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Rigid Bodies in LS-DYNA

It is common practice to make use of rigid bodies in mechanical simulation as a mean to reduce computational 
cost and complexity; this by not doing unnecessary evaluation of history variables for parts where the 
deformations/stresses are insignificant or not of interest.  One example of this is sheet metal forming where the 
tooling often can be accurately be treated as rigid, another is automotive safety where the occupant can be 
treated as rigid in some cases. Rigid bodies are bypassed in the element processing and the mesh is only used to 
define inertial properties and geometry for contacts.

■ Examples of use
■ Tooling

■ Simplifying parts of a large model

■ Vehicle crash

■ Restraint system

■ Roadside safety evaluation

■ Mechanical joints

■ Rigid bodies can also be used to define joints between deformable parts

■ Boundary condition application

■ Distribute and apply load

■ Define constraints

■ Related to rigid bodies but not included in this webinar
■ Welds

■ Rigid/deformable switching

■ Rigidwall



*MAT_RIGID (020)

*MAT_RIGID

$#     mid        ro e        pr n    couple         m     alias

1   7.82e-9     2.1e5       0.3       0.0       0.0       0.0          

$#     cmo con1      con2

0.0         0         0

$#lco or a1       a2        a3        v1        v2        v3

0.0       0.0       0.0       0.0       0.0       0.0

Elastic material propertiesMaterial ID 3rd party coupling options, not dealt 

with in this webinar 

Constraint options
Local coord. Sys. for 

motion and output 

(Used in contact definition)

Constraint options
cmo Centre of Mass constraint Option
= 1 constraints in global system

= 0 no constraints

= -1 constraints in local system

con1 Constraint 1
= [translational constraint] if cmo = 1

= [local coord. sys. ID] if cmo = -1

con2 Constraint 2
= [rotational constraint] f cmo = 1

= [SPC constraint] if cmo = -1

Local coordinate system

lco Local Coordinate system

= [coord. sys. ID]

Alt. 

a1-v3 Local Coordinate system from vectors

a1-a3 = [nodes defining vector a]

v1-v3 = [nodes defining vector v]

Defaults to the principal coordinate system of the rigid body.
Will follow the rigid body motion.



*MAT_RIGID (020)

*MAT_RIGID

$#     mid        ro e        pr n    couple         m     alias

1   7.82e-9     2.1e5       0.3       0.0       0.0       0.0          

$#     cmo con1      con2

0.0         0         0

$#lco or a1       a2        a3        v1        v2        v3

0.0       0.0       0.0       0.0       0.0       0.0

Elastic material propertiesMaterial ID 3rd party coupling options, not dealt 

with in this webinar 

Constraint options
Local coord. Sys. for 

motion and output 

(Used in contact definition)

■ Assigned to a part just like any other mechanical material, the part will then be bypassed in the element procedure.
■ Also, remember that the rigid body formulation in itself is a constraint

■ Local coordinate systems gives orientation, origin is always the center of mass.

■ Avoid using global constraints (cmo = 1) with _LOCAL prescribed motion, this is not permitted at all in implicit analysis.

■ Take care when using local constraints (cmo = -1) and _LOCAL prescribed motion as conflicting motion and constraint can 

lead to unintended behavior; this will produce error termination in implicit analysis.

■ For constraints where the orientation is to be updated with time as the rigid body rotates it’s advised to use 
*BOUNDARY_PRESCRIBED_MOTION_RIGID_LOCAL instead, for a consistent behavior.



*CONSTRAINED_NODAL_RIGID_BODY[_SPC]       (CNRB)

■ Define a nodal rigid body which is a rigid body that consists of defined nodes.

■ * Sometimes if can be referred to as a part, sometimes not. Assigning unique PID for *PART and CNRB is good practice.

■ Mass properties are determined from the nodal masses and coordinates unless the _INERTIA option is used.

■ Lumped mass can be assigned to a node via *ELEMENT_MASS.

■ Commonly used to apply constraints or loads to deformable bodies, making sure nodes moved together.

■ plotel = [1|2] on *CONTROL_RIGID to generate parts for visual representation in d3plot. 

