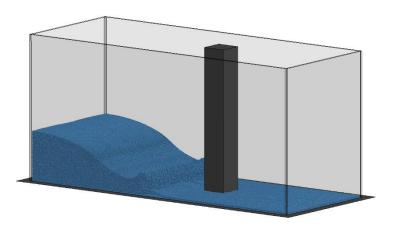
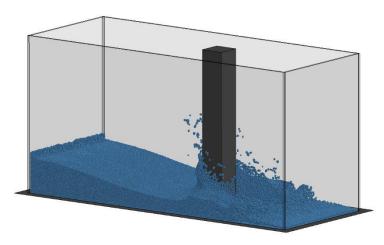
Modeling Splashing and Sloshing in LS-DYNA using Smoothed Particle Hydrodynamics (SPH)

Erik Svenning, PhD
DYNAmore Nordic
erik.svenning@dynamore.se

Purpose

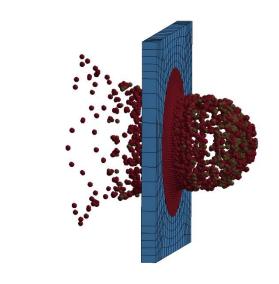
 Demonstrate the capabilities for modeling splashing and sloshing using the Smoothed Particle Hydrodynamics (SPH) module in LS-DYNA


Outline


- Introduction and motivation
- Theory
- Keywords and simulation setup
- Examples
- Summary

Solver introduction - The SPH module in LS-DYNA

- When is SPH useful?
 - Large material distortion
 - Material decomposes into many small fragments or droplets
 - Moving boundaries and free surfaces
- Characteristics
 - Particle based
 - Explicit
- Issues
 - What about local mesh refinement?
 - Difficult to handle (some) BCs

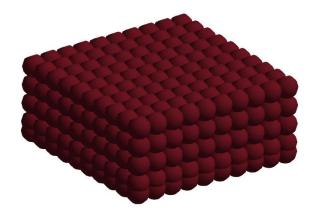

SPH: Smoothed Particle Hydrodynamics

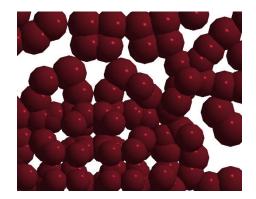
History of meshfree methods

- Pioneers: Lucy, Gingold and Monaghan [1977]
- Fluid mechanics: Monaghan and Benz [1980]
- Impact problems: Libersky [1993]
- **...**

Applications

- Forging and extrusion, metal cutting
- Bird strike
- High velocity impact
- Fluid-structure interaction
- Splashing and sloshing





SPH theory

- Particle based method (mesh free)
 - Continuum approximated by a set of arbitrarily distributed particles
 - Material coordinates are independent variables, no convective term.
 - Allows large material distortion
 - Allows free surface flow
- Particle approximation of a function:

- W: Kernel function
- h: smoothing length
- Setting $W = \delta(x y)$, where δ is the Dirac delta, would make the approximation exact
- The kernel function is constructed such that $W \to \delta$ as $h \to 0$
- Cubic b-spline functions are often used

SPH theory

- Quadrature formula:
 - - \mathbf{w}_i : weight of a particle
 - Compact support of W gives a sparse scheme
 - Similarly for the gradient:

$$\nabla \prod^h f(x) = \int f(y) \nabla W(x - y, h) dy$$

- Neighbor search
 - Need to know the neighbors of each particle in order to compute contributions
 - Bucket sort
- Solve for conservation of
 - Mass
 - Momentum
 - Energy

- CONTROL_MPP_DECOMPOSITION_DISTRIBUTE_SPH_ELEMENTS
- CONTROL_MPP_IO_NODUMP
- CONTROL_SPH
- SECTION_SPH
- ELEMENT_SPH

- MAT_NULL
- EOS_***
- CONTACT_AUTOMATIC_NODES_TO_SURFACE

- CONTROL_MPP_DECOMPOSITION_DISTRIBUTE_SPH_ELEMENTS
 - Ensures that SPH elements are evenly distributed to all processors
 - Balance for the initial positions of the SPH particles
 - No input parameters
- CONTROL_MPP_IO_NODUMP
 - Suppresses the output of all dump files and full deck restart files
 - No input parameters

CONTROL_SPH

NCBS	BOXID	DT	IDIM	NMNEIGH	FORM	START	MAXV
1	0	10^20		150	0	0.0	10^15

CONT	DERIV	INI	ISHOW	IEROD	ICONT	IAVIS	ISYMP
0	0	0	0	0	0	0	100

ITHK	ISTAB	QL			
0	0	0.01			

- NCBS: Number of time steps between particle sorting.
 - Can sometimes be increased to save computational time.
- BOXID: Particles that leave the box are deactivated to save computational time.
 - Should be used.
- IDIM: Space dimension for SPH particles
 - EQ.3: 3D
 - EQ.2: 2D plane strain
 - EQ.-2: 2D axisymmetric

- CONTROL_SPH
 - FORM: Particle approximation theory.
 - FORM = 15 or 16 is recommended for fluid applications.
 - Enhanced fluid formulations.
 - Pressure smoothing
 - FORM = 16: with renormalization. Usually more accurate, but also more expensive.
 - Several other particle approximation theories are available.
 - FORM=0 is default.
 - FORM=1 for solid structural applications.
 - MAXV: Particles with a velocity greater than MAXV will be deactivated.
 - ITHK: Contact thickness option.
 - EQ.0: Contact thickness set to zero (default).
 - EQ.1: Contact thickness computed from particle volume.

