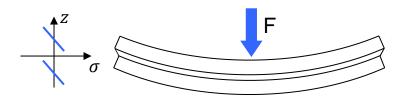
Content

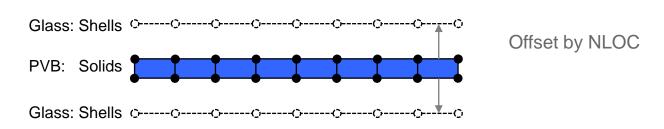

- Common approach to model laminated safety glass
- material model *MAT_GLASS (*MAT_280)
 - Theory
 - Keyword *MAT_280
- PVB-layer
- application


Laminated safety glass

- Two types of safety glass commonly used:
 - Tempered glass → side windows
 - Laminated glass → windshields, panorama sunroofs

- Laminated glass consists of 3 layers
 - 2x glass
 - PVB interlayer


- Glass fragments are bonded
 - → Difficult mechanical behavior

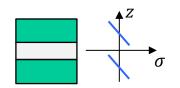


Modelling of laminated safety glass

- Discretization:
 - PVB: transverse shear deformation important
 - → solid elements
 - Glass: shell elements

- Contact between layers: Shared nodes
- Offset the glass layers by NLOC parameter

*SE	*SECTION_SHELL										
\$	SECID	ELFORM	SHRF	NIP	PROPT	QR/IRID	ICOMP	SETYP			
	103	2	1.0	7	3.0	0.0					
\$	T1	T2	T3	T4	NLOC	MAREA					
	2.1	2.1	2.1	2.1	-1.00						


Modelling of laminated safety glass

Discretization PVB:

- solid elements
- 1 solid element over thickness
- elform 1 (under-integrated),elform -1 or -2 (for poor aspect ratio) or elform 2 (fully integrated)
- hourglass stabilization HGID=6 and qh=0.5-0.8

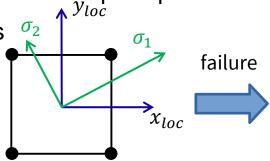
Discretization glass layers

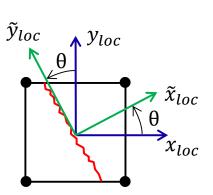
- shell elements
- e.g. elform = 2 (under-integrated) ... for *MAT_GLASS
- hourglass stabilization HGID=4
- sufficient number of integration points over thickness

Content

- Common approach to model laminated safety glass
- material model *MAT_GLASS (*MAT_280)
 - Theory
 - Keyword *MAT_280
- PVB-layer
- application

Material model *MAT_GLASS (*MAT_280)


- Smeared fixed crack material model
- Stress based failure criteria with tension compression asymmetry
- Treatment of failure without deleting elements
- Crack closure and opening effects

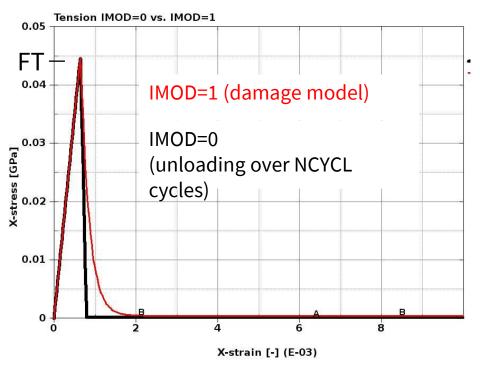

- Further: Easy to use, low computation times, usable in crash simulations
- For shell and thick shells elements (tshell, elform 1,2,6) and explicit analysis

Detection of failure – failure criteria

- Failure criteria: stress based: Rankine, Mohr-Coulomb, Drucker-Prager
- Failure:
 - Compressive failure: Material is 'crumbled'
 - Tensile failure: Single crack occurs
- Tensile Failure:
 - Crack direction perpendicular to the first principal stress
 - Local crack coordinate systems

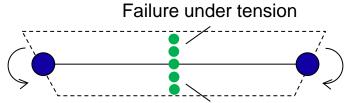
- Second crack can occur, orthogonal to the first crack
- Cracks can open and close independently

 σ_1


Softening

After a tensile crack is detected:

- Orthotropic material behavior in crack coordinate system
- Stress components which can no longer be carried are lowered in NCYCR cycles or with damage model


After compressive failure:

 All stress components are lowered in NCYCR cycles or with damage model

Element failure

- If a certain number of IP in one element failed, whole element will fail
- The crack direction in the IP which failed first sets the direction for the whole element
- Crack strain is computed individually in each IP

Failure under compression through element failure

Card 1	1	2	3	4	5	6	7	8
Variable	MID	RO	Е	PR			IMOD	ILAW
Туре	A8	F	F	F			F	F
Card 2	1	2	3	4	5	6	7	8
Variable	FMOD	FT	FC	AT	ВТ	AC	ВС	FTSCL
Туре	F	F	F	F	F	F	F	F
Card 3	1	2	3	4	5	6	7	8
Variable	SFSTI	SFSTR	CRIN	ECRCL	NCYCR	NIPF		
Туре	F	F	F	F	F	F		

parameter from R9.0 parameter from R10.0 parameter from R9.2 parameter from R11.0

Optional card.

Card 4	1	2	3	4	5	6	7	8
Variable	EPSCR	ENGCRT	RADCRT	RATENL	RFILTF			
Туре	F	F	F					

*MAT_GLASS (Parameters from R9.0)

FMOD: Failure model (0.: Rankine (default), 1.: Mohr-Coulomb, 2.: Drucker-Prager)

FT: Tensile strength

FC: Compressive strength

SFSTI: Stiffness scale factor in case of failure

SFSTI = 0.1 means: stiffness is reduced to 10% of elastic stiffness at failure

SFSTR: Stress scale factor in case of failure

NCYCR: Number of cycles in which the stress is lowered to SFSTR * failure stress

CRIN: Flag for crack strain initialization:

0.: initial crack strain is strain when crack occurs (default)

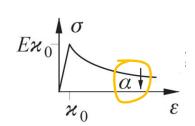
1.: initial crack strain is 0.0

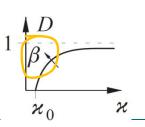
ECRCL: Crack strain from which on the crack is considered as completely closed

NIPF: Number of failed integration points to fail all through thickness integration points

*MAT_GLASS (Parameters from R10.0)

stress reduction with damage model


- IMOD: Flag to choose unloading procedure, when critical stress is reached:
 - EQ.0.0: Softening in NCYCR load steps (default),
 - EQ.1.0: Damage model for softening
- ILAW: EQ.0.0: same damage evolution for tensile and compressive failure (default):


$$D = 1 - \frac{\kappa^0}{\kappa} \left(1 - \alpha_{t,c} + \alpha_{t,c} e^{-\beta_{t,c} (\kappa - \kappa^0)} \right)$$

EQ.1.0: damage evolution for tensile failure:
$$D = 1 - \frac{\kappa^0}{\kappa} \left(1 - \alpha_t + \alpha_t e^{-\beta_t (\kappa - \kappa^0)} \right)$$
 damage evolution compressive failure:
$$D = 1 - \frac{\kappa^0}{\kappa} \left(1 - \alpha_c \right) - \alpha_c e^{-\beta_c (\kappa - \kappa^0)}$$

damage evolution compressive failure:
$$D = 1 - \frac{\kappa^0}{\kappa} (1 - \alpha_c) - \alpha_c e^{-\beta_c (\kappa - \kappa^0)}$$

- tensile damage evolution parameter α_t . $0 \le AT \le 1.0$ AT:
- BT: tensile damage evolution parameter β_t . $BT \geq 0.0$
- compressive damage evolution parameter α_c . $0 \le AC \le 1.0$ AC:
- BC: compressive damage evolution parameter β_c . $BC \ge 0.0$

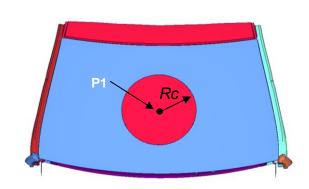
Increasing of tensile strength for first tensile crack (from R9.2):

FTSCL: If RATENL=0.:

Factor, that scales tensile strength FT until the first tensile crack is detected.

Thereafter, the tensile strength is set to FT.

Element deletion (from R11.0)


■ EPSCR: >0: maximum effective strain strain $\varepsilon_{eff} = \sqrt{\frac{2}{3}} \varepsilon_{ij} \varepsilon_{ij}$ for element deletion

<0: |EPSCR| is critical crack opening displacement (R11.1 needed)

Nonlocal failure criterion (from R11.0)

ENGCRT: Critical energy for nonlocal failure criterion

RADCRT: Critical radius for nonlocal failure criterion

Nonlocal strain rate dependent tensile strength (from R11.0.0):

RATENL: quasi-static strain rate threshold value.