■ Don’t let the name fool you, won’t show up in spcforc.

*CONSTRAINED_NODAL_RIGID_BODY_SPC                                              

$#     pid cid nsid pnode iprt drflag rrflag

1         0         1         0         0         0         0

$#     cmo con1      con2

0.0         0         0Constraint options
(as for *MAT_RIGID)

Part* ID

Local coord. Sys. for 

motion and output 

Node set defining 

the rigid body

Optional node used 

for post processing Write CNRB data to rbdout [0|1]

Disp. & rot. nodal release options
( ≠0 is generally not recommended)



General comments on Rigid Bodies

■ If the model doesn’t contain any deformable bodies a reasonable timestep must be set 

manually.

■ Unexpected rigid body motion could be the result of a too large time-step

■ Cancellation errors can occur for rotations if the time-step is too small

■ A rigid part doesn’t have to be continuous, all nodes in one part will still move as one 

continuous part; take care when copying parts.

■ Two independent rigid bodies (PIDS) cannot share nodes unless merged.



*BOUNDARY_PRESCRIBED_MOTION_RIGID    (BPM)

*BOUNDARY_PRESCRIBED_MOTION_RIGID

$#     pid dof vad lcid sf       vid     death     birth

1         1         2         1       1.0         0 1.0000E28       0.0Part ID 

Vel/acc/disp flag
Degree of freedom, 1-8 

available for rigid bodies

Curve/function ID

Scale factor

Vector for arbitrary 

orientation (dof 4 & 8)

Birth and death of motion

dof Deegreee of freedom
= 1-3 x-z axis translation

= 4 translation along vector (vid)

= 5-7 x-z axis rotation

= 8 rotation around vector (vid)

vad Velocity/acceleration/displacement flag
= 0 velocity

= 1 acceleration

= 2 displacement

= 3 velocity as a function of displacement

= 4 relative displacement

■ Always act on the center of mass, if one wish for the BPM to act anywhere else 
than the geometrical center of mass use *PART_INERTIA.

■ Vector (vid)  is for motion in directions other than principle global direction 

and is fixed in time.

■ _LOCAL will use lco/cid (MAT_020/CNRB) to define orientation instead of the 

global system, orientation is updated with time.

■ It’s advised not to use global constraint cmo = 1 with the _LOCAL option.

■ For vad = 3 the abscissa in lcid is displacement instead of time.

■ For vad = 4 additional card 3 is needed to define displacement relation.

■ Birth defines at which time the BPM is activated, but it also offsets the time in 
lcid equal to that of the time of birth.

■ It is possible to use the _NODE option instead of _RIGID but in most cases a 

joint is a better option. If _NODE is used, only prescribe one node.



Example 1 – Translation and rotation using BPM

■ Prescribing translational and rotational motion with and without the _LOCAL option

■ Case was originally run in LS-DYNA R11.1



Summary on constraining Rigid Bodies

■ Don’t use *BOUNDARY_SPC_OPTION on rigid bodies! 

■ CMO in MAT_020 acts on CoM, convenient but can’t output reaction forces 

■ _SPC OPTION on CNRB acts on CoM, convenient but can’t output reaction forces 

■ *boundary_prescribed_motion_rigid acts on CoM, can output reaction forces ☺

■ Joints can be used as constraints and acts on nodes, can output reaction forces ☺



*PART_INERTIA

■ Rigid body mass and inertial properties can be modified through option _INERTIA

■ LS-DYNA will disregard from the computed mass properties

■ Centre of mass can be defined either via global coordinates or a node (that should be attached to the part in question)

■ It’s possible to assign the inertial tensor orientation with respect to a local coordinate system, this requires also optional card 6 of the *PART keyword

■ Initial velocities can also be specified with the _INERTIA option; however, note that this may be overwritten by *INITIAL_VELOCITY

■ Usage examples

■ Change part inertial properties, example: assign real inertial properties to a rigid vehicle made of shell elements

■ Change reference of prescribed motions and rigid body loads, only relevant with respect to rotation of rigid body

