

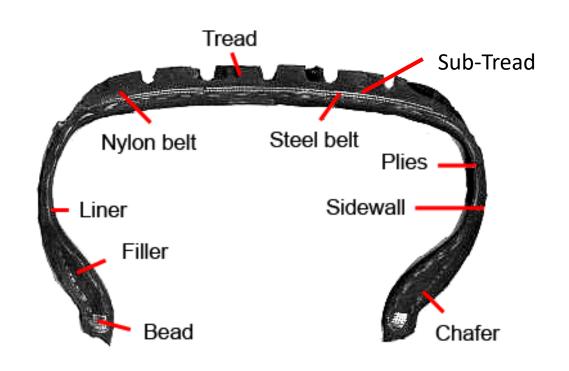
Joint Development of LS-DYNA® Tire model for Crashworthiness Applications

Motivation

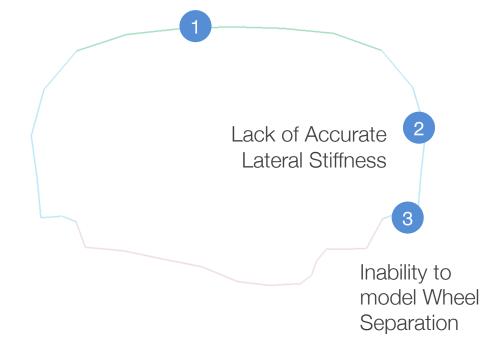
Develop state-of-art Tire Model for all load-cases with emphasis on SORB

INITIAL COMPRESSION

AIR-LOSS


Post-Airloss Interaction




Wall separation

Material failure

Tire Section and Shell Based Tire

Test Plan

MATERIAL TESTS

In this, we determine bulk material property under various loading conditions using material samples in both static and dynamic speeds.

VERIFICATION TESTS

This category of tests include Tire laminates under Tension and Three Point Bending to verify the material characterization parameters

COMPONENT TESTS

This category of tests involve the testing of Tire under various static and dynamic loads to verify the component behavior and stability of the FEA Tire model

