A brief review of the continuation of analyses in LS-DYNA using restart, dynain file and *CASE

Restart Input Data

In general three categories of restart actions are possible with LS-DYNA and are outlined in the following discussion: *CASE

1. A simple restart oc

```
1600 t 7.9950E-03 dt 5.00E-06 write d3plot file
                                                 d provides a way of running multiple LS-DYNA
1801 t 9.0000E-03 dt 5.00E-06 write d3plot file
                                                mitting a single input file. When *CASE comm
2000 t 1.0000E-02 dt 5.00E-06 write d3dump01 file
2000 t 1.0000E-02 dt 5.00E-06 flush i/o buffers
2000 t 1.0000E-02 dt 5.00E-06 write runrsf02 file
2001 t 1.0000E-02 dt 5.00E-06 write d3plot file
```

Webinar 2020-03-10

Klas Engstrand, DYNAmore Nordic Anders Jonsson, DYNAmore Nordic

Outline

- About continuation of analyses in LS-DYNA
- About restart
- Restart dump files
- Simple restart
- Small restart
- Full restart
- Sample 1: Apply a load on a prestressed model using full restart (explicit, mpp s R11.1.0)
- Sample 2: Apply a load on a prestressed model using the file dynain.lsda
 - Prestress is done implicit with double precision LS-DYNA (mpp d Dev).
 - Loading is done explicit with single precision LS-DYNA (mpp s Dev).
- Sample 3: The same as above but fully implicit and using *CASE.

About continuation of analyses in LS-DYNA

- A simulation can be continued in two ways:
 - Doing a restart from dump files of the initial simulation (d3dump, d3full etc.)
 - Using a dynain file from the initial simulation.
- A principal difference between a restart and a dynain approach is that
 - in a restart, the time continues from the previous analysis, but
 - using the dynain approach, the time starts from zero in all simulations.
- The above difference must be addressed when defining load curves and other time key points.
- Note that this presentation outlines the most common possibilities for continuation of analyses. Many options and possibilities are not covered.

About restart

- There are three types of restarts
 - Simple restart -> Continuation of an interactively stopped simulation with no changes.
 - Small Restart -> Continuation of a simulation where only specific changes are allowed.
 - Full restart -> Continuation of a simulation where more general changes are allowed.
- Prerequisites for restarts
 - Use the same LS-DYNA executable in the restart as in the original run.
 - Use the same number of CPU's in the restart as in the original run. (at least it increases the chances of success)
- Restarts are made from binary dump files.
- A dump file contains the complete record (stress, strain, deformation, contact forces, velocity etc) of a simulation at a specific time.

Dump files

- There are four types of dump files:
 - runrsf and d3dump (SMP LS-DYNA).
 - runrsf, d3dump, d3full and runfull (MPP LS-DYNA).
- d3dump/d3full files accumulate whereas runrsf are written over.
 - Note: one d3dump file per thread, whereas there is only one d3full file.
- runfull is equivalent to d3full but only written once, i.e. at termination.
- Dump files are written at cyclical interval according to *DATABASE_BINARY_RUNRSF (for runrsf) and *DATABASE_BINARY_D3DUMP (for d3dump and d3full).
- The number of runrsf files retained is controlled by the parameter NR in *DATABASE BINARY RUNRSF (default=1).

Dump files

Example:

*DATABASE_BINARY_RUNRSF \$# cycl nr 1000.0 2	beam O	np
*DATABASE_BINARY_D3DUMP \$# cycl nr 2000.0 0	beam O	np

```
0.0000E+00
percentage increase =
                                  = 5.000E-02
termination time
    200 t 9.9500E-04 dt 5.00E-06 write d3plot file
   400 t 1.9950E-03 dt 5.00E-06 write d3plot file
   600 t 2,9950E-03 dt 5,00E-06 write d3plot file
  1000 t 5.0000E-03 dt 5.00E-06 write runrsf01 file
   1000 t 5.0000E 03 dt 5.00E 00 flash 1/0 baffers
  1001 t 5.0000E-03 dt 5.00E-06 write d3plot file
  1201 t 6.0000E-03 dt 5.00E-06 write d3plot file
  1401 t 7.0000E-03 dt 5.00E-06 write d3plot file
  1600 t 7.9950E-03 dt 5.00E-06 write d3plot file
   2000 t 1,0000E-02 dt 5,00E-06 write d3dump01 file
   2000 t 1.0000E-02 dt 5.00E-06 write runrsf02 file
   2201 t 1.1000E-02 dt 5.00E-06 write d3plot file
  2401 t 1.2000E-02 dt 5.00E-06 write d3plot file
   2601 t 1,3000E-02 dt 5,00E-06 write d3plot file
  3000 t 1.5000E-02 dt 5.00E-06 write runrsf01 file
   3000 t 1,3000E-02 at 5,00E-06 flush 1/o buffers
   3001 t 1.5000E-02 dt 5.00E-06 write d3plot file
   3201 t 1.6000E-02 dt 5.00E-06 write d3plot file
   3401 t 1.7000E-02 dt 5.00E-06 write d3plot file
   3601 t 1.8000E-02 dt 5.00E-06 write d3plot file
   4000 t 2.0000E-02 dt 5.00E-06 write d3dump02 file
  4000 t 2,0000E-02 dt 5,00E-06 write runrsf02 file
   +001 c 2.0000c 02 ac 3.00c 00 write apploc file
```

= 0.0000E+00

```
adptmp car.k d3dump01.0000 d3dump04.0000 d3full01 d3full04 d3hsp d3plot02 d3plot05 kill_by_pid mes0000 runrsf01.0000 bg_switch cont_profile.csv d3dump02.0000 d3dump05.0000 d3full02 d3full05 d3plot0 d3plot03 d3plot06 load_profile.csv mkascii runrsf02.0000 binout0000 cont_profile.xy d3dump03.0000 d3dump06.0000 d3full03 d3full06 d3plot01 d3plot04 g1stat load_profile.xy runfull status.out
```

added mass

Dump files

- Dump files written by default (at termination, and after dynamic relaxation)
 - SMP: d3dump
 - MPP: d3dump and d3full
- By adding *DATABASE BINARY RUNRSF the following files are also written
 - SMP: runrsf
 - MPP: runrsf and runfull
- Extra SMP feature
 - d=nodump on the command line suppresses D3DUMP.
- Extra MPP features
 - *CONTROL MPP IO NOD3DUMP -> Suppresses output of d3dump and runrsf files.
 - *CONTROL_MPP_IO_NOFULL -> Suppresses output of d3full and runfull.
 - *CONTROL_MPP_IO_NODUMP -> Suppresses output of all dump files.

Simple restart

- A simulation has been stopped interactively (sw1, d3kil) and all we want now is to continue the simulation.
- No input changes are allowed.

Sample execution lines:

SMP: ls-dyna r=d3dump03 ls-dyna r=runrsf02

MPP: mppdyna r=d3dump03 mppdyna r=runrsf02

Small restart

- A simulation has been stopped interactively (sw1, d3kil) or by reaching termination time as specified on *CONTROL_TERMINATION.
- Now we want to continue the simulation but with some specific changes as explained by the manual, see chapter "Restart Input Data".

*CHANGE OPTION

*CONTROL_DYNAMIC_RELAXATION

*CONTROL_SHELL

*CONTROL_TERMINATION

*CONTROL_TIMESTEP

*DAMPING_GLOBAL

*DATABASE OPTION

*DATABASE_BINARY_OPTION

*DELETE OPTION

*INTERFACE_SPRINGBACK_LSDYNA

*RIGID_DEFORMABLE_OPTION

*STRESS_INITIALIZATION_{OPTION}

*TERMINATION_OPTION

*TITLE

*KEYWORD

*CONTROL CPU

*DEFINE OPTION

*SET_OPTION

Small restart

A small restart needs a dump file <u>and</u> a small input file with restart input.

