
© 2025 ANSYS, Inc. Ansys LS-DYNA user-defined 1

Guideline for User Defined Interfaces in

Ansys LS-DYNA Software

Best Practice

2025R1

© 2025 ANSYS, Inc. Ansys LS-DYNA user-defined 2

Table of Content

1 Introduction .. 5
1.1 Co-simulation and interaction with other

software .. 6
2 Overview .. 6
3 Prerequisites ... 7
3.1 Download the Ansys LS-DYNA usermat

package .. 8
3.2 Fortran compilers .. 9
3.3 Compiling the subroutines for using

Ansys LS-DYNA with user defined

features .. 10
3.4 Plugging a user-defined shared object

into Ansys LS-DYNA .. 10
3.5 User-defined feature development in a

Windows environment 11
3.6 A very brief introduction to Fortran

programming ... 12
3.6.1 Input format .. 12
3.6.2 Variables and arrays 13
3.6.3 Subroutines .. 13
3.6.4 Some basic Fortran statements14
3.6.5 Programming for user-defined

features ...14
4 Material models interface 15
4.1 Keyword interface to the user defined

material models .. 17
4.2 Post processing user defined material

models .. 19
4.3 Interface to the user-defined material

models in the subroutine umat 20
4.3.1 Interface for discrete beam elements24
4.3.2 Material tangent modulus subroutine

utan for implicit analysis 25
4.4 Useful predefined subroutines 26
4.5 Subroutine examples .. 30
4.5.1 The Saint-Venant Kirchhoff model for

solids and shells .. 30
4.5.2 J2-plasticity for solids and shells 36
4.5.3 Non-linear spring ... 45
4.6 Ansys LS-DYNA simulation examples..... 48
4.6.1 Examples of the Saint-Venant Kirchhoff

material model ... 48

4.6.2 Examples of the J2 – plasticity model . 52
4.6.3 Example of the non-linear spring

material model .. 56
5 Friction models interface 58
5.1 Keyword interface to the user defined

friction models .. 59
5.2 Post processing user defined friction

models .. 60
5.3 Interfaces to the user defined friction

subroutines .. 60
5.4 Subroutine examples .. 65
5.4.1 Time dependent friction coefficient for

Mortar contact ... 65
5.4.2 Friction depending on contact

pressure and plastic strain 67
5.5 LS-DYNA simulation examples 69
5.5.1 Mortar contact: a cube on a tilting

plane ... 69
5.5.2 Forming analysis using pressure and

plastic strain dependent friction........... 72
6 Tied contact using Mortar weld tie 74
6.1 Keyword interface to the user defined

weld tie condition ... 75
6.2 Post processing user weld tie condition 75
6.3 Interface to the user defined tie condition

in the subroutine mortar_usrtie 76
6.4 Subroutine example .. 77
6.5 LS-DYNA simulation example 79
7 Mortar tiebreak contact 82
7.1 Keyword interface to the user defined

tiebreak condition ... 83
7.2 Post processing user tiebreak condition

 ... 84
7.3 Interface to the user defined tiebreak

condition in the subroutine

mortar_usrtbrk .. 85
7.4 Subroutine example .. 87
7.5 LS-DYNA simulation example89
8 Loads interface .. 92
8.1 Keyword interface to the user defined

loadings... 93
8.2 Post processing user defined loadings . 94

© 2025 ANSYS, Inc. Ansys LS-DYNA user-defined 3

8.3 Interfaces to the user-defined loading

subroutines .. 94
8.4 Subroutine examples .. 97
8.4.1 Example of subroutine loadud............... 97
8.4.2 Example of subroutine loadsetud 100
8.5 LS-DYNA simulation examples 101
8.5.1 Nodal force by load curve 101

8.5.2 Nodal force proportional to nodal

displacement ... 103
8.5.3 Hydrostatic pressure loading 104
9 Other user interfaces .. 105
10 Executing user-compiled LS-DYNA binaries

under Windows ... 108

© 2025 ANSYS, Inc. Ansys LS-DYNA user-defined 4

 Abstract

In this document, some of the possibilities for user-defined features in Ansys LS-DYNA software

will be presented. The objective is to provide a basic foundation for users with previous

experience of the Ansys LS-DYNA software that are interested in starting to develop customized

functionality. Both Fortran code examples of user subroutines and accompanying simulation

models (keyword files) are provided

This document is under continuous development, and future improved revisions will be released.

In this document, some of the possibilities for user-defined features in Ansys LS-DYNA software

will be presented. The objective is to provide a basic foundation for users with previous

experience of the Ansys LS-DYNA software that are interested in starting to develop customized

functionality. Both Fortran code examples of user subroutines and accompanying simulation

models (keyword files) are provided

This document is under continuous development, and future improved revisions will be released.

Disclaimer

By using this Guideline, you hereby consent to this disclaimer and agree to its terms.

All the information in this Guideline, comprised of this document and the

accompanying simulation models, is published in good faith and for general

information purposes only. Neither Ansys nor the authors make any warranties about

the completeness, reliability, and accuracy of the information in this Guideline. Any

action you take upon the information you find in this Guideline is strictly at your own

risk. Neither Ansys nor the authors will be liable for any losses and/or damages in

connection with the use of the Guideline. It is always up to the user of this Guideline to

verify the results.

© 2025 ANSYS, Inc. Ansys LS-DYNA user-defined 5

1 Introduction

The multi-physics solver software Ansys LS-DYNA [1][3] has many pre-defined building blocks

(traditional finite elements and other spatial discretization options, over 250 material models [2], many

possible contact interactions etc.) for a wide range of different analysis types. For these pre-defined

building blocks, the user can input parameter values, for example the hardening curve for a material

model, while the behavior based on the given parameter values will be determined by the software.

In addition to these pre-defined modelling capabilities, Ansys LS-DYNA software also offers many

possibilities for the user to define fully customized building blocks, like material models, elements,

friction models and loadings, see Ref. [20] for an overview. These customer defined features plug into

LS-DYNA via user interfaces, involving (amongst others) writing Fortran code. However, most analysis

demands are met by corresponding built-in keywords, and it shall be stressed that writing subroutines

in Fortran is rarely required for standard analysis.

The wide range of user interfaces offers great possibilities for researchers, either academic or company

research, to implement their own developments as building-blocks within the already available

LS-DYNA solver environment (rather than developing a complete FE-solver from scratch for research

purposes). It is possible to develop a more-or-less fully customized FE-solver in a stepwise fashion: for

example, starting with a user defined material model in combination with pre-defined elements, then

writing user defined element routines, in the next step combining with user defined friction, and in the

end adding even a user defined linear equation solver for implicit analysis.

The purpose of the present document is to provide an overview of some of the possibilities for user-

defined features. Traditionally, the user defined features have been seen as a very advanced topic,

mostly used by senior researchers and highly experienced specialists. Hopefully, this guideline can shed

some light on the development of user defined features from a more applied viewpoint, opening

possibilities for experienced LS-DYNA users to also work with user defined features. The everyday user

should be able to gain insight into the possibilities that user defined features offer, should the pre-

defined building blocks of LS-DYNA seem insufficient for solving a specific task.

It is assumed that the reader is familiar with common engineering terms and has knowledge of

continuum mechanics and finite element theory. In addition, some years of experience of the Ansys

LS-DYNA software is assumed. Basic keywords or FE modelling will not be discussed.

For most user-defined features treated in this Guideline, examples will be given both in the form of

Fortran code and keyword files. Please note that the provided examples are intended for

demonstrational purposes only. They should not be used in any type of daily production analysis. The

user should review all provided examples with critical eyes.

This Guideline assumes that version R11 or later of the Ansys LS-DYNA software is used. Note that user

defined features may be changed, removed, or added in later versions. Versions prior to R11 partially

had a different lay-out of the source code for the user defined features. This will not be discussed in any

detail in the present document.

This Guideline is currently focused on developing user features in a Linux environment, but some

details regarding user feature development in Windows will also be mentioned.

© 2025 ANSYS, Inc. Ansys LS-DYNA user-defined 6

For general support, see lsdyna.ansys.com/knowledge-base/. Useful publications from LS-DYNA users

and developers may be found on lsdyna.ansys.com/conference-papers/. Example keyword files can be

found at lsdyna.ansys.com/. For further questions, or if errors are found in this document, please

contact your local Ansys LS-DYNA supplier.

The present document is based on the course notes [4][5] developed by Dr. Thomas Borrvall, Dr. Jesper

Karlsson, and others. Course notes [6][7] developed by Dr. Tobias Erhart have also been of great help.

The present document was developed by Dr. Anders Jonsson.

1.1 Co-simulation and interaction with other software

There are potentially many applications for running Ansys LS-DYNA software together with some other

software, as a part of co-simulation, for example for applying hydraulic pressure from a system-level

simulation tool to a detailed structure model [32]. Even though it may be possible to interact directly

with other software via user-defined interfaces [33] the preferable approach is to use the Functional

Mock-up Interface (see https://fmi-standard.org/) standard for exchanging data and synchronization of

the solutions. This is available in Ansys LS-DYNA since R12, via the FMU Manager (see Ref. [1] for details

and download instructions) and the built-in *COSIM [30][31] keywords. It offers many possibilities for

transferring loads, pressures, displacements etc. both ways between LS-DYNA and other software

(Python, Matlab/Simulink, Adams, etc.). In that sense, FMI can provide functionality similar to user

defined loadings. For a general introduction to the co-simulation capabilities of the Ansys LS-DYNA

software, see the Webinar available from the Ansys Training Center.

2 Overview

See Table 1 for a quick guide to the user features, corresponding subroutine, which Fortran source code

file it can be found in, and the section of the Guideline where it is discussed.

In Section 3, some prerequisites required to get started are discussed, including some instructions

regarding the LS-DYNA usermat package, and some hints to Fortran programming.

In Section 4, user defined material models are discussed. The user defined materials are accessed via

the keyword *MAT_USER_DEFINED_MATERIAL_MODELS, and the related subroutines umatXX are found in

the Fortran files dyn21umats.f and dyn21umatv.f of the usermat package.

In Section 5, user defined friction models are presented. The related keyword is

*USER_INTERFACE_FRICTION, and the subroutines usrfrc and mortar_usrfrc are found in the Fortran

file dyn21cnt.f of the usermat package.