■ Similar for CNRB:s by using the _INERTIA option on the CNRB card

*PART_INERTIA

$#                                                                         title

$#     pid secid mid     eosid hgid grav adpopt tmid

1         1         1         0         0         0         0         0

$#      xc        yc zc tm      ircs nodeid

0.0       0.0       0.0       0.0         0         0

$#     ixx ixy ixz iyy iyz izz

0.0       0.0       0.0       0.0       0.0       0.0

$#     vtx vty vtz vrx vry vrz

0.0       0.0       0.0       0.0       0.0       0.0

Identical to 

regular *PART

Translational massGlobal coord. of 

center of mass

Flag for inertia orientation reference coord. system

Node ID defining 

center of mass

Inertia tensor

Initial velocities



Example 2 - BPM with *PART_INERTIA

■ Changing reference of prescribed motions and rigid body loads, only relevant with respect to rotation of 

rigid body

■ Case was originally run in LS-DYNA R11.1



*LOAD_RIGID_BODY

■ Force is applied at the center of mass or a moment 

around an axis in a global system.

■ As an option a local system can be defined for force 
or moment directions using cid, these directions are 

fixed in space.

■ Using dof = 4|8 and m1-m3 defines a force that 

follows the rigid body orientation in time (dir. t).

*LOAD_RIGID_BODY

$#     pid dof lcid sf       cid m1        m2        m3

0         1         0       1.0         0         0         0         0Part ID 

dof Deegreee of freedom
= 1-3 x-z axis translation

= 4 follower force (m1-m3)

= 5-7 x-z axis rotation

= 8 follower moment (m1-m3)

lcid Load curve/function ID 
> 0 force as function of time 

< 0 force as function of abs. disp.  (curve only)

Curve/function ID

Degree of freedom
Scale factor

Local system
Nodes defining follower 

force direction



Other constraints for Rigid Bodies

■ *CONSTRAINED_EXTRA_NODES_[ NODE | SET ], add nodes to a rigid body. Can be used 

to made part of deformable bodies rigid, or adding massless nodes for constraining purposes

■ *CONSTRAINED_RIGID_BODIES, constrain slave rigid bodies to a master rigid body, i.e. 

merge (only applicable to MAT_020 rigid bodies)

■ *CONSTRAINED_RIGID_BODIY_INSERT, constrain a slave rigid body to follow a master rigid 

body in all directions but one. Useful for example in metal forming with die inserts

■ *CONSTRAINED_RIGID_BODY_STOPPERS … Next slide!



*CONSTRAINED_RIGID_BODY_STOPPERS

■ Limit displacement or absolute position as a function of time

■ Limit slave parts’ position relative master part

■ Limit absolute velocity as a function of time

■ Limit can be applied in global or an arbitrary direction (fixed in time)

*CONSTRAINED_RIGID_BODY_STOPPERS

$#     pid lcmax lcmin psidmx psidmn lcvmnx dir vid

1         0         0         0         0         0         1         0

$#      tb        td

0.0 1.0000E21

Direction of 

limitation

Part ID 

Activation/deactivation time

Slave parts option

Curve for limitation of 

maximum absolute velocity

Vector for arbitrary 

direction
Curves for displacement 

limitation



Example 3 – Deformable body & force controlled rigid punch 

■ Stabilizing a force-controlled problem

■ Case was originally run in LS-DYNA R11.1



Short Comment on Rigid Bodies & Contacts

■ Elastic material data for rigid bodies used in contact, reasonable values are required

■ Contacts of type “Forming” will ignore master surface (rigid body) thickness 

■ Shell thickness offsets are always included in single surface, constraint-based, automatic 

surface-to-surface, and automatic nodes-to-surface contact types.

■ Contact behavior can be more sensitive to the contact stiffness when all bodies are rigid



All “fun and games” until you have rotations around multiple axis simultaneously…

?
X

Y

X

Y

Rotations performed with *BOUNDARY_PRESCRBIED_MOTION_RIGID 

are done so using an incremental update. This method can produce 

unexpected results when rotations are prescribed simultaneously 

about multiple axes. It should work reliably if the rotations are 

prescribed about one axis at a time.