Sample execution lines:

SMP: ls-dyna i=restart_input.k r=d3dump06 ls-dyna i=restart_input.k r=runrsf02

MPP: mppdyna i=restart_input.k r=d3dump06 mppdyna i=restart_input.k r=runrsf02

```
KEYWORD
CONTROL TERMINATION
   endtim
              endoyo
                         dtmin
                                   endeng
                                              endmas
                                                         nosol
*DATABASE BINARY D3PLOT
                                             psetid
   0.0001
    ioopt
*DELETE PART
                 id2
                                      id4
0
                                                id5
      īd1
                           id3
                                                           id6
                                                                      id7
                                                                                id8
*END
```

Sample of a restart input file

Full restart

- If many changes are desired a full restart may be the appropriate choice.
- A full restart require a dump file and a full restart input deck, i.e. a complete model.
 - Input for retained nodes, elements, parts, material, contacts, loads etc. is copied directly from the original input deck.
 - The retained input deck, that is copied from the original input deck, can be modified as desired.
 - New parts, materials, contacts, loads, etc. can be added.
 - The command *STRESS_INITIALIZATION must be specified in the full restart deck in order for pre-existing parts to be initialized.
 - Initialized stress, strain, displacement etc. for all parts which are carried over or, optionally, for only a subset of those parts.
- Do not change the element connectivity (mesh topology) of retained elements.

Full restart

- Undeformed coordinates of retained nodes should appear in the *NODE data of the restart input deck.
 - I.e. the coordinates will be initialized (updated) according to data saved in dump file.
- *DELETE commands are just for small restarts.
 - To eliminate parts and elements in a full restart, omit their *PART and *ELEMENT data, respectively, in the full restart deck.
- Do not use *INITIAL_VELOCITY for nodes carried over from the previous run.

 Use *CHANGE VELOCITY option to modify velocities of such nodes.
- Preexisting contacts that are to be retained should include the _ID option so that the contact ID number in the original input deck match those in the full restart deck.
- Note: *CONTACT_AUTOMATIC_GENERAL in a full restart deck is an exception in that it is treated as a brand new contact and is not initialized using data from d3full.

Full restart

Sample execution lines:

SMP: ls-dyna i=model_step2.k r=d3dump06 ls-dyna i=model_step2.k r=runrsf02

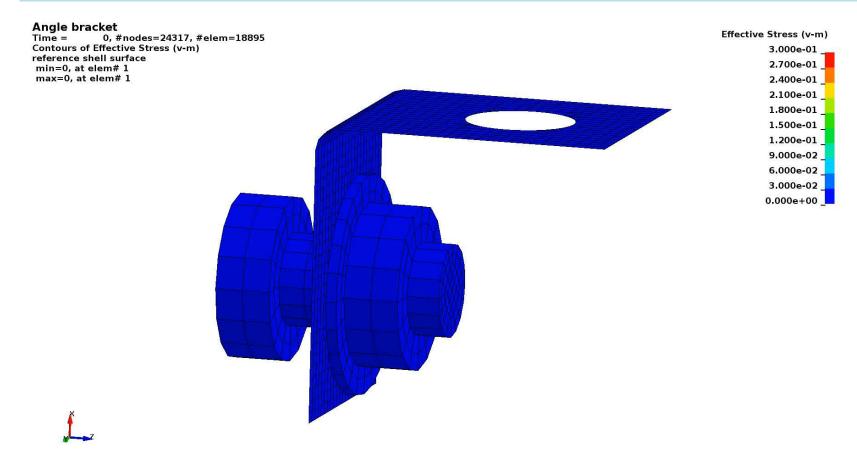
Note!

MPP: mppdyna i=model_step2.k n=d3full06 mppdyna i=model_step2.k n=runfull

*KEYWORD *STRESS INITIALIZATION *P1P1MFTFR l prmr2 rthood : \$# prmr1 val1 val2 val3 prmr3 prmr4 val4 rtbumper 3.0 1.0 *PART title material type # 3 (Kinematic/Isotropic Elastic-Plastic) mid adpopt secid eosid hgid tmid grav *SECTION SHELL secid elform propt 1.0 qr/irid setyp idof edgset nloc marea

Note!