In Section 6, user defined weld tie conditions are described. The related keyword is

*CONTACT_AUTOMATIC_SURFACE_TO_SURFACE_MORTAR_TIED_WELD_THERMAL, and the subroutines

mortar_usrtie are found in the Fortran file dyn21cnt.f of the usermat package.

In Section7 the (almost) inverse, namely user defined tiebreak conditions for Mortar contact are

described. The related keyword is *CONTACT_AUTOMATIC_SURFACE_TO_SURFACE_TIEBREAK_USER_MORTAR,

and the subroutines mortar_usrtbrk are found in the Fortran file dyn21cnt.f of the usermat package.

https://lsdyna.ansys.com/knowledge-base/
https://lsdyna.ansys.com/conference-papers/
https://lsdyna.ansys.com/
https://fmi-standard.org/
https://www.ansys.com/training-center/course-catalog/ls-dyna/co-simulation-with-ansys-ls-dyna-software-using-functional-mock-up-interface

© 2025 ANSYS, Inc. Ansys LS-DYNA user-defined 7

Section 8 briefly treats user defined loadings. The related keyword is *USER_LOADING_{SET}, and the

subroutines loadud and loadsetud are found in the Fortran file dyn21.f of the usermat package.

Table 1. Overview of the user defined features

User defined feature Subroutine Fortran file Section

Material models umatXX, utanXX dyn21umats.f,

dyn21utan.f

4

umatXXv dyn21umatv.f

Friction usrfrc,

mortar_usrfrc

dyn21cnt.f 5

Weld tie mortar_usrtie dyn21cnt.f 6

Tiebreak mortar_usrtbrk dyn21cnt.f 7

Loading loadud, loadsetud dyn21.f 8

Provided examples (keyword files, Fortran code) were tested with mpp/LS-DYNA R13.1, R14.1.0 and

R15.0.2 double precision, sse2 (also avx2 for examples not involving contacts) under Linux, with

acceptable results in all cases. All examples except the user defined friction for non-Mortar contacts

(usrfrc) were also tested with smp/LS-DYNA R14.1.0 and R15.0.2, with acceptable results.

3 Prerequisites

This Section describes what is required to get started with creating user defined features for Ansys

LS-DYNA software. The first step is to download a programming environment (the usermat package)

from your LS-DYNA provider, see Section 3.1. Since all interaction with the user defined features will

require Fortran programming, a Fortran compiler is a fundamental requirement for getting started.

This is not included in the LS-DYNA usermat package. An overview of recommended compilers is

presented in Section 3.2, and a very brief introduction to Fortran programming is given in Section 3.6.

How to build a user defined module is described in Section 3.3, and how to integrate it in a simulation

model using the appropriate LS-DYNA keywords is described in Section 3.4.

It is mainly assumed that programming and user feature development is done in a Linux environment,

but some special considerations when working in Windows environment are mentioned in Section 3.5.

Appendix A of Ref. [1] also contains a general overview of how to get started working with user defined

features.

Do not hesitate to contact your local Ansys LS-DYNA provider for questions regarding download of

required files, or setup of compilers for different environments, or other issues related to the user

defined features.

© 2025 ANSYS, Inc. Ansys LS-DYNA user-defined 8

3.1 Download the Ansys LS-DYNA usermat package

It is possible to integrate the user defined features into LS-DYNA using either static or dynamic1 linking.

Static linking means that a special version of LS-DYNA is built, which contains the user defined

features. This was the traditional way of working with user-defined features. It is straight-forward but

offers little flexibility. It is hard to integrate more features from different sources, for example 3rd party

material routines with in-house development friction models.

Dynamic linking, see also Figure 1, means that a shared object (a file with extension .so in Linux) is built

which then can be dynamically linked to a sharelib – version of LS-DYNA using the *MODULE - keywords,

see Section 3.4. The dynamic linking approach offers more flexibility since many shared objects from

different sources can be linked to the same (standard) LS-DYNA main binary. Building a shared object

may also be less resource intensive in terms of compiler and linking time. Currently2, the dynamic

linking approach is only supported by LS-DYNA under Linux.

Figure 1. Integrating the user defined features into LS-DYNA using the shared object approach. Image from Ref.

[7].

The first step to get started with the development of user-defined features for LS-DYNA is to decide

which approach to use, either static or dynamic linking, and then download the required files from your

local Ansys LS-DYNA provider. The Linux-version package for dynamic linking will typically be named

ls-dyna_mpp....sharelib.usermat.tar.gz or ls-dyna_mpp....sharelib.usermat.tar.gz_extractor.sh

and for static linking

1 From R9. Currently only supported for LS-DYNA under Linux.
2By official LS-DYNA versions available up to 2024-12-15.

© 2025 ANSYS, Inc. Ansys LS-DYNA user-defined 9

ls-dyna_....usermat.tar.gz or ls-dyna_....usermat.tar.gz_extractor.sh

The files will be packaged in a compressed archive format, so after downloading unpacking will be

required.

Just as for “standard” LS-DYNA, it is important to distinguish between SMP/MPP/hybrid and

single/double precision. This means that the user defined features must be compiled and linked for the

right “flavor” and version of LS-DYNA; for example, a shared object compiled for single precision LS-

DYNA can in general not be plugged into double-precision LS-DYNA executable, and vice versa. Also,

the sse2/avx2/avx512 extensions must be taken into consideration, so that the shared object is built for

the corresponding extension – a shared object file based on sse2 will not work properly when used with

LS-DYNA with the avx2 - extension.

When working with static linking, it is obvious that re-compilation and new linking of the user-defined

features will be required in order to use the user defined features with a new LS-DYNA version. It will

also be required for the dynamic linking approach: the shared object file must be built with the

corresponding environment for a specific LS-DYNA version, since for example interfaces and

arguments to subroutines may have changed between versions. This means that also when working

with dynamic linking, the user features must be re-compiled in order to be used with a new LS-DYNA

version.

The Fortran files of the usermat package come with some example material models and related

subroutines, which may be used as templates for further developments.

3.2 Fortran compilers

Intel’s Fortran compiles are in general recommended for both Linux and Windows. More specifically [4],

for

• Linux Redhat or CentOS, use

o Intel Fortran Compiler [10] 2013 for LS-DYNA R9,

o Intel Fortran Compiler 2016 for LS-DYNA R11 and R12,

o Intel Fortran Compiler 2019 for LS-DYNA R13, R14 and R15.

• Linux Suse, use PGI Fortran Compiler 16.5 (10.5 for LS-DYNA R9) for LS-DYNA R11 and R12,

• Windows x64, see Section 3.5.

Some special setup of the system environment will most likely be required. For example, when working

with the Intel Fortran compiler under Linux, the command

compilervars.sh -arch intel64 -platform linux

found in the compiler installation directory, under (for Intel Fortran 2016)

compilers_and_libraries_2016/linux/bin/ must be issued in order to apply appropriate settings

before compilation can be performed. For compiling mpp/LS-DYNA, or shared objects, also the

appropriate mpi-Fortran wrapper (for example mpiifort for Intel MPI) must be configured. For Intel

MPI under linux, the command

compilervars.sh -arch intel64 -platform linux

© 2025 ANSYS, Inc. Ansys LS-DYNA user-defined 10

found in the MPI installation directory, under (for Intel MPI 2019)

compilers_and_libraries_2019/linux/bin/ must be issued in order to apply appropriate settings

before compilation for mpp, using mpiifort, can be performed.

For further details on this, consult the documentation of the compiler in question, or contact your local

Ansys LS-DYNA provider for support.

3.3 Compiling the subroutines for using Ansys LS-DYNA with user

defined features

Once the LS-DYNA usermat package has been downloaded and unpacked, the next step is to set up

the compiler environment and test-compile the files as-is, without any modifications. In Linux, the

Makefile contains the instructions for compiling and linking that are required to build either a shared

object file (libmppdyna_ … .so) or a statically linked customized LS-DYNA-version (the result will in the

latter case be a monolithic executable called mppdyna or lsdyna). In Linux, open the text file Makefile

and edit the Fortran compiler command to the appropriate for the present installation (see Section 3.2).

The next step is to build the desired shared object, which is obtained by executing the Linux make

command. In some cases, it may be required to re-compile all objects, this can be achieved by first

issuing make clean and then the make command.

Finally, run a small test model, for example tension of some solid elements (see for example, Section

4.6.1), without any user defined features active in the model but still including the shared object (see

Section 3.4 for details) to verify that that LS-DYNA runs as expected.

The purpose of this initial testing stage is to establish a basis for further development of user defined

features for LS-DYNA. It is good practice to have sorted out any problems directly related to compiling

and linking the shared object files, or problems related to loading them into the LS-DYNA simulation

model, before starting to work with the development of advanced user-defined features. Then, if errors

should occur at later stages, troubleshooting can be more efficiently focused directly on the likely

cause.

Once this testing stage is completed, the development of user defined features can commence,

preferably in an incremental and iterative way, as outlined in Section 3.6.5.

3.4 Plugging a user-defined shared object into Ansys LS-DYNA

The shared object file must be built with the corresponding environment (usermat package) for a

specific LS-DYNA version. This means that also when working with dynamic linking, the user features

must be re-compiled in order to be used with a new LS-DYNA version. Note also that specific double /

single precision versions of the .so – files must be built. Also, the hardware acceleration extension

(sse2, avx2 or avx512) must match between the usermat package and the LS-DYNA version. For

example, let us assume that a user-defined material model has been developed for LS-DYNA R11.1.0 sse

2, and this has been compiled to the shared object file libmppdyna_R111.so. In order to use this user-

defined material model with LS-DYNA R12.2.2 avx2, a new shared object file (which can be named for

example libmppdyna_R121_avx2.so) must be built using the corresponding usermat package. This

© 2025 ANSYS, Inc. Ansys LS-DYNA user-defined 11

means adapting the user contributed source code to the dyn21-files in the new package. The dyn21-

files should never be copied between versions.