There are other ways of achieving this…

*BOUNDARY_PRESCRIBED_MOTION_RIGID

$#     pid dof vad lcid sf       vid     death     birth

1         5         2         1       1.0         01.00000E28       0.0

*BOUNDARY_PRESCRIBED_MOTION_RIGID

$#     pid dof vad lcid sf       vid     death     birth

1         6         2         1       1.0         01.00000E28       0.0

XY

X

Y



Showcase - Erroneous multi axis rotation using BPM 

Rotation around x followed by z 

(correct final orientation)

Rotation around x & z simultaneously

(wrong final orientation)



The solution: *BOUNDARY_PRESCRIBED_ORIONTATION_RIGID_OPTION    (BPO)

■ Options

■ _ANGLES – angles and sequence; specify in which sequence rotations shall be applied

■ _DIRCOS – direction cosine; path independent 

■ _EULERP – Euler parameters (Quaternions); path independent 

■ _VECTOR – vector direction and spin; prescribes the direction of one arbitrary axis of the body and spin about that axis

■ Incompatible with *DEFINE_CURVE_FUNCTION

■ toffset offsets the time in curve data equal to that of the time of birth

■ A local coordinate system lco in *MAT_RIGID should be specified with *DEFINE_COORDINATE_NODES and flag = 1

■ Double precision can make a difference if the orientation isn’t as expected

■ All load curves must contain the same number of points and the data must be uniformly spaced.

In contrast to BPM,  *BOUNDARY_PRESCRIBED_ORIENTATION_RIGID implicitly prescribes an orientation as 

a function of time. Based on a reference state the angular offsets are computed exactly. This method 

produces correct results for any rotation sequence prescribed about any set of three unique axes.

*BOUNDARY_PRESCRIBED_ORIENTATION_RIGID_OPTION

$#    pidb pida intrp birth     death   toffset

1         0         1       0.0 1.0000E20         0

...

Part whose 

motion is 

prescribed 

This row is common for 

all orientation options

Part that defines the 

orientation reference

Method for time history 

curve interpolation 
(leave default)

Activation/deactivation time
Time offset flag 



EXAMPLE - ORIENTATION

■ The vector v is attached to the rigid body in its initial orientation, thereafter, the orientation of v affects the 
orientation of the rigid body. 

■ An overlayed spin(rad/s) of the rigid body, either constant or time-varied rotational velocity can be defined, 
this makes _VECTOR most suitable for cases where the orientation of only one axis is important.

■ Sensitive to time-step size and double precision can improve result

*BOUNDARY_PRESCRIBED_ORIENTATION_RIGID_VECTOR

$#    pidb pida intrp birth     death   toffset

1         0         1       0.0 1.0000E20         0

$#  lcidv1    lcidv2    lcidv3     lcids valspin

1         2         3         0       0.0

This row is common for 

all orientation options

Curves defining the x-z components 

of vector v as a function of time

Curve defining a time-varied overlayed

spin parallel to v, radians per unit time

Constant overlayed spin parallel to 

v, radians per unit time



EXAMPLE 4 – Multiple rotations the correct way (BPO_VECTOR)

■ One way of prescribing arbitrary orientation of rigid body

■ Case was originally run in LS-DYNA R11.1



Joints

■ Joints can be defined between two rigid bodies

■ Often a convenient way to model movement in mechanisms but also to achieve desired 
motion of a single rigid body (alterative to *PART_INERTIA)

■ *CONSTRAINED_EXTRA_NODES is often used to construct the joints

■ There are also driven joints of type _MOTOR



Joints

■ Penalty or Constraint formulation (Lagrange Multiplier) available

■ There is an option, _COOR_, that creates extra nodes automatically for all regular joints

■ Joint forces can be output in jntforc

■ Joint between deformable parts can in a way be created via CNRB:s

■ Failure of joint is an option (penalty type only)

■ Joint stiffness and damping can be defined via *CONSTRAINED_JOINT_STIFFNESS_OPTION