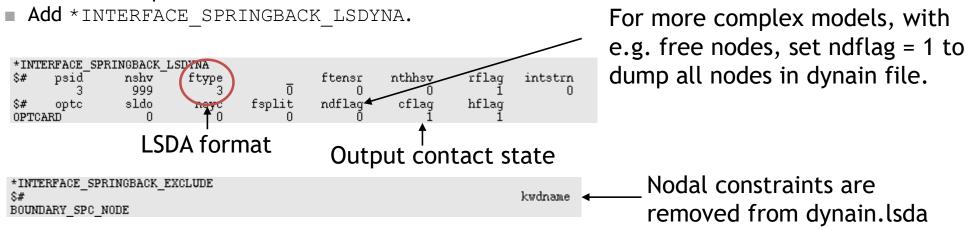
Sample 1: Apply a load on a prestressed model using full restart


Procedure

- 1. Run the prestress simulation in folder SIM00.
- 2. Copy entire folder SIM00 to a new folder SIM01 (so that the original prestress data is preserved in SIM00).
- 3. Go to folder SIM01.
- 4. Remove the prestress card from SIM00, i.e. *INITIAL_STRESS_SECTION. Increase the simulation time (*CONTROL_TERMINATION, ENDTIME). Add *STRESS_INITIALIZATION. Add a file where the load is defined using *INCLUDE_TRANSFORM. Start the restart simulation: mppdyna i=run_step2.key n=d3full01

Note: It was found that using an AUTOMATIC contact with SOFT=1 works fine. However, currently SOFT=2 is not initiated correctly. The bug is reported to LSTC.

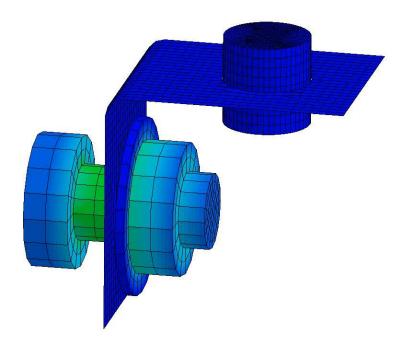
Sample 1: Apply a load on a prestressed model using full restart



Note: The board is here made invisible for demonstration purposes.

Procedure

- 1. Run the prestress simulation in folder SIM00.
 - In this sample the prestress is performed using the implicit solver, but it could have been performed with the explicit solver as well.
 - The contact must be a MORTAR type contact in order to output the contact state for the subsequent simulation.



- 2. Run the subsequent loading simulation in folder SIM01.
 - copy dynain.lsda from SIM00 to SIM01 and add it to the model deck, i.e. by *INCLUDE.
 - The model deck shall include everything except retained nodes and elements because they are already in dynain.lsda.
 - Note that the time will start at t=0.

Angle bracket

Ilme = 0
Contours of Effective Stress (v-m)
reference shell surface
min=0, at elem# 1000001
max=0.163365, at elem# 17485

Effective Stress (v-m)