The LS-DYNA keywords required to dynamically link a user-defined shared object to the main LS-DYNA

binary all begin with *MODULE [1]. The path to a shared object can be specified by the keyword

*MODULE_PATH. A shared object is loaded by the keyword *MODULE_LOAD. In order to map the user

subroutines loaded in shared objects to the model, the keyword *MODULE_USE is applied, for example in

situations where user defined materials for different 3rd party suppliers should be combined in the

same simulation model. If only a single shared object is used, it can also be linked using the

environment variable LD_LIBRARY_PATH or the command line argument “module=”, instead of *MODULE.

An example of the use of these keywords is also presented in Section 4.1.

3.5 User-defined feature development in a Windows environment

In this section, some special details regarding user defined feature development for LS-DYNA running

in a Windows environment will be mentioned. For the Windows versions of LS-DYNA, the only option

currently available is to work with static linking. This means that a special version of LS-DYNA is built,

including the user defined features. The Windows-version package for static linking will typically be

named ls-dyna_..._winx64_.._lib.zip, or ls-dyna_..._winx64_.._lib_installer.exe, see also Figure 2.

A brief instruction on how to build a LS-DYNA executable is given in the readme.txt – file provided in

the Windows usermat package.

Figure 2. Example of contents of the usermat package for Windows.

The recommended Fortran compiler for LS-DYNA R11 and R12 is

Intel Parallel Studio XE 2017

© 2025 ANSYS, Inc. Ansys LS-DYNA user-defined 12

and the corresponding Microsoft application environment, required for linking and access to standard

libraries, is

Microsoft Visual C++ 2017 x64 Cross Tools.

For LS-DYNA R13, R14 and R15, the recommended Fortran compiler is

Intel Parallel Studio XE 2019 (Update 6, Composer Edition)

and the corresponding Microsoft application environment, required for linking and access to standard

libraries, is

Microsoft Visual C++ 2019 x64 Cross Tools.

Note that the recommended compilers and tools may change for coming LS-DYNA versions, please see

the information provided in the readme.txt – file for updated information.

In addition, the MPI for mpp/LS-DYNA under Windows is required. Note that it is also required to install

the MS MPI Software Development Kit (SDK). Recommended are Microsoft MPI v8.1 for R11, and

Microsoft MPI v10 for R12 of LS-DYNA, which are available for free download from www.microsoft.com.

The command nmake.exe [26] is used for building the LS-DYNA executable, based on the information in

the makefile text file. Note that it may be required to update the search paths in the makefile text file

depending on the local installation.

In order to run the customized LS-DYNA version, the executables ansyscl.exe and lstc_client.exe

and the library libiomp5md.dll (provided with the Intel Fortran compiler installation) need to be in the

same folder as the LS-DYNA executable. In some cases, Windows security settings or antivirus

programs may prevent execution of a customized LS-DYNA version. How this may be remedied is

discussed further in Appendix A.

3.6 A very brief introduction to Fortran programming

All interaction with the user defined features of LS-DYNA will involve some amount of Fortran

programming. This section is taken from the course material [4] and the purpose is to give a very brief

introduction to programming in Fortran. Other sources are for example, from Intel. Fortran’s official

home page is https://fortran-lang.org/.

Another good starting point seems to be

https://www.tutorialspoint.com/fortran/fortran_useful_resources.htm

3.6.1 Input format

Fortran is an imperative programming language. A typical program consists of a set of statements,

which are executed sequentially. In pseudo-code, a typical lay-out looks something like this:

PROGRAM name

declarations

executable statements

END

http://www.microsoft.com/
https://www.intel.com/content/www/us/en/develop/documentation/get-started-with-fortran-compiler/top/get-started-on-linux.html
https://fortran-lang.org/
https://www.tutorialspoint.com/fortran/fortran_useful_resources.htm

© 2025 ANSYS, Inc. Ansys LS-DYNA user-defined 13

The input is case-insensitive, and recommended practice is to always use lower case (upper case only

use for emphasis here). Often fixed-format input is used, which means that each Fortran statement is

written in positions 7 – 72 on a line. Position 6 is reserved as a continuation marker; in order to continue

a statement on the next line, put a character in position 6 of the continued line. If a ‘C’ or ‘c’ is found in

position 1 of a line, that line is taken as a comment. This is a convenient feature, making it easy to write

explanations about what certain parts of the code are supposed to do, or simply de-activating certain

lines of code. Position 1 – 5 are reserved for statement numbers or labels.

3.6.2 Variables and arrays

Variables can be of type INTEGER, REAL (floating point numbers) or REAL*8 (double precision floating

point numbers), CHAR (characters or strings) or LOGICAL (Boolean). Variable names can be up to 31

characters long. For example:

INTEGER i, j,k

REAL a,b,c

REAL*8 d,e,f

If the variable declarations are omitted, the compiler will make certain assumptions regarding types of

variables, for example, that variables beginning with the letters I, J, K, L, M, N are INTEGER. The lack of

specification often leads to program errors, and it is strongly recommended that variable types are

always declared. The statement IMPLICIT NONE means that all variables must be declared, and use of

an undeclared variable will cause a compilation error.

Arrays are fields of variables, and are declared as for example

INTEGER ii(10), ndx(100)

REAL*8 sigma(6), avec(100)

Variables can then be assigned values by the = statement and be used for arithmetic operations

(summation by +, multiplication by *, division by / and subtraction by -), for example:

j=20

b=2.49

avec(j) = b

The Fortran 90 standard offers convenient input for operations on arrays, where a sequence of

elements can be accessed in one line, reducing the need for DO – loops, for example:

s(1:3) = sig(1:3)-sum(sig(1:3))/3.0

3.6.3 Subroutines

Subroutines are used to simplify coding and should be used for code that must be executed many

times.

SUBROUTINE subname(parameters)

IMPLICIT NONE

declarations

statements

RETURN

END

In the main program, or from other subroutines, the subroutine is called by

© 2025 ANSYS, Inc. Ansys LS-DYNA user-defined 14

CALL subname(parameters)

The list of parameters in the call and the subroutine declaration must match. In subroutines, arrays in

the parameter list can be declared with assumed size, by use of an asterisk / star within parenthesis to

declare its size as flexible, for example

SUBROUTINE setzero(a, la)

IMPLICIT NONE

REAL*8 a(*)

INTEGER la

…

statements

RETURN

END

In Fortran, all parameters to a subroutine are passed by reference. This means that if a parameter is

changed (assigned a new value) in the subroutine, it will also be changed in the context where it was

called from. This also means that special care must be taken when programming, so that only variables

that are intended as output from a subroutine are updated.

3.6.4 Some basic Fortran statements

To repeat statements iteratively a specified number of times, the DO / ENDDO construct can be used, for

example

DO var=first, last

 statements

ENDDO

The variable var will take values first, first + 1, … , last. In order to break a DO – loop, the

statement EXIT can be used, for example

DO iter=1, maxiter

 statements

 IF(residual.LE.tol)THEN

 EXIT

 ENDIF

ENDDO

To control the program flow based on logical conditions, the IF / THEN / ELSE construct can be used, for

example

IF ABS(s) .GT. 1.E-15 THEN

 si = 1./s

ELSE

 si = 1.E16

ENDIF

The GOTO statement can be used to make the execution continue on the line with a specified statement

number, for example

GOTO 10

jumps to statement number 10.

3.6.5 Programming for user-defined features

In this Section, some tips specific for programing user-defined features in Ansys LS-DYNA follow.

© 2025 ANSYS, Inc. Ansys LS-DYNA user-defined 15

When developing the user-defined feature, it is recommended to add some debug printouts in order

to make sure that the user-defined feature actually is active and called from the main LS-DYNA binary.

The user can get access to LS-DYNA’s message files (messag, mes0*) and highspeed-printout file

(d3hsp) via the standard Fortran write – command. This is simplified by including the file iouinits.inc

in the subroutine, which contains the unit number for the message files (mes0*) in the variable iomsg

and the d3hsp – file in the variable iohsp. An example follows:

.

INCLUDE ‘iounits.inc’

.

write(iomsg, *) ‘user defined feature writes to the message file’

.

RETURN

END

It is recommended to work with the development in a stepwise fashion, making small modifications

and checking that each modification has the intended effect. Also starting with small (a couple of

hundred elements for example) FE-models is recommended. It is good practice to verify the results

from the user defined feature by comparing to handbook solutions or built-in LS-DYNA functions.

Once the developed feature is considered ready for use in a larger scale context, it is recommended to

disable or limit debug printouts, since these may slow down performance significantly and create big

output files.

4 Material models interface

The over 250 built-in material models in LS-DYNA [2] cover many applications, from linear elasticity to

orthotropic plasticity models, foams, and composites. A web-based material model selection guide is

available from https://lsdyna.ansys.com/dynamat/ [24]. Still, there may be cases where specific

customer demands cannot be perfectly matched by the existing material models, and perhaps the

most common customization of Ansys LS-DYNA is the development of a specialized material model.

Third-party companies, like MatFEM [16] and E-Extreme / Digimat [17], deliver material models for

specific purposes, like advanced failure modelling and analysis of composites. From R13 of LS-DYNA,

also the option to add plasticity, viscoelasticity, creep etc. to already existing material models is

available by the keyword *MAT_ADD_INELASTICITY [29] in a quite general manner. Fairly advanced

damage and failure models can be added to many of the built-in material models, by the keywords [2]

*MAT_ADD_DAMAGE_{GISSMO/DIEM} see for example Refs. [14][15] for examples and background.

This section will not focus specifically on material modelling as such, since it is a very wide field, with

many specializations for metals, composites etc. A vast amount of published research is available, and it

is currently a very active research field. For a background to material modelling and continuum

mechanics, the reader is referred to for example Refs. [11][12][13].

In the following, it is assumed that an existing valid material model is to be implemented as a user

defined material model in LS-DYNA. The user-defined material subroutine umatXX (where 41 ≤ XX ≤ 50)

is called in the solution sequence, with the strain rate (or deformation gradient) as main input, and its

objective is to update the (Cauchy) stress  (and history variables, if required) for the next time step, in

order that nodal forces can be computed, see Figure 3. All input quantities are passed to the user

https://lsdyna.ansys.com/dynamat/

© 2025 ANSYS, Inc. Ansys LS-DYNA user-defined 16

subroutine in the local element coordinate system, so no additional transformations are required by

the user. In the case of an anisotropic material model, the same options for specifying material

directions as for the built-in LS-DYNA materials are available (see the remarks related to *MAT_2 of Ref.