If RATENL≠0, the nonlocal strain rate dependent tensile strength

adaption is activated.

FTSCL: If RATENL≠0.:

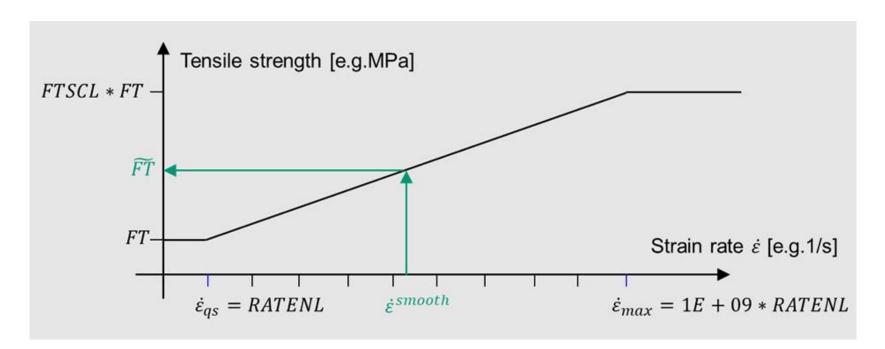
Factor, that scales tensile strength FT until the information of a neighbor

element is transmitted, that the neighbor-element is cracked

RFILTF: If RATENL ≠0.:

smoothing of effective strain rate for evaluation of current tensile strength:

 $\dot{\varepsilon}^{smooth} = RFILTF * \dot{\varepsilon}^{smooth,n} + (1.-RFILTF) * \dot{\varepsilon}^{n+1}$


RFILTF=0.: no smoothing

RFILTF=0.99: strong smoothing

Nonlocal strain rate dependent tensile strength (from R11.0.0):

• Initialization of all Integration points with tensile strength: $FT_{initial} = FT_{max} = FTSCL * FT$

At the moment: $\dot{\varepsilon}_{max}$ is not a material parameter

Nonlocal strain rate dependent tensile strength (from R11.0.0):

 If one integration point in an element recognizes failure, the tensile strength in the neighbor-elements is adapted to

$$\widetilde{FT} = \begin{cases} FT_{min} = FT & if & \dot{\varepsilon} \leq RATENL \\ FT + (FTSCL * FT - FT) * \frac{\log(\dot{\varepsilon}/\dot{\varepsilon}_{qs})}{\log(\dot{\varepsilon}_{max}/\dot{\varepsilon}_{qs})} & if & RATENL \leq \dot{\varepsilon} \leq \dot{\varepsilon}_{max} \end{cases}$$

$$FTSCL * FT & if & \dot{\varepsilon} \geq \dot{\varepsilon}_{max}$$

History variables – post-processing:

- history variable 1: Crack Flag
 - 1 = one tensile crack in element (failure under tension)
 - 2 = two tensile cracks in element (failure under tension)
 - -1 = failure under compression
- History variable 2:
 - 1st crack: direction of maximum principle stress (angle in rad) related to element direction (direction of first tensile crack is perpendicular to this direction)
- History variable 3:
 2nd crack: direction of 2nd principle stress (angle in rad) related to element direction (direction of second tensile crack is perpendicular to this direction)

History variables – post-processing:

- history variable 4:failure criterion value
- History variable 7: (from R11.0.0)
 currently used tensile strength if RATENL≠0.
- History variable 8: (from R11.0.0)
 current strain rate

Content

- Common approach to model laminated safety glass
- material model *MAT_GLASS (*MAT_280)
 - Theory
 - Keyword *MAT_280
- PVB-layer
- application

Remarks to PVB behavior

- strongly rate dependent nonlinear elastic
- Hysteresis
- Temperature dependent
- *MAT_SIMPLIFIED_RUBBER (*MAT_181) take care about really smooth curves and smooth derivative in LC/TBID for nonlinear-elastic rate dependent stress-strain behavior
- *MAT_HYPERELASTIC_RUBBER (*MAT_077)

Content

- Common approach to model laminated safety glass
- material model *MAT_GLASS (*MAT_280)
 - Theory
 - Keyword *MAT_280
- PVB-layer
- applications