SECTION_SPH

SECID	CSLH	HMIN	НМАХ	SPHINI	DEATH	START	SPHKERN
	1.2	0.2	2.0	0.0	10^20	0.0	0

- CSLH: Constant for calculation of initial smoothing length. The default value works for most problems.
- HMIN and HMAX: Scale factors for minimum and maximum smoothing length.

ELEMENT_SPH

NID	PID	MASS	NEND		

MASS

- GT.0: Mass value
- LT.0: The absolute value will be used as volume. The density is taken from the material card defined in PID.

- Fluid material properties specified with MAT_NULL and a suitable EOS
 - MAT_NULL

MID	RO	PC	MU	TEROD	CEROD	YM	PR
		0.0	0.0	0.0	0.0	0.0	0.0

■ RO: Mass density

■ PC: Pressure cut-off

Allows a material to "numerically" cavitate.

Pressure cut-off is negative in tension.

MU: Dynamic viscosity

■ TEROD: Relative volume V/V_0 for erosion in tension.

■ CEROD: Relative volume V/V_0 for erosion in compression.

- EOS: Equation of State
 - Describes the relation between density and pressure
- EOS_MURNAGHAN

EOSID	GAMMA	КО	VO		

$$p = k_0 \left[\left(\frac{\rho}{\rho_0} \right)^{\gamma} - 1 \right]$$

- Designed to model incompressible fluid flow with SPH elements.
- GAMMA is often set to 7.
- K0 is chosen such that C0 = sqrt(GAMMA*K0/RHO0) >= 10v_max, where v_max is the maximum expected fluid flow velocity
- V0: Initial relative volume
- Reducing the stiffness of the SPH particles allows larger time steps at the cost of increased compressibility.
- EOS_GRUNEISEN
 - Can be an alternative

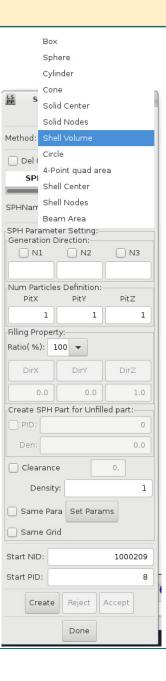
CONTACT_AUTOMATIC_NODES_TO_SURFACE

SSID	MSID	SSTYP	MSTYP	SBOXID	MBOXID	SPR	MPR
FS	FD	DC	VC	VDC	PENCHK	ВТ	DT
SFS	SFM	SST	MST	SFST	SFMT	FSF	VSF

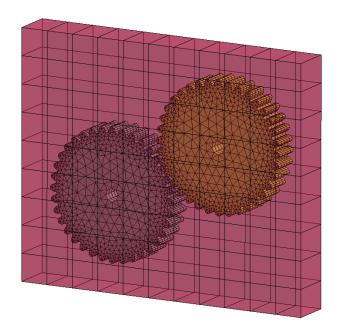
Contact for interaction between SPH particles and structure