[2]). Some care must be taken when implementing the material model for shells and beam elements,

since it is then required that the material model will deliver stresses that are consistent with the

assumptions related to structural elements (for example 33 = 0 for shells). In the implicit solution

sequence, also the material stiffness matrix is required, and the corresponding subroutine utanXX is

called when assembling the global stiffness matrix.

It is also possible to create user defined thermal material models, see Appendix H of Ref. [1], but this

option will not be discussed further in the present release of this Guideline.

The keyword interface for passing parameter values etc. to the user defined material model is

described in Section 4.1. Post-processing the results from user subroutines is outlined in Section 4.2.

The Fortran interface to the user subroutines is described in Section 4.3. Some useful pre-defined

subroutines for common operations, such as push-forward, are described in Section 4.4. Finally, in

Section 4.5, some examples of material model implementation are presented.

Figure 3. In the explicit solution sequence, the objective of the user-defined material interface is to output the

updated stress based on provided incremental strain and current stress. Image from Ref. [7].

See also Appendix A of the Keyword manual [1] for more details on user defined material models. A

dedicated course in User Defined Material Models is available from the Ansys Training Center.

https://www.ansys.com/training-center/course-catalog/ls-dyna/user-defined-material-models-in-ansys-ls-dyna

© 2025 ANSYS, Inc. Ansys LS-DYNA user-defined 17

4.1 Keyword interface to the user defined material models

The keyword interface to the user defined material models is given by

*MAT_USER_DEFINED_MATERIAL_MODELS. By this, a user defined material can be assigned a Material ID

(MID) that in turn can be referenced by a *PART – definition. One example of the keyword syntax

follows:

*MAT_USER_DEFINED_MATERIAL_MODELS_TITLE

User defined J2 plasticity UMAT41

$#1 MID RO MT LMC NHV IORTHO IBULK IG

 3 2.700E-9 41 8 1 0 3 4

$#2 IVECT IFAIL ITHERM IHYPER IEOS LMCA UNUSED UNUSED

$# P1 P2 P3 P4 P5 P6 P7 P8

 70.E3 0.31 61404.0 26718. 103.

The variables of this keyword are:

• MID: The Material ID.

• RO: Mass density. This, in combination with the bulk and shear moduli, is required input for
LS-DYNA to be able to compute the critical time step size for explicit analysis, and penalty
factors for contacts and joints.

• MT: The user material type. In this case, MT = 41 means that the subroutine umat41 (and also
utan41 in the case of an implicit analysis) will be called.

• LMC: The number of material parameters to be input on the keyword and passed to the
subroutine. In this case 8, meaning that the variables P1 – P8 will be read during initialization
and passed to the subroutine umat41 in the cm array. Fields left blank in the keyword input will
be passed as zero.

• NHV: The number of history variables to be stored on integration-point level (max. 200). In this
case, one history variable is defined.

• IORTHO: Set to 1 if material is orthotropic (necessary for definition of material axes). The default is
an isotropic material model.

• IBULK, IG: The addresses of the bulk and shear moduli, respectively, in the parameters array. In
this case, IBULK = 3 means that LS-DYNA can find the bulk modulus as the variable P3, and IG =
4 means that LS-DYNA can find the shear modulus as the variable P4.

• IVECT: If set to 1 the vectorized version of the material routine is called. Default is that the scalar
version is called, once for each integration point. The vectorized vs. scalar version of a user
subroutine is discussed mode in Section 4.3.

• IFAIL: Set to 1 if the material routine should be able to control element erosion of solids and
shells.

• ITHERM: Set to 1 if the integration point temperature shall be computed and passed to the user
subroutine.

• IHYPER: Flag for hyperelastic materials. By setting IHYPER = 1, the deformation gradient will be
passed to the user subroutine. The implementation of a hyperelastic material is presented as an
example in Section 4.5.1.

• IEOS: Flag for equation of state.

• LMCA: Length of additional material constants array (unlimited).

• P1 … Pn: Material parameters passed to the user defined material subroutine in the array cm. In
this case, material parameters for aluminum are defined. P2 is the Poisson’s ratio in this case,
and P5 refers to a Load curve ID (103 in this case), which specifies the yield stress as a piecewise
linear function of the accumulated effective plastic strain.

© 2025 ANSYS, Inc. Ansys LS-DYNA user-defined 18

Should more than 10 different user defined material models be required, the *MODULE – keywords

provide a handy solution. The following example illustrates this: first, the keywords *MODULE_PATH and

*MODULE_LOAD read in two different shared objects,

*MODULE_PATH

 … path_to_modules …

*MODULE_LOAD

$#1 MDLID TITLE

 1 Library 1

$#2 FILENAME

sharedobje01.so

*MODULE_LOAD

$#1 MDLID TITLE

 2 Library 2

$#2 FILENAME

sharedobje02.so

By this, the shared object sharedobje01.so is loaded and assigned the module ID 1, and the shared

object sharedobje02.so is loaded and assigned the module ID 2. By the *MODULE_USE keyword, the user

material types (typically 41 ≤ MT ≤ 50) can be re-mapped to new ID numbers:

*MODULE_USE

$#1 MDLID

 1

$#2 TYPE PARAM1 PARAM2

UMAT 41 1001

*MODULE_USE

$#1 MDLID

 2

$#2 TYPE PARAM1 PARAM2

UMAT 41 1002

This means that the umat41 of sharedobj01.so can be referred to as material type 1001, and the umat41

of sharedobj02.so can be referred to as material type 1002 when creating a user defined material

model:

*MAT_USER_DEFINED_MATERIAL_MODELS

$#1 MID RO MT

 1 7.85e-9 1001

…

*MAT_USER_DEFINED_MATERIAL_MODELS

$#1 MID RO MT

 2 2.70e-9 1002

…

Then these material models can be assigned to *PARTS, as any built-in LS-DYNA material model:

*PART

first part

$# PID SECID MID

 1 1 1

*PART

second part

$# PID SECID MID

© 2025 ANSYS, Inc. Ansys LS-DYNA user-defined 19

 2 2 2

By a similar procedure, the limitation to 10 user defined material models can be overcome by

separating the material models and placing 1 – 10 in the sharedobje01.se, and then 11 – 20 in the

sharedobje02.so, and so on.

Note that one user defined material type, for example MT = 41, may be referenced by an unlimited

number of *MATERIALs (with different Material IDs). However, in that case only the parameters RO, and

P1…Pn may be changed on each *MATERIAL.

4.2 Post processing user defined material models

The number of additional material history variables to be output to the binary 3D databases d3plot,

d3part and d3drlf is controlled by the NEIPH (output for solid elements) and NEIPS (for shell elements)

variables of the keyword *DATABASE_EXTENT_BINARY. For example, in order to post-process 5 material

history variables for a user defined material model, set NEIPH = NEIPS = 5. This will store the first 5

history variables (hisv(1:5), see Section 4.3) in the binary databases. This means that the history

variables of interest for post-processing should appear in the beginning of the hisv array. Interactive

post-processing of the binary 3D databases d3plot, d3part and d3drlf, including extra history results,

should be possible using LS-PrePost [22], META [23] or other third-party post-processors.

The number of additional material history variables to be output to the elout file (for history / 2D curve

plotting) is controlled by the OPTION1 (for solid elements) and OPTION2 (for shell elements) variables of

the keyword *DATABASE_ELOUT. For example, in order to post-process 5 material history variables for a

user defined material model, set OPTION1 = OPTION2 = 5.

For the history output, note that also *DATABASE_HISTORY_... keywords are required, in order to

specify for which elements the data should be output.

One motivation for writing a user material subroutine may be that is makes it possible to output

additional history results from a “standard” material model, for example back stress terms, or the

maximum effective stress during a simulation.

The user defined subroutines can also write text output to the message (mes0*) and d3hsp – files. This

can be very useful, for example in case some initial parameter fitting to a given test curve is done, some

quality measure indicating the validity of the fit can be output. It is at least during the development

phase warmly recommended to add output of some text message to confirm which subroutine(s) that

are called during the solution of a specific FE model.

© 2025 ANSYS, Inc. Ansys LS-DYNA user-defined 20

4.3 Interface to the user-defined material models in the subroutine

umat

There are two3 basic categories of subroutines for user defined material models:

• If the subroutine should be called once for each element and integration point, it is denoted as a
scalar (or serial) material subroutine. This corresponds to IVECT = 0 on the
*MAT_USER_DEFINED_MATERIAL_MODELS keyword. The subroutines are named umatXX, where 41 ≤
XX ≤ 50, and can be found in the dyn21umats.f – file.

• If the subroutine can process an array of elements for each integration point, it is denoted as a
vectorized material subroutine. This corresponds to IVECT = 1 on the
*MAT_USER_DEFINED_MATERIAL_MODELS keyword. The subroutines are named umatXXv, where 41
≤ XX ≤ 50, and can be found in the dyn21umatv.f – file.

While the scalar approach may be easier to code – since only scala data needs to be handled – the

vectorized version will probably lead to faster solution timing; the reduced number of subroutine calls

will lead to less overhead processing. It is in all cases to be expected that a user-defined version of even

a simple material model will not be as fast as a built-in equivalent material model. If a user defined

material model is to be implemented, it should be motivated by other benefits, for example new

material behavior or enhanced post-processing, than improved solution speed.

The main subroutine for interfacing between LS-DYNA and the user defined material models is usrmat

and can be found in the dyn21umat.f – file. It should normally not require editing, even though it is

possible in order to pass additional information to the user defined subroutines [7].

As input to the material subroutine, LS-DYNA provides the

• Incremental strain,

• Current stress,

• History variables,

• Material parameters,

• Element type (solid, shell, beam, discrete beam …) and

• Temperature.

The subroutine should, based on this and according to the material law, provide

• The stress in the next time step,

• strain corrections for structural elements (beams / shells), and if required also

• updated history variables.

3 In addition, there is also the possibility to define cohesive user material models, by the subroutines

umatXXc of the dyn21umatc.f – file. This will not be discussed further in the present revision of this

Guideline.