Joints types

■ *CONSTRAINED_JOINT_SPHERICAL

■ *CONSTRAINED_JOINT_REVOLUTE

■ *CONSTRAINED_JOINT_CYLINDRICAL

■ *CONSTRAINED_JOINT_PLANAR

■ *CONSTRAINED_JOINT_UNIVERSAL

■ *CONSTRAINED_JOINT_TRANSLATIONAL

■ *CONSTRAINED_JOINT_LOCKING

■ *CONSTRAINED_JOINT_TRANSLATIONAL_MOTOR

■ *CONSTRAINED_JOINT_ROTATIONAL_MOTOR

■ *CONSTRAINED_JOINT_GEARS

■ *CONSTRAINED_JOINT_RACK_AND_PINION

■ *CONSTRAINED_JOINT_CONSTANT_VELOCITY

■ *CONSTRAINED_JOINT_PULLEY

■ *CONSTRAINED_JOINT_SCREW



*CONSTRAINED_JOINT_REVOLUTE_ID

*CONSTRAINED_JOINT_REVOLUTE_ID

$#     jid                                                                 title

1                                                                      

$#      n1        n2        n3        n4        n5        n6       rps      damp

1         3         2         4         0         0       1.0       1.0

Joint ID

Nodes defining the joint, how 

depends on the joint type

Relative penalty 

stiffness Damping scale factor
(revolute & spherical only)

Note that nodes must be coincident



*CONSTRAINED_JOINT_ROTATIONAL_MOTOR_ID

parm parameter for joint function (default for motor)

lcid load curve for motor joints

type    vel/acc/disp for motor joints

r1      radius 1 for gear and pully types

h_angle helix angle in degrees for ex. worm gears

Load curve for rotational motor defines rotation in radians per time unit,

1-3 and 2-4 are coaxial but nodes doesn’t have to be coincident.

*CONSTRAINED_JOINT_ROTATIONAL_MOTOR_ID

$#     jid                                                                 title

2                                                                      

$#      n1        n2        n3        n4        n5        n6       rps      damp

1         2         3         4         5         6       1.0       1.0

$#    parm lcid type        r1   h_angle

0.0         1         0       0.0       0.0



EXAMPLE 5 – Joint and Motor Joint

■ Using joints to drive a small vehicle

■ Case was originally run in LS-DYNA R11.1



*CONSTRAINED_JOINT_STIFFNESS_OPTION

■ _GENERALIZED – stiffness and damping based on relative angle 

■ _FLEXION-TORSION – similar to _GENEREALIZED but the definition and behavior of the 

flexion-torsion is slightly different

■ _TRANSLATIONAL - stiffness and damping based on relative distance

■ _CYLINDRICAL - models the stiffness and damping of a pin in a hole with a gap

■ The energy that is dissipated with the joint stiffness option is written for each joint in jntforc

■ Can also limit joint movement

*CONSTRAINED_JOINT_STIFFNESS_OPTION

$#    jsid pida pidb cida cidb jid

1         1         0         0         0         0

...

(Stiffness option parameters)



A note on joints in implicit simulations

■ Possible to change a penalty joint type in implicit simulation

■ Suitable if for instance joint failure is desired

*CONTROL_IMPLICIT_JOINT

$#  ispher irevol icylin

1         1         1



*CONTROL_RIGID

*CONTROL_RIGID

$#     lmf jntf orthmd partm sparse    metalf plotel rbsms

0         0         0         0         0         0         0         0

$#  norbic gjadstf gjadvsc tjadstf tjadvsc

0       0.0       0.0       0.0       0.0

Only applies to explicit. If one has issues joint behavior the constraint 

formulation may solve the problem. However, penalty type is significantly 

faster. Also, functions such as joint failure require penalty formulation. 