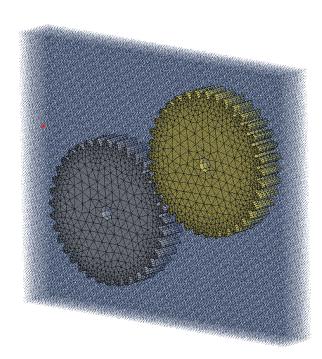
SSID: Slave set ID -> SPH particles

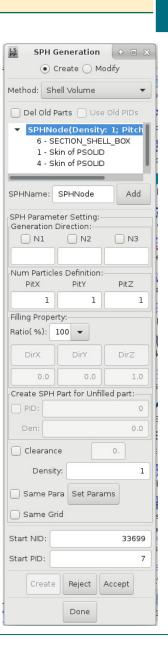
MSID: Master set ID -> Structure


Generation of SPH elements in LS-PrePost

Mesh -> SphGen

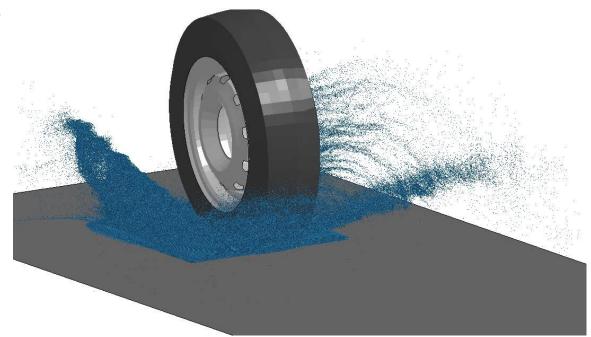

- SPH parts of different shape
 - Simple shapes (Box, sphere,...)
 - Solid center
 - Solid nodes
 - Shell volume
 - Shell Center
 - Shell nodes
 - **...**
- Set Density to -1 to make LSPP compute the volume of each SPH particle
- PitX, PitY, PitZ
 - Distance between particles in each direction
- Click Set Params to apply settings





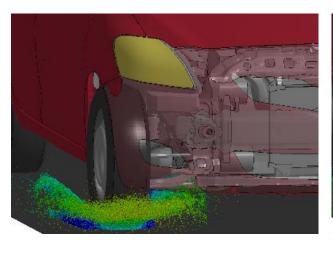
Generation of SPH elements in LS-PrePost

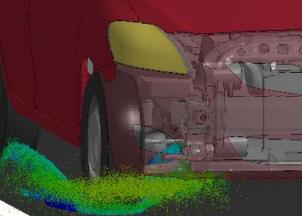
- Example: SPH generation for simplified gearbox
 - Method: Shell Volume
 - Surface shell mesh needs to be water tight
 - The surface may consist of several parts as in this example



Example 1: Wheel water splashing

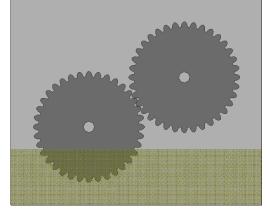
- A wheel rolls through a 10 mm thick water layer at 70 km/h
 - Explicit FE with deformable tire
 - Rigid rim
 - Rigid ground
 - SPH model for the water
 - 600 × 400 × 10 mm
 - 2.4M SPH particles

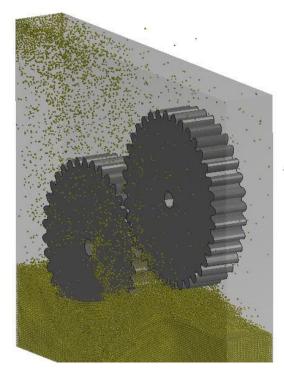





Example 2: Full car water splashing

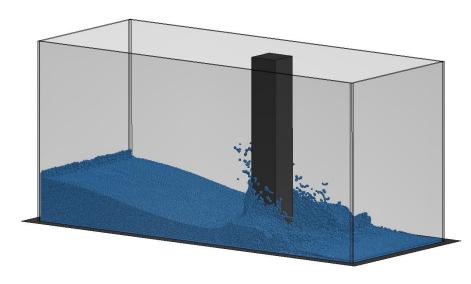
- NHTSA Toyota Yaris model
 - Explicit FE
 - 1.5M elements
 - 56 km/h
- 20 mm thick water layer
 - 300k SPH particles
- Possible output
 - Distribution of water
 - Water load on different parts
- Simulation time: 16h on 32 cores

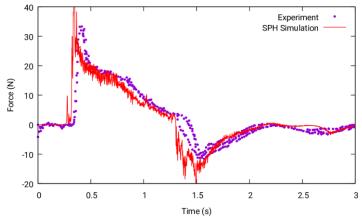




Example 3: Oil splash in simplified gearbox

- Two gears in a box partially filled with oil
 - Rigid gears
 - Oil: 300k SPH particles
- Prescribed motion of the upper gear
 - Ramped up to 1000 rpm
 - Upper gear drives the lower gear through contact conditions
 - It is possible to model the gears as deformable (at the cost of longer simulation time)
- Oil properties
 - Density 900 kg/m³
 - Viscosity 10 mPas
 - Equation of state: Gruneisen with C = 150 m/s
- Simulation time:
 - 3 hours on 16 cores



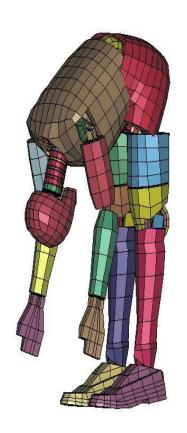


Example 4: Wave-Structure Interaction

- A wave impacts a rigid column in a container
 - Total contact forces compared to experimental data
 - Model developed by LSTC. Available at www.dynaexamples.com/sph/intermediateexamples/wavestructure

Summary

- In this webinar, we have discussed how SPH can be used to model splashing and sloshing
- Easy to couple SPH with finite element models
- If you want to learn more:
 - SPH course offered by DYNAmore GmbH: https://www.dynamore.de/en/training/seminars


- Questions and comments
 - erik.svenning@dynamore.se

Thank you!

Your LS-DYNA distributor and more