© 2025 ANSYS, Inc. Ansys LS-DYNA user-defined 21

To be more specific, the parameter list for a scalar implementation of a user defined material model (in

this case umat41) is:

 subroutine umat41(cm,eps,sig,epsp,hsv,dt1,capa,etype,tt,

 1 temper,failel,crv,nnpcrv,cma,qmat,elsiz,idele,reject)

An overview and brief description of the parameters to the subroutine is shown in Table 2.

Table 2. The arguments to the subroutine umatXX

Argument Description Input / Output

cm Material constants Input

eps Local strain increment in Voigt(1) notation Input /Output(2)

sig Local stress in Voigt notation Input / Output

epsp Accumulated effective plastic strain Input / Output

hsv History variables Input / Output

dt1 Current time step size Input

capa Reduction factor for transverse shear of shells and beams(3) Input

etype String describing element type Input

tt Current problem time Input

temper Current temperature Input / Output

failel Failure flag, set to .true. to indicate failure of an integration point

(Requires IFAL = 1, see Section 4.1)

Input / Output

crv Array representation of curves in the keyword deck Input

nnpcrv Number of discretization points(4) per curve Input

qmat Transformation matrix in case of IHYPER =3 Input

cma Additional memory for material data Input

elsiz Characteristic element size Input

idele Element id Input

reject For implicit analysis: set to .true. if the current implicit iterate should

be rejected for some reason

Output

Notes: (1) This means that the symmetric stress and strain 3 × 3 tensors are represented as 6 × 1 vectors.

(2) For shell elements, the through-thickness strain eps(3) shall be updated corresponding to the plane

stress assumption. (3) This corresponds to SHRF on the *SECTION_SHELL or *SECTION_BEAM card. (4) The

curves are internally re-discretized (to the number of points specified by LCINT on the

*CONTROL_SOLUTION - keyword) in order to speed up the curve/table look up.

In LS-DYNA, the symmetric 3 × 3 stress tensor () and the symmetric 3 × 3 strain rate tensor 𝜺̇ are

represented as 6 × 1 vectors, stored in arrays sig and eps, using Voigt notation:

sig(1:6) = (11, 22, 33, 12, 23, 13)

and

 eps(1:6) = (𝜀1̇1, 𝜀2̇2, 𝜀3̇3, 2𝜀1̇2, 2𝜀2̇3, 2𝜀̇13).

Note that this representation differs from for example Ref. [11].

© 2025 ANSYS, Inc. Ansys LS-DYNA user-defined 22

The accumulated effective plastic strain (clearly a history variable) has its own parameter epsp outside

the history variables array hsv. This means that for example basic J2 – plasticity can be defined (at least

for explicit analysis) without any additional history variables (leaving NHV = 0 on

*MAT_USER_DEFINED_MATERIAL_MODELS). In cases where both built-in materials (for example MAT_24)

and user-defined materials are used in the same FE-model, post-processing (for example fringe

plotting the accumulated effective plastic strain) is easier if the user-defined materials also use the

parameter epsp to store the accumulated effective plastic strain (if applicable).

The etype parameter is a string, describing the element type, see Table 3. If a material model should be

generally valid also for structural elements (shells, beams) this will require special care with respect to

different types of stress / strain updates in order to fulfill the assumptions (for example updating the

through-thickness strain eps(3) for shells in order to fulfill sig(3) = 0.). This is illustrated further in

the examples of Section 4.5. If is in any case good practice to add element type checks in the

subroutine and stop LS-DYNA with a reasonable error description (see Section 4.4) in case there is an

attempt to apply a user-defined material model to element types that are not properly supported.

Table 3. The element types and their string values

etype.eq. Description Coment

‘solid’ 3D solid elements

‘sph’ SPH, smoothed particle hydrodynamics Not covered in this Guideline

‘sldax’ 2d solids, axisymmetric Shells elform 14 and 15

‘shl_t’ Shells with thickness stretch Shells elform 25, 26, 27

‘shell’ Shells without thickness stretch All other shell elforms, and thick shell

elform 1, 2

‘tshel’ For thick shells Thick shell elforms 3, 5. May use same

material formulation as 3D solid

elements

‘hbeam’ For beam elements Beam elform 1, 11

‘tbeam’ For trusses Beam elform 3

‘dbeam’ Discrete element beams (springs, dashpots

etc.) see also Section 4.3.1

Beam elform 6.

Not supported in implicit

‘beam’ For beams All other beam elforms

If the variable ITHERMAL = 1 on the *MAT_USER_DEFINED_MATERIAL_MODELS – keyword, the material

temperature at the current integration point is available in the temper parameter. By this, temperature

dependent material behavior can be implemented. The conversion of deformation to heat is taken care

of by LS-DYNA outside the user-defined material models, so there is no need for the user subroutine to

update the temperature.

The user-defined material model can also involve a damage/failure model, and if the variable IFAIL = 1

on the corresponding *MAT_USERDEFINED_MATERIAL_MODELS -keyword, the material model can also

indicate failure of an integration point, by setting the Boolean parameter failel = .true. The

parameter is also input to the subroutine, which means that the logic of the subroutine must handle

what to do with output of for example of stress and plastic strain after an integration point is failed:

should the data be set to zero, or kept constant?

© 2025 ANSYS, Inc. Ansys LS-DYNA user-defined 23

The capa parameter is the transverse shear reduction factor, corresponding to the value of SHRF on

*SECTION_SHELL. How to use it will be demonstrated in the examples of Section 4.5.

For implicit analysis, the material routine can set the parameter reject = .true. to indicate that the

current iterate should be rejected, for example if the increment of plastic strain (depsp in the example

below) is above some tolerance threshold (epsinctol):

 if(depsp.gt.epsinctol)then

 reject = .true.

 return

 endif

This will trigger a RETRY in the non-linear implicit solver, meaning that the time step will be tried again

with a smaller time increment.

For a vectorized implementation, which is invoked by setting IVECT = 1 on the

*MAT_USER_DEFINED_MATERIAL_MODELS -keyword, data for a vector block of elements is passed to the

user-defined material subroutine. It is required to include the file ‘nlqparm´ in the subroutine. The

length of the vector block of integration point data is given by the parameter nlq, and the objective of

the subroutine is to update the element data in the range from lft to llt.

To be more specific, the parameter list for a vectorized implementation of a user defined material

model (in this case umat41v) is:

 subroutine umat41v(cm,d1,d2,d3,d4,d5,d6,sig1,sig2,

 . sig3,sig4,sig5,sig6,epsps,hsvs,lft,llt,dt1siz,capa,

 . etype,tt,temps,failels,nlqa,crv,nnpcrv,cma,qmat,elsizv,idelev,

 . reject)

A brief overview of the parameters is presented in Table 4. The main body of a vectorized

implementation is outlined in pseudo – code below:

 subroutine umat41v (...,lft,llt,...)

 include ‘nlqparm‘

 . . . declare varibles and parametes …

 do k=lft,llt

 . . .

 process element point k, update sig1(k), sig2(k)… sig6(k) etc.

 . . .

 enddo

 return

 end

The implementation of an orthotropic material model can be simplified by setting IORTHO = 1 on the

material card (*MAT_USER_DEFINED_MATERIAL_MODELS). By this, the local (material) coordinate system is

defined by two additional cards, specifying how the coordinate system is formed and updated (this is

described in some detail under *MAT_ORTHOTROPIC_ELASTIC of Ref. [2]). With IORTHO = 1, all data passed

to the constitutive routine umatXX (umatXXv) is in the local system and the transformation back to the

global system is done outside this user defined routine.

© 2025 ANSYS, Inc. Ansys LS-DYNA user-defined 24

Table 4. The arguments to the subroutine umatXXv

Argument Description Input / Output

cm Material constants Input

dX(1)(nlq) The strain vector in element k is (d1(k), d2(k), d3(k),

d4(k), d5(k), d6(k))

Input /Output

sigX(nlq) Local stress in Voigt notation, components of the stress vector is

(sig1(k), sig2(k) … sig6(k))

Input / Output

epsp(nlq) Accumulated effective plastic strains Input / Output

hsvs(nlq, *) History variables Input / Output

lft ,llt Loop over vectors, from lft to llt

dt1siz(nlq) Current time step sizes Input

capa Reduction factor for transverse shear of shells and beams Input

etype String describing element type Input

tt Current problem time Input

temps(nlq) Current temperature in element point k is temps(k) Input / Output

failels(nlq) Failure flag, set to .true. to indicate failure of an integration point Input / Output

crv Array representation of curves in the keyword deck Input

nnpcrv Number of discretization points per curve Input

cma Additional memory for material data Input

qmat Transformation matrices in case of IHYPER =3

elsizv(nlq) Characteristic element sizes Input

idelev(nlq) Element ids Input

reject For implicit analysis: set to .true. if the current implicit iterate

should be rejected for some reason

Output

Notes: (1) X goes from 1 to 6.

4.3.1 Interface for discrete beam elements

Since discrete beam elements (ELFORM = 6 on *SECTION_BEAM), like springs, dashpots etc., normally

work based on changes in element length rather than strains, this data is passed in the eps(1:6) array,

for each degree of freedom, instead of strains. The objective of the user material subroutine for discrete

elements is then to update the (generalized) forces, which are stored in the sig(1:6) array, for each

degree of freedom. Thus, for discrete beam elements,

sig(1:6) = (F1, F2, F3, M1, M2, M3)

and

 eps(1:6) = (du1, du2, du3, dr1,dr2, dr3),

both given in the local element coordinate system, see Figure 4. It is recommended to set scoor = ± 12

on *SECTION_BEAM, for correct update of the beam orientation.

User defined material models for discrete beams are currently not supported in implicit.

© 2025 ANSYS, Inc. Ansys LS-DYNA user-defined 25

Figure 4. Orientation of discrete beams by a third node (n3). The (r,s) – plane is defined by the three points (n1, n2,
n3). See Ref [1] under *SECTION_BEAM for other options of orientation.

4.3.2 Material tangent modulus subroutine utan for implicit analysis

For implicit analysis, also the material tangent modulus tensor for a user defined material must be

provided. An algorithmically consistent implementation is required in order to achieve quadratic

convergence rate in the global equilibrium iterations.