The usage is also somewhat more convenient, for example constraint 

formulation doesn’t allow for duplicate constraints.

lmf Joint treatment option

= 0 penalty formulation

= 1 constraint formulation with Lagrange multipliers



*CONTROL_RIGID

*CONTROL_RIGID

$#     lmf jntf orthmd partm sparse    metalf plotel rbsms

0         0         0         0         0         0         0         0

$#  norbic gjadstf gjadvsc tjadstf tjadvsc

0       0.0       0.0       0.0       0.0

This affects mainly explicit (if IACC = 1 is jntf = 2 for implicit). The default 

joint behavior is for the relative angles between the two coordinate systems 

to be done incrementally. This is an approximation, in contrast to the total 

formulation where the angular offsets are computed exactly.

lmf Joint treatment option

= 0 penalty formulation

= 1 constraint formulation with Lagrange multipliers

jntf Generalized joint stiffness formulation

= 0 incremental update

= 1 total formulation

= 2 total formulation for implicit analysis



*CONTROL_RIGID

*CONTROL_RIGID

$#     lmf jntf orthmd partm sparse    metalf plotel rbsms

0         0         0         0         0         0         0         0

$#  norbic gjadstf gjadvsc tjadstf tjadvsc

0       0.0       0.0       0.0       0.0

Default is that the global mass matrix determines part mass distribution, this 

means that mass from other parts that share nodes in included.

lmf Joint treatment option

= 0 penalty formulation

= 1 constraint formulation with Lagrange multipliers

jntf Generalized joint stiffness formulation

= 0 incremental update

= 1 total formulation

= 2 total formulation for implicit analysis

orthmd Orthogonalize modes relative to each other

= 0|1 true | false, modes are already orthogonalized

partm Global mass matrix defines part mass distribution

= 0|1 true | false

Has to do with linearized flexible bodies 

to do, not dealt with in this webinar



*CONTROL_RIGID

*CONTROL_RIGID

$#     lmf jntf orthmd partm sparse    metalf plotel rbsms

0         0         0         0         0         0         0         0

$#  norbic gjadstf gjadvsc tjadstf tjadvsc

0       0.0       0.0       0.0       0.0

Option for sparse matrix multiply subroutines for the modal stiffness and 

damping matrices. This save a substantial number of operations if the matrix 

is truly sparse. However, the overhead will slow the multipliers for densely 

populated matrices. Full matrix multiplication often faster

lmf Joint treatment option

= 0 penalty formulation

= 1 constraint formulation with Lagrange multipliers

jntf Generalized joint stiffness formulation

= 0 incremental update

= 1 total formulation

= 2 total formulation for implicit analysis

orthmd Orthogonalize modes relative to each other

= 0|1 true | false, modes are already orthogonalized

partm Global mass matrix defines part mass distribution

= 0|1 true | false

sparse Sparse matrix multiplication for modal and damping 

= 0|1 false | true



*CONTROL_RIGID

*CONTROL_RIGID

$#     lmf jntf orthmd partm sparse    metalf plotel rbsms

0         0         0         0         0         0         0         0

$#  norbic gjadstf gjadvsc tjadstf tjadvsc

0       0.0       0.0       0.0       0.0

Fast update option of rigid body nodes, when active the rotational motion of 

all rigid bodies should be suppressed. Only applicable to sheet metal forming 

analysis using 2D and 3D shell elements.

lmf Joint treatment option

= 0 penalty formulation

= 1 constraint formulation with Lagrange multipliers

jntf Generalized joint stiffness formulation

= 0 incremental update

= 1 total formulation

= 2 total formulation for implicit analysis

orthmd Orthogonalize modes relative to each other

= 0|1 true | false, modes are already orthogonalized

partm Global mass matrix defines part mass distribution

= 0|1 true | false

sparse Sparse matrix multiplication for modal and damping 

= 0|1 false | true

metalf Fast update of rigid body nodes (suppress rotation)

= 0 full treatment 

= 1 fast update (applicable to metal forming using shell elements)



*CONTROL_RIGID

*CONTROL_RIGID

$#     lmf jntf orthmd partm sparse    metalf plotel rbsms

0         0         0         0         0         0         0         0

$#  norbic gjadstf gjadvsc tjadstf tjadvsc

0       0.0       0.0       0.0       0.0

plotel Generation of elements for visualization of CNRB:s

= 0 false

= 1 one part is generated

= 2 one part for each CNRB is generated

Automatic generation of *ELEMENT_PLOTEL for CNRB:s, used for visualization 

purposes in D3PLOT. WARNING! These get an automatic part ID, 1000000 alt. 