3.000e-01

2.700e-01

2.400e-01

1.800e-01

1.500e-01

9.000e-02

6.000e-02

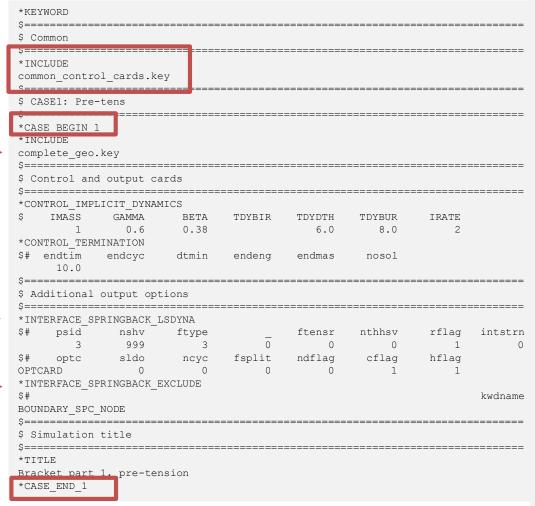
0.000e+00

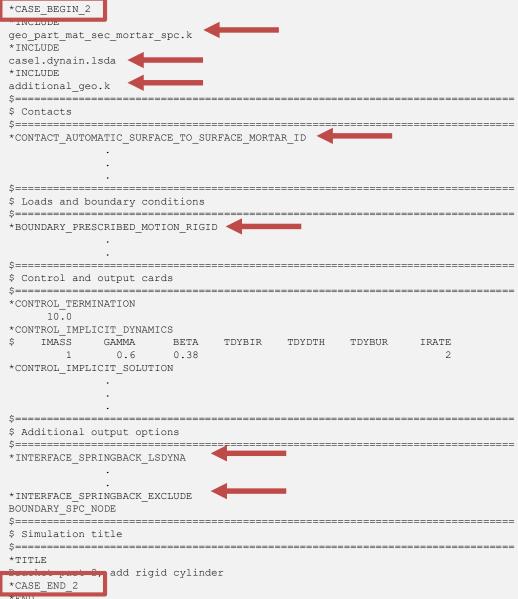
Note: The board is here made invisible for demonstration purposes.

- By the use of the dynain.lsda combined with the *CASE feature, analyses of subsequent load steps can be divided into a sequence of LS-DYNA analyses, one per load step.
- By the *CASE feature, the LS-DYNA analyses are run in a sequence automatically.

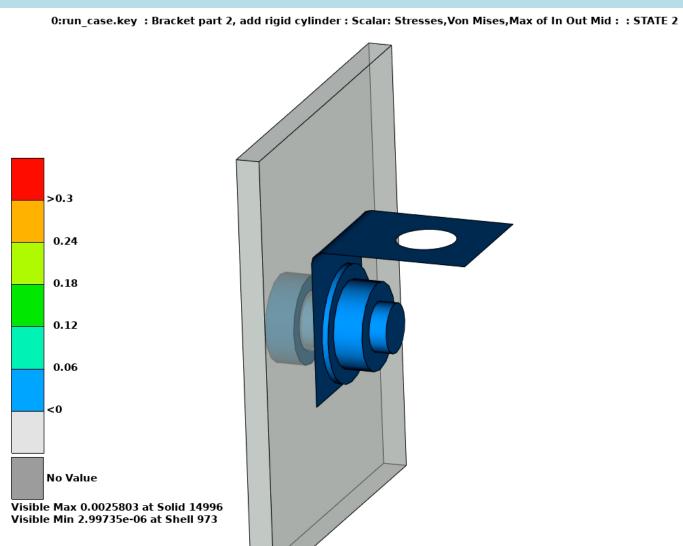
Procedure

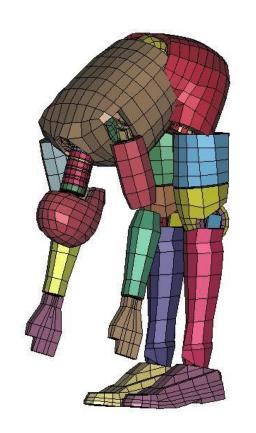
- The load step definition for load step *N* begins with the keyword *CASE_BEGIN_*N*
- Parts that have no previous data from dynain.lsda files should be included with their complete definition (*NODE, *ELEMENT_..., *PART, etc.) in keyword format
- For parts analyzed in previous *CASEs, the model deck shall include everything except retained nodes and elements because they are already in the dynain.lsda file.
- Information is propagated from *CASE_N to *CASE_N+1 by caseN.dynain.lsda, by use of *INCLUDE and *INTERFACE SPRINGBACK LSDYNA.
- The load step definition for load step N ends with the keyword *CASE END N


- Procedure (cont.)
 - For each *CASE, the time starts at t=0.
 - Output files from *CASE_N will have prefix caseN, for example caseN.d3hsp, caseN.d3plot, caseN.binout0000, etc. so all the analyses can be performed in the same directory.
 - Keywords outside *CASE_BEGIN / *CASE_END definitions will be common to all *CASEs.
 - NOTE! The word "case" must be present on the LS-DYNA command line for the *CASE procedure to work.


```
mppsub 4 ls-dyna-version i=run_case.k memory=201m memory2=50m(case)
```

- It may also be required to create a "fake" case1.dynain.lsda (depends on the submit script)
- Note: As from dev. LS-DYNA (SVN Version 142594) it is possible to run a subset of cases by e.g "case=10,20,47,82". The simulations will be run in increasing numeric order regardless of the order given on the command line.
- A keyword template follows:





,TIME 1.0000000E-01

Thank you!