For the user material type XX, the material tangent modulus should be provided by the subroutine

utanXX in the case of a scalar material subroutine and by utanXXv if a vectorized implementation of the

material routine is given. These subroutines are found in the file dyn21utan.f. The input to the

material tangent stiffness subroutine is similar the input to the material routine itself, but LS-DYNA also

provides a flag unsym in case the unsymmetrical linear equation solver is active (by LCPACK = 3 on

*CONTROL_IMPLICIT_SOLVER).

The subroutine utanXX(v) should, based on the input and according to the material law, provide the

consistent4 material tangent modulus. This is to be stored in the 6 × 6 matrix es (or matrices

dsave(nlq, 6, 6) for a vectorized implementation). If the local coordinate system option for

orthotropic materials (IORTHO = 1) is invoked for solid elements, then it should be expressed in this

local system. For shell elements, it should be expressed in the co-rotational system defined for the

current shell element. All transformations back to the global system are made by LS-DYNA after exiting

the user-defined routine.

4 Or ”best possible”

© 2025 ANSYS, Inc. Ansys LS-DYNA user-defined 26

The parameter list for a scalar implementation of a user defined material tangent routine (in this case

utan41) is:

 subroutine utan41(cm,eps,sig,epsp,hsv,dt1,unsym,capa,etype,tt,

 1 temper,es,crv,nnpcrv,failel,cma,qmat)

An overview of the parameters can be found in Table 2, with the main difference that for utan, almost

all parameters except for es are purely input.

Since the subroutine umatXX has no information if an implicit or explicit analysis is taking place from

the default parameters passed to it, one way of communicating this could be to let the utanXX

subroutine set a material history variable (one entry in the hsv – array) as a flag. Then, in case some non-

linear equation is solved (for example iterative radial return) different tolerances and iteration limits

may be set to account for the higher accuracy requirements of an implicit analysis.

To be more formal, LS-DYNA computes the material stiffness matrix based on the constitutive modulus
T

ikjlC , relating the rate-of-deformation tensor to the Truesdell rate of Cauchy stress. The material

stiffness matrix Kmat is expressed as

mat dT JI
iIjJ ikjl

k l

NN
K C

x x






= 

 

where N denotes the Finite Element basis functions. For more details, see Ref. [3].

4.4 Useful predefined subroutines

In this Section, some of the pre-defined subroutines available within the LS-DYNA usermat package

that may come in handy for different common tasks in user defined material subroutines are

described. See also Appendix A of Ref. [1] for detailed descriptions of some of the subroutines. In

addition, some generally useful subroutines for other user-defined interfaces are presented.

Often, related to the material models, evaluation of curves input in the keyword deck via the

*DEFINE_CURVE or *DEFINE_TABLE keywords, for example hardening curves, will be required. For this,

the subroutines crvval and tabval may be called, in order to conveniently and consistently retrieve

the values from the curve (or table) data to the subroutine. For example, in order to evaluate a curve to

retrieve the yield stress corresponding to the current accumulated effective strain, the following could

be used:

 call crvval(crv,nnpcrv,lcid,epsp,sigy,h)

which will look up the curve given by ID lcid and return the yield stress at plastic strain epsp in the

variable sigy, and in addition the slope of the curve (hardening modulus) in the variable h. Note that

the curve ID should be passed as a float (lcid should be declared as real) which is convenient if for

example element 5 of the material constants array cm should be the ID of a curve which specifies the

yield stress as a function of plastic strain, then cm(5) can be passed directly to the subroutine crvval.

The crv is the curve array and nnpcrv is the number of discretization points per curve; these data are

© 2025 ANSYS, Inc. Ansys LS-DYNA user-defined 27

passed as parameters to the user material subroutine for the only purpose of evaluating curves, and

should just be passed on to the look-up subroutines. The vectorized version of the call would be

 call crvval_v(crv,nnpcrv,lcid,epsp_v,sigy_v,h_v,lft,llt)

where the plastic strain epsp_v, the yield stress sigy_v, and slopes h_v will be arrays of dimension nlq.

The curvval and tabval subroutines will extrapolate y – values for x-values beyond the last curve entry

based on the slope of the last segment on the curve. See also Table 5 for an overview of the parameters

to the subroutine curvval.

Table 5. The arguments to the subroutine crvval

Argument Description Input / Output

crv Array representation of curves in the keyword deck Input

nnpcrv Number of discretization points per curve Input

lcid Curve id (from *DEFINE_CURVE) as float Input

epsp x – value Input

sigy y – value Output

h Slope of the curve in point epsp Output

The parameter list for a scalar implementation of the table-lookup subroutine tabval is:

 subroutine tabval(crv,nnpcrv,lcid,dxval,yval,dslope,xval,slope)

see Table 6 for an overview.

The curves are internally re-discretized (to the number of points specified by LCINT on the

*CONTROL_SOLUTION – keyword, default is 100 points) in order to speed up the curve/table look up. If an

evaluation based on the user-input curve data for curve (or table) ID lcid is desired, this can be

requested by passing -1.*lcid to the subroutine.

Table 6. The arguments to the subroutine tabval

Argument Description Input / Output

crv Array representation of curves in the keyword deck Input

nnpcrv Number of discretization points per curve Input

lcid Table id (from *DEFINE_TABLE) as float Input

dxval x2 – value Input

yval y – value Output

dslope
Slope

𝜕𝑦
𝜕𝑥2
⁄ of the curve in point (x1, x2) Output

xval x1 – value Input

slope
Slope

𝜕𝑦
𝜕𝑥1
⁄ of the curve in point (x1, x2) Output

© 2025 ANSYS, Inc. Ansys LS-DYNA user-defined 28

When working with hyperelastic5 materials, there are some useful pre-defined subroutines for

common operations (which will also be discussed in more detail related to the example of Section 4.5.1).

By setting IHYPER = 1 on *MAT_USER_DEFINED_MATERIAL_MODELS, the deformation gradient F will be

passed to the user subroutine in the history variables array, as 9 components right after the requested

number of history variables (NHV).

The transformation of a tensor from the reference configuration to the current configuration by use of

the deformation gradient F is commonly denoted as a push-forward operation (see for example Section

3 of Ref. [13]). The push-forward of a 2nd order tensor is performed by the subroutine push_forward_2s

(or the vectorized version subroutine push_forward_2) which is useful when going from a material

model formulated with respect to the 2nd Piola – Kirchhoff stress tensor S to Cauchy stress , which is

the expected output from the user defined material subroutine. In that case, it is important to

remember that

𝛔 =
𝟏

det 𝐅
𝐅𝐒𝐅𝑻

which means that after the subroutine push_forward_2s is called, also a division by det 𝐅 should be

performed. The push-forward of a 4th order tensor (for example the material stiffness tensor) is

performed by the subroutine push_forward_4s (or the vectorized version subroutine

push_forward_4). Also, for working with shell elements and hyper-elastic materials, the subroutine

compute_f3s updates the third row of the deformation gradient considering the through-thickness

stretch (eps(3) or 33 in the local coordinate system).

For solids elements, the LS-DYNA code will make the stress transformations required to obtain the

objective Jaumann stress rate outside the user subroutine, but in cases where history variables also are

stresses, for example the back stress tensor in a kinematic hardening model, the user must take care to

apply the transformation to the history variables inside the user subroutine.

It is good practice to add some checking to the user subroutine, for example if the user tries to apply

the material model to an unsupported element type, or if some of the input parameters are invalid, or if

the material model is intended for explicit only. One option is to simply write a text message in the

mes0* - files to inform the user, using

write(iomsg,*) ‘Warning message …’

as outlined in Section 3.6.5. Another option is to issue an error message and stop the analysis. This can

be done using the subroutine lsmsg. Calling this subroutine also requires that the file iouinits.inc is

included. An example follows:

 include ‘iounits.inc’

…

 if(etype.eq.’beam’)then

 cerdat(1)=etype

 call lsmsg(3,MSG_SOL+1150,ioall,ierdat,rerdat,cerdat,0)

5 Or a material using a deformation-gradient based formulation

© 2025 ANSYS, Inc. Ansys LS-DYNA user-defined 29

 return

 endif

 if(cm(3).gt.0.5)then

 cerdat(1)=’Illegal Poissons ratio’

 call lsmsg(3,MSG_SOL+1447,ioall,ierdat,rerdat,cerdat,0)

 return

 endif

which will output

*** Error 41151 (SOL+1151)

 element type beam can not be

 run with the current material model.

in case an attempt is made to apply the user defined material model to a beam element, and

*** Error 41447 (SOL+1447)

 Illegal Poissons ratio.

in case an invalid value is passed by the user as parameter 3 from the keyword file.

The relevant parameters to modify in the subroutine call are:

• MSG_SOL + XXX, for changing the message ID / type

• cerdat(1) to specify what error message to print.

The error message ID MSG_SOL + 1447 will display the text passed to cerdat(1) as in the second part of

the above example.

Entities of the analysis model (nodes, parts, elements, etc.) will be stored using internal ID:s within the

LS-DYNA code. These internal ID:s may differ from those specified by the user in the keywordfile. For

example, if the user defines a node with ID 103, it may be assigned an internal ID of 1. In many cases,

when handling user input to the user-defined interfaces, it will be required to convert between

internal/external entity ID:s. Some useful functions for this purpose are listed in

Table 7. In some cases, for example beam orientation nodes6, an offset may be applied to the internal

node numbers. An extra check is then required before converting internal to external node numbers:

if (i3.gt.1000000000) i3=i3-1000000000

6 To obtain useful internal numbering of beam orientation nodes, it is required to set NREFUP =
1 on *CONTROL_OUTPUT.

© 2025 ANSYS, Inc. Ansys LS-DYNA user-defined 30

Table 7. List of some functions for converting entity ID:s between internal and external (user defined) numbering

 Internal → External ID External → Internal ID

Entity mpp smp

Node lqfinv(ix,1) (1) lqfe(ex,1)(2) lqf8(ex,1)

Element solid lqfinv(ix,2) lqfe(ex,2) lqf8(ex,2)

Element beam lqfinv(ix,3) lqfe(ex,3) lqf8(ex,3)

Element shell lqfinv(ix,3) lqfe(ex,4) lqf8(ex,4)

Part lqfmiv(ipid) lqfm(epid)

Curve ilcid(iid) lcids(eid)

Notes: (1) There is also a function lqfinv8 returing INTERGER*8. (2) For mpp/LS-DYNA, lqfe will return -1

in case an entity is not found in the current mpi thread.