Tire Fillet

ELASTOMERS

Tread Sidewall Inner Liner Sub-Tread

Bead-Filler

PLIES

Body Ply Wire-Belt Belt Overlay

Material Tests

Elastomers

The materials under this group are Tread, Sidewall, Sub Tread, Bead Filler

These are modeled using *MAT_SIMPLIFIED_RUBBER

Tests Include

Static and Dynamic Uni-Axial Tension until failure

Static and Dynamic Uni-Axial Compression

Static Bulk-Modulus Test

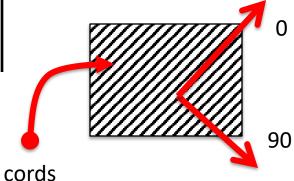
Static Pure-Shear until Failure

Static Uniform Bi-Axial until Failure

Plies

The materials under this group are Belt Overlay, Wirebelts and Body Ply

These were modeled using *MAT_ORTHOTROPIC_ELASTIC


Tests Include

Static Uni-Axial Tension along 0 deg

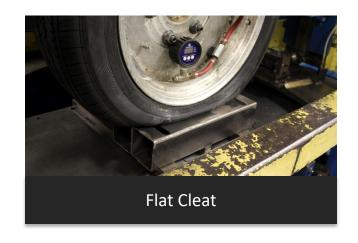
Static Uni-Axial Tension along 90 deg

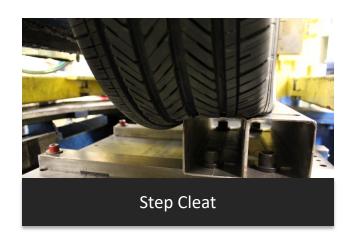
Static Shear Test

Cord Uni-Axial Tension Until Failure

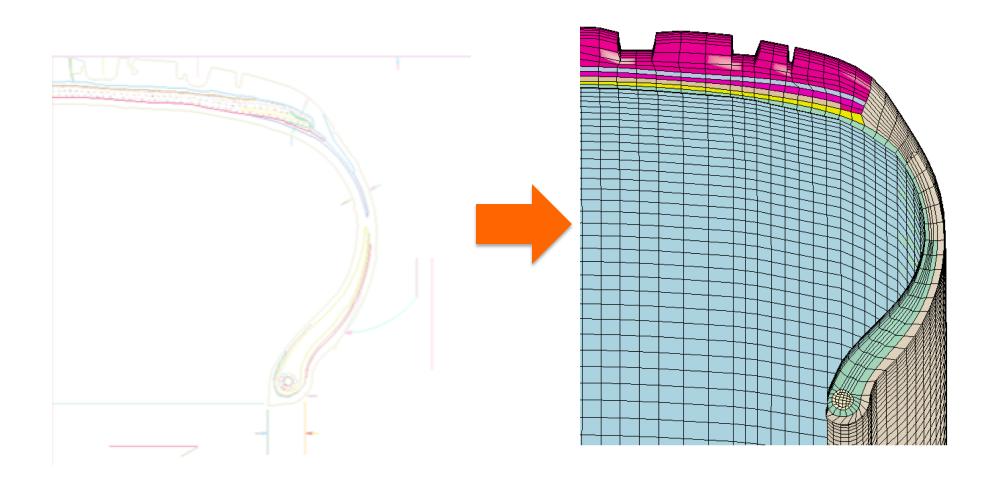
Material Verification Tests

Tread Laminate
0 and 90 deg
Uni-Axial Tension
Three-point Bending

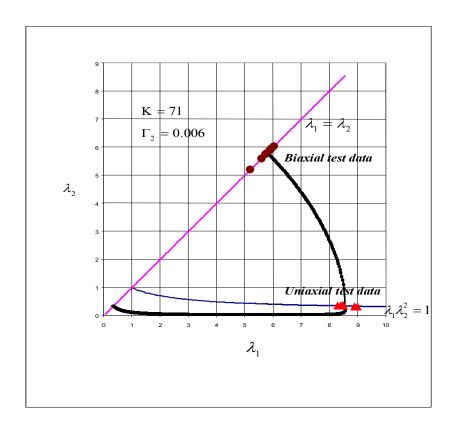




Static and Dynamic Component Tests



IGES to Mesh Generation



Fillet Comparison between FEA and Test

Elastomeric Failure Capabilities in LS-DYNA

 *MAT_SIMPLIFIED_RUBBER offers an option _WITH_FAILURE that allows the input of failure surface volume and failure surface shape. These constants are based on a failure stretch ratios obtained from a minimum 3 tests

Sensors Definitions, Switches and Controls

- To model air-loss, three sensors are defined to track
 - Tire pressure,
 - Contact Force between Tire and Wheel (1 deg increments)
 - Number of elements eroded in the wheel (R10).

 When any ONE of the conditions are met, the leakage based on porosity and venting is activated in *AIRBAG_HYBRID

Model Information

265,000 elements – mostly 8-noded hexahedron elements

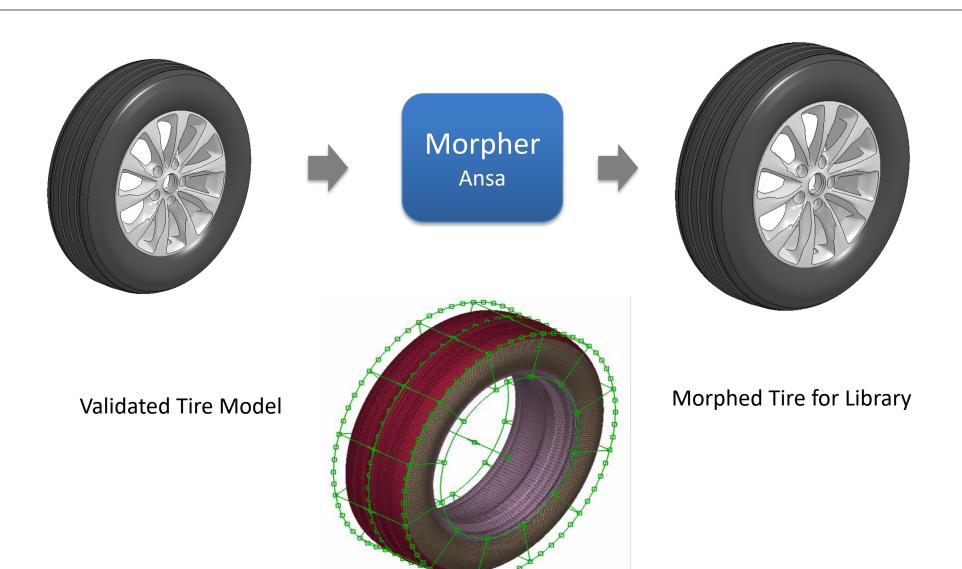
13 parts

MAT_181, MAT_002, with ADD_EROSION

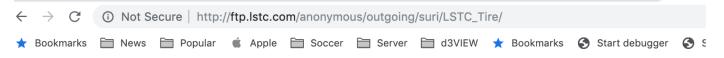
1 Single Surface Eroding Contact

1 Surface to Surface Contact with Vehicle

Force Transducers


*AIRBAG_HYBRID for inflation

*SENSORS


Smallest TimeStep

0.15 microsecond in some transition locations

Tire Morphing

Where to download the current release

Index of /anonymous/outgoing/suri/LSTC_Tire

<u>Name</u>	Last modified Size
Parent Directory	<u>-</u>
LSTC FCA TIRE 06-30-2019-1561907878 1 0	<u>0.tgz</u> 2019-07-01 03:24 238M
LSTC FCA TIRE 07-05-2019-1562341738 1 0	<u>0.tgz</u> 2019-07-05 15:12 103M
LSTC FCA TIRE 08-02-2019-1564748777 1 0	0.tgz 2019-08-02 05:32 116M

LSTC_FCA_TIRE_08-02-2019-1564750722_1_0_0/LSTC_FCA_Tire_P155_65_R14.k LSTC_FCA_TIRE_08-02-2019-1564750722_1_0_0/LSTC_FCA_TIRE_P235_45_R19.k LSTC_FCA_TIRE_08-02-2019-1564750722_1_0_0/LSTC_FCA_TIRE_P235_55_R19.k LSTC_FCA_TIRE_08-02-2019-1564750722_1_0_0/LSTC_FCA_TIRE_P235_65_R17.k LSTC_FCA_TIRE_08-02-2019-1564750722_1_0_0/LSTC_FCA_TIRE_P235_65_R17.k LSTC_FCA_TIRE_08-02-2019-1564750722_1_0_0/LSTC_FCA_TIRE_P245_50_R20.k LSTC_FCA_TIRE_08-02-2019-1564750722_1_0_0/LSTC_FCA_TIRE_P245_75_R17.k LSTC_FCA_TIRE_08-02-2019-1564750722_1_0_0/LSTC_FCA_TIRE_P255_70_R18.k LSTC_FCA_TIRE_08-02-2019-1564750722_1_0_0/LSTC_FCA_TIRE_P275_65_R18.k LSTC_FCA_TIRE_08-02-2019-1564750722_1_0_0/LSTC_FCA_TIRE_P275_65_R18.k LSTC_FCA_TIRE_08-02-2019-1564750722_1_0_0/LSTC_FCA_TIRE_P305_35_R20.k