1000000 + n for each CNRB. Be wary of part ID conflicts 



*CONTROL_RIGID

*CONTROL_RIGID

$#     lmf jntf orthmd partm sparse    metalf plotel rbsms

0         0         0         0         0         0         0         0

$#  norbic gjadstf gjadvsc tjadstf tjadvsc

0       0.0       0.0       0.0       0.0

plotel Generation of elements for visualization of CNRB:s

= 0 false

= 1 one part is generated

= 2 one part for each CNRB is generated

rbsms Consistent mass scaling of rigid bodies

= 0|1 false | true
Generally not recommended. Imposes mass scaling on rigid bodies, but also 

calculates rotational inertia in a different way (default is a mean of shell 

element inertia)

Purpose: Rigid bodies connected to deformable elements can result in 

significant addition of inertia, such as in CNRB spotwelds in automotive. 

However, this option turns out to not be that effective and can cause more 

problems. 



*CONTROL_RIGID

*CONTROL_RIGID

$#     lmf jntf orthmd partm sparse    metalf plotel rbsms

0         0         0         0         0         0         0         0

$#  norbic gjadstf gjadvsc tjadstf tjadvsc

0       0.0       0.0       0.0       0.0

plotel Generation of elements for visualization of CNRB:s

= 0 false

= 1 one part is generated

= 2 one part for each CNRB is generated

rbsms Consistent mass scaling of rigid bodies

= 0|1 false | true

norbic Circumvent rigid body inertia check
= 0|1 false | true

During initialization, the determinant of the rigid body inertia tensor is 

checked. If it falls below a tolerance value, LS-DYNA issues an error message 

and the calculation stops. In some rare cases (for example with an 

unfavorable system of units), such tiny values would still be valid.



*CONTROL_RIGID

*CONTROL_RIGID

$#     lmf jntf orthmd partm sparse    metalf plotel rbsms

0         0         0         0         0         0         0         0

$#  norbic gjadstf gjadvsc tjadstf tjadvsc

0       0.0       0.0       0.0       0.0

plotel Generation of elements for visualization of CNRB:s

= 0 false

= 1 one part is generated

= 2 one part for each CNRB is generated

rbsms Consistent mass scaling of rigid bodies

= 0|1 false | true

norbic Circumvent rigid body inertia check
= 0|1 false | true

gjadstf

gjadvsc

tjadstf

tjadvsc Add global joint stiffness|damping
= 0.0 stiffness or damping value

*CONSTRAINED_JOINT_STIFFNES_[GENERALIZED|TRANSLATIONAL]

equivalent but globally for all joints. Can be useful to avoid zero energy 

modes in implicit analysis.



*BOUNDARY_PRESCRIBED_ACCELEROMETER_RIGID    (BPA)

■ Prescribe motion from accelerometer data 

■ A minimum of 3 accelerometers are needed (cannot all be collinear)

■ Curve data must contain the same number of points and must be uniformly spaced

■ Local axes of the accelerometers must be orthogonal

■ Coordinate system must be defined using *DEFINE_COORDINARE_NODES, with nodes 

attached to the rigid body whose motion is prescribed

*BOUNDARY_PRESCRIBED_ACCELEROMETER_RIGID

$#     pid

1

$#     nid cid lcidx lcidy lcidz

1         1         1         2         3

2         3         4         5         6

...

(Additional accelerometers)

Part ID

Node at origin of 

accelerometer 

Accelerometer 

orientation coord. sys. 

Load curves containing x, y, z  

local acceleration time histories
(1 row per accelerometer, minimum 3 rows)



EXAMPLE ACCELEROMETER

■ Prescribing motion from “experiment” accelerometer data

■ Case was originally run in LS-DYNA R11.1

■ Original head model replaced with a ball



Thank you!

Your LS-DYNA distributor and 

more