4.5 Subroutine examples

In this Section, two examples of user defined material models are presented, with quite extensive

descriptions. Both Fortran code and keyword input are presented, while the complete examples, see

also Section 4.6, can be found as attachments to this document. It shall be stressed that these

examples are not intended for use in any kind of production analysis, and they may very well contain

errors or flaws.

The Fortran files (dyn21umats.f, dyn21umatv.f and dyn21utan.f) of the usermat package already

come with some examples of subroutines for user defined materials (which may vary slightly

depending on version) and some general routines that can be used as a starting point for user defined

subroutines, for example metalshl, metalsld (in dyn21umats.f) and metaltan (in dyn21utan.f) for J2 –

plasticity. Also, Appendix A of Ref. [1] has some examples, including descriptions.

4.5.1 The Saint-Venant Kirchhoff model for solids and shells

This section describes the implementation of the Saint-Venant Kirchhoff model, a simple compressive

isotropic hyperelastic material, for solids and shells. Using the Green-Lagrange strain tensor,

E =
1

2
(FTF − I)

this model gives the 2nd Piola-Kirchhoff stress tensor S via a linear relation,

S = ℂ: 𝐄

where ℂ is a fourth order stiffness tensor (this is basically what the subroutine utanXX should return).

Using the Lamé constants µ and , the strain-energy function for the Saint-Venant Kirchhoff model is

(see for example Section 6.5 of Ref. [13])

Ψ(𝐄) =
λ

2
(tr𝐄)2 + μ𝑡𝑟𝐄2

which, by

𝐒 =
∂Ψ

∂𝐄

© 2025 ANSYS, Inc. Ansys LS-DYNA user-defined 31

gives

𝑆𝑖𝑗 = 2μ𝐸𝑖𝑗 + λ𝐸𝑘𝑘δ𝑖𝑗

The first step in implementing a material model, once the theory is known, is to consider the

parameters to be input by the user on the *MAT_USER_DEFINED_MATERIAL_MODELS – card. In the present

implementation, it was decided to let the user input Youngs modulus E and Poisson’s ratio , since

these elasticity parameters are often used in engineering applications, rather than the Lamé constants.

By setting IHYPER = 1 on the *MAT_USER_DEFINED_MATERIAL_MODELS – card, the deformation gradient (in

Voight – notation, with components 𝐹11, 𝐹21, 𝐹31, 𝐹12, 𝐹22, 𝐹32, 𝐹13, 𝐹23 and𝐹33) will be passed to the user

subroutine in the history variables array hsv, on positions hsv(NHV+1:NHV+9). In this case, for a basic

implementation of an elastic material, no history variables are required, so F can be retrieved from

hsv(1:9). There is no indication by the interface parameters to the user subroutine (see Table 2) if the

IHYPER variable actually is set to one, so the user subroutine will depend on correct user input.

In this case, the keyword interface to the Sain-Venant Kirchhoff model will be

*MAT_USER_DEFINED_MATERIAL_MODELS_TITLE

Simple hyperelastic material UMAT43

$#1 MID RO MT LMC NHV IORTHO IBULK IG

 mat_id  43 8 3 4
$#2 IVECT IFAIL ITHERM IHYPER IEOS LMCA UNUSED UNUSED

 1

$# P1 P2 P3 P4 P5 P6 P7 P8

 Young’s Poisson’s K G el.ID

where blue text indicates that the user should input sensical data, and red text indicates values that

should not be changed (since these fixed values also will be assumed by the Fortran implementation).

By specifying an element ID for P5, some debug output (written to the mes0* - files) will be activated.

The user subroutine umat43 will be used to implement the material model in Fortran code. The first part

of the subroutine follows:

 subroutine umat43 (cm,eps,sig,epsp,hsv,dt1,capa,etype,tt,

 1 temper,failel,crv,nnpcrv,cma,qmat,elsiz,idele,reject)

 include 'nlqparm'

 include 'bk06.inc'

 include 'iounits.inc'

 dimension cm(*),eps(*),sig(*),hsv(*),crv(lq1,2,*),cma(*)

 character*5 etype

 logical failel

C --

 real S(6), defgrad(3,3), green(3,3), detF, g, g2

 real p, davg, lam, sigold, epsold, tol, deps

 integer iter, limiter

 tol=1.E-7

 limiter=10

C – initial output

 if (ncycle.le.1) then

 if(cm(2).ge.5.00000E-01)then

 write(iomsg,*) 'mat43 --- illegal possions number,',cm(2)

 cerdat(1)='Illegal Poissons number'

 call lsmsg(3,MSG_SOL+1447,ioall,ierdat,rerdat,cerdat,0)

© 2025 ANSYS, Inc. Ansys LS-DYNA user-defined 32

 endif

 if(idele.eq.int(cm(5)))then

 write(iomsg,*) 'mat43 --- my hyperelastic code. E=',cm(1),

 1 'nu=',cm(2),'capa=',capa

 endif

 endif

C -- Material parameters

 g2 =.5*abs(cm(1))/(1.+cm(2))

 lam = g2*cm(2)/(1.-2.*cm(2))

This part starts with the declaration of the subroutine, as described in Section 4.3, then some variable

declarations follow. The local variables of the subroutine are also declared, for example S(6) is an array

for storing the 2nd Piola-Kirchhoff stress tensor, defgrad(3,3) is an array for storing the deformation

gradient F, and detF for its determinant. The variable g2 is the shear modulus G or µ, and lam is /2.

Some initial checking of input parameters is done, and if cm(5) gives an element ID, also a message will

be printed in the mes0* - files, to confirm that the umat43 is active.

The next part of the subroutine performs the stress update for solid elements. It starts with storing the

deformation gradient in the matrix defgrad from the hsv array and computing its determinant.

C -- for solids

 if(etype.eq.'solid')then

C -- extract deformation gradient

 defgrad(1,1) = hsv(1)

 defgrad(2,1) = hsv(2)

 defgrad(3,1) = hsv(3)

 defgrad(1,2) = hsv(4)

 defgrad(2,2) = hsv(5)

 defgrad(3,2) = hsv(6)

 defgrad(1,3) = hsv(7)

 defgrad(2,3) = hsv(8)

 defgrad(3,3) = hsv(9)

c ---

 detF = defgrad(1,1)*defgrad(2,2)*defgrad(3,3)+

 1 defgrad(1,2)*defgrad(2,3)*defgrad(3,1)+

 2 defgrad(1,3)*defgrad(2,1)*defgrad(3,2)-

 3 defgrad(1,3)*defgrad(2,2)*defgrad(3,1)-

 4 defgrad(1,2)*defgrad(2,1)*defgrad(3,2)-

 5 defgrad(1,1)*defgrad(2,3)*defgrad(3,2)

In the final part of the stress update for solid elements, the Green-Lagrange (or to be exact 2E) strain is

computed, and based on this the 2nd Piola-Kirchhoff stress, which is finally transformed to Cauchy

stress via a push-forward operation followed by division by det F.

C -- compute 2*Green strain

 do j=1,3

 do i=1,j

 green(i,j)= sum(defgrad(:,i)*defgrad(:,j))

 green(j,i)= green(i,j)

 enddo

 enddo

 green(1,1) = green(1,1) - 1

 green(2,2) = green(2,2) - 1

© 2025 ANSYS, Inc. Ansys LS-DYNA user-defined 33

 green(3,3) = green(3,3) - 1

 davg=lam*(green(1,1)+green(2,2)+green(3,3))

C -- Piola-Kirchhoff

 S(1)=g2*green(1,1)+davg

 S(2)=g2*green(2,2)+davg

 S(3)=g2*green(3,3)+davg

 S(4)=g2*green(1,2)

 S(5)=g2*green(2,3)

 S(6)=g2*green(1,3)

C --- push forward for Cauchy stress

 call push_forward_2s(S(1),S(2),S(3),S(4),S(5),S(6),hsv(1),

 1 hsv(2),hsv(3),hsv(4),hsv(5),hsv(6),hsv(7),hsv(8),hsv(9))

 sig(1:6) = S/detF

where the symmetry of E has been utilized in the nested do – loops. This concludes the stress update

for solid elements. The strain and stress computations for shell elements are much more involved, since

the condition 33 = 0 (sig(3) = 0) needs to be fulfilled. An iterative procedure, following the “Sample

user subroutine 45” of Ref. [1] Appendix A, is applied. The secant method is used, which requires two

starting guesses. The first one is given by plane stress elasticity, with

ϵ33 = −
ν

1 − ν
(ϵ11 + ϵ22)

and the second staring guess is simply ϵ33 = 0. The Fortran code follows:

 else if(etype.eq.'shell')then

C --- for shells

C --- secant iterations for zero z-stress, find eps(3)

 deps = 0.

 do iter=1,limiter

C first thickness strain increment initial guess

c assuming Poisson's ratio different from zero

c

 if (iter.eq.1) then

 eps(3)=-cm(2)*(eps(1)+eps(2))/(1.-cm(2))

c

c second thickness strain increment initial guess

c

 else if (iter.eq.2) then

 sigold=sig(3)

 epsold=eps(3)

 eps(3)=0.

c

c --- secant update of thickness strain increment

c

 else if (abs(sig(3)-sigold).gt.0.0) then

 deps=-(eps(3)-epsold)/(sig(3)-sigold)*sig(3)

 sigold=sig(3)

 epsold=eps(3)

 eps(3)=eps(3)+deps

 endif

c

c --- update last row of F

 call compute_f3s(hsv(3),hsv(6),hsv(9),eps(3))

© 2025 ANSYS, Inc. Ansys LS-DYNA user-defined 34

After that follows computation of the Green-Lagrange strain and 2nd Piola-Kirchhoff stress, just as for

solids:

C --- compute strain and stress

 defgrad(1,1) = hsv(1)

 defgrad(2,1) = hsv(2)

 defgrad(3,1) = hsv(3)

 defgrad(1,2) = hsv(4)

 defgrad(2,2) = hsv(5)

 defgrad(3,2) = hsv(6)

 defgrad(1,3) = hsv(7)

 defgrad(2,3) = hsv(8)

 defgrad(3,3) = hsv(9)

 detF = defgrad(1,1)*defgrad(2,2)*defgrad(3,3)+

 1 defgrad(1,2)*defgrad(2,3)*defgrad(3,1)+

 2 defgrad(1,3)*defgrad(2,1)*defgrad(3,2)-

 3 defgrad(1,3)*defgrad(2,2)*defgrad(3,1)-

 4 defgrad(1,2)*defgrad(2,1)*defgrad(3,2)-

 5 defgrad(1,1)*defgrad(2,3)*defgrad(3,2)

C -- compute Green strain

 do j=1,3

 do i=1,j

 green(i,j)= sum(defgrad(:,i)*defgrad(:,j))

 green(j,i)= green(i,j)

 enddo

 enddo

 green(1,1) = green(1,1) - 1

 green(2,2) = green(2,2) - 1

 green(3,3) = green(3,3) - 1

 davg=lam*(green(1,1)+green(2,2)+green(3,3))

C -- Piola-Kirchhoff stress

 S(1)=g2*green(1,1)+davg

 S(2)=g2*green(2,2)+davg

 S(3)=g2*green(3,3)+davg

 S(4)=g2*green(1,2)

 S(5)=g2*green(2,3)

 S(6)=g2*green(1,3)

The final transformation to Cauchy stress differs slightly, since the shear stress components 23, 13

(sig(5:6)) are multiplied by capa, the reduction factor for transverse shear in shells (corresponding to

SHRF of the *SECTION_SHELL – keyword). Also, in order to save some floating-point operations, the

update of these stress components is moved outside the secant iterations do – loop. The final part of

the code for shell elements follows:

C --- push forward to get Cauchy stress

 call push_forward_2s(S(1),S(2),S(3),S(4),S(5),S(6),hsv(1),

 1 hsv(2),hsv(3),hsv(4),hsv(5),hsv(6),hsv(7),hsv(8),hsv(9))

 sig(1:4) = S(1:4)/detF

C --- termination criteria

 if(abs(sig(3)).lt.tol*(abs(sig(1))+abs(sig(2))+abs(sig(4))))

 1 exit

 enddo

 sig(5:6) = capa*S(5:6)/detF

© 2025 ANSYS, Inc. Ansys LS-DYNA user-defined 35

Finally, an error message will be issued in case attempts are made to apply this user defined material

model to other element types than solids or shells:

 else

 cerdat(1)=etype

 call lsmsg(3,MSG_SOL+1151,ioall,ierdat,rerdat,cerdat,0)

 endif

 return

 end

which concludes the user defined material subroutine. For implicit analysis, also the tangent modulus

must be computed. In this case, a push-forward of ℂ is (more or less) what is required. The user

subroutine utan43 is used to implement the tangent modulus in Fortran code. The first part of the

subroutine, which starts with the subroutine declaration according to Section 4.3.1, and some variable

declarations follows:

 subroutine utan43(cm,eps,sig,epsp,hsv,dt1,unsym,capa,etype,tt,

 1 temper,es,crv,nnpcrv,failel,cma,qmat)

c

 include 'nlqparm'

 dimension cm(*),eps(*),sig(*),hsv(*),crv(lq1,2,*),cma(*)

 integer nnpcrv(*)

 dimension es(6,*),qmat(3,3)

 logical failel,unsym

 character*5 etype

 real*8 f1,f2,f3, defgrad(3,3), detF, detFinv

 real*8 dmx(6,6)

Just as for umat43, the deformation gradient F is stored in the defgrad matrix, and the determinant is

computed:

c

 defgrad(1,1) = hsv(1)

 defgrad(2,1) = hsv(2)

 defgrad(3,1) = hsv(3)

 defgrad(1,2) = hsv(4)

 defgrad(2,2) = hsv(5)

 defgrad(3,2) = hsv(6)

 defgrad(1,3) = hsv(7)

 defgrad(2,3) = hsv(8)

 defgrad(3,3) = hsv(9)

 detF = defgrad(1,1)*defgrad(2,2)*defgrad(3,3)+

 1 defgrad(1,2)*defgrad(2,3)*defgrad(3,1)+

 2 defgrad(1,3)*defgrad(2,1)*defgrad(3,2)-

 3 defgrad(1,3)*defgrad(2,2)*defgrad(3,1)-

 4 defgrad(1,2)*defgrad(2,1)*defgrad(3,2)-

 5 defgrad(1,1)*defgrad(2,3)*defgrad(3,2)

 detFinv = 1.0 / max(detF, 1.E-12)

In the last line, some extra caution is taken when computing 1/det F, in order to avoid division by zero.

The next step is to populate the dmx – matrix, which holds the stiffness tensor ℂ (in the reference

configuration). This is achieved by the following lines of code:

 f1 = cm(1)/(1.0+cm(2))/(1.0-2.0*cm(2))

© 2025 ANSYS, Inc. Ansys LS-DYNA user-defined 36

 f2 = 1.0 - cm(2)

 f3 = 0.5 - cm(2)

 dmx = 0

 dmx(1,1) = f1*f2

 dmx(2,2) = dmx(1,1)

 dmx(3,3) = dmx(1,1)

 dmx(1,2) = f1*cm(2)

 dmx(1,3) = dmx(1,2)

 dmx(2,3) = dmx(1,2)

 dmx(2,1) = dmx(1,2)

 dmx(3,1) = dmx(1,3)

 dmx(3,2) = dmx(2,3)

C ---

 dmx(4,4) = f1*f3

 dmx(5,5) = dmx(4,4)

 dmx(6,6) = dmx(4,4)

The transformation to the current configuration is done by

C --- push forward

 call push_forward_4s(dmx,hsv(1),

 1 hsv(2),hsv(3),hsv(4),hsv(5),hsv(6),hsv(7),hsv(8),hsv(9))

 es(1:6, 1:6) = dmx * detFinv

In addition, in order to account for the transverse shear reduction capa for shells the modification

c --- special for shell

 if(etype.eq.'shell')then

 es(5,5) = capa * dmx(5,5) * detFinv

 es(6,6) = capa * dmx(6,6) * detFinv

 endif

 return

 end

is made, which also concludes the tangent modulus subroutine.

4.5.2 J2-plasticity for solids and shells

In this Section, the implementation of a hypoelastic-plastic material model with isotropic hardening for

solids and shells is described. For a detailed theoretical background, see for example Ref. [11] and

especially Section 17.4.1 for details on the derivation. The yield condition is

𝑓(𝛔, ϵ𝑝) = σ𝑣𝑀 − σ𝑦(ϵ𝑝) = 0

where ϵ𝑝 is the accumulated effective plastic strain, and σ𝑣𝑀 is the von Mises effective stress, which is

directly proportional to the norm of the stress deviator s given by

𝑠𝑖𝑗 = σ𝑖𝑗 − δ𝑖𝑗
σ𝑘𝑘
3

The von Mises effective stress is then given by

σ𝑣𝑀 = √
3

2
𝑠𝑖𝑗𝑠𝑖𝑗

© 2025 ANSYS, Inc. Ansys LS-DYNA user-defined 37

The hardening function σ𝑦(ϵ𝑝) is often given as a piecewise linear curve, determined from material

testing.

An efficient implementation of J2 – plasticity is obtained by the radial return algorithm [4] [7] [11][21]. The

starting point is the stress and strain at state 1, and the objective is to compute stress and increment of

effective plastic strain at stat 2, given the strain increment Δϵ𝑖𝑗 . First, an elastic trial stress is computed

according to

𝛔𝑡 = 𝛔(1) + ℂ: Δ𝛜

where ℂ is the isotropic elastic stiffness tensor. From the elastic trial stress, the von Mises effective

stress is calculated as

σ𝑣𝑀
𝑡 = √

3

2
𝑠𝑖𝑗
𝑡 𝑠𝑖𝑗

𝑡

If the effective trial stress is below the yield limit, 𝑓(𝛔𝐭, ϵ𝑝) ≤ 0, the elastic trial stress is accepted, and no

further action is needed. In case yielding is indicated, the increment in effective plastic strain Δϵ𝑝 to

satisfy the yield criterion must be determined. For solid elements, this can be done, following Box 17.5

of Ref. [11], by solving

𝑓𝑝 = σ𝑣𝑀
𝑡 − 3𝐺Δϵ𝑝 − σ𝑦 (ϵ𝑝

(1)
+ Δϵ𝑝) = 0

using Newton’s method, that is

1. Set Δϵ𝑝
1
= 0

2. Compute Δϵ𝑝
𝑘+1

= Δϵ𝑝
𝑘
−

𝑓𝑝
𝑘

𝑑𝑓𝑝
𝑘

𝑑ϵ𝑝
𝑘⁄

 = Δϵ𝑝
𝑘
+

𝑓𝑝
𝑘

3𝐺+𝐻
 where 𝐻 =

𝑑σ𝑦(ϵ𝑝
𝑘
)

𝑑ϵ𝑝
𝑘

3. Compute 𝑓𝑝𝑘+1

4. If |𝑓𝑝𝑘+1| > 𝑡𝑜𝑙 then let 𝑘 = 𝑘 + 1 and go to 2.

5. Update stress and accumulated effective plastic strain:
ϵp
(2)
= ϵp

(1)
+ Δϵ𝑝

𝑠𝑖𝑗
(2) =

σ𝑦
(2)

σ𝑣𝑀
𝑡 𝑠𝑖𝑗

𝑡

σ𝑖𝑗
(2) = 𝑠𝑖𝑗

(2) +
1

3
σ𝑘𝑘
𝑡 δ𝑖𝑗

In the case of linear hardening, where H = constant, this procedure will converge exactly in one

iteration. From step 2 of the Newton scheme, it can also be noted that the slope of the hardening curve

in practice will be limited by

3𝐺 + 𝐻 > 0 ⇔ 𝐻 > −3𝐺

which means that from a mathematical viewpoint, a negative slope of the hardening curve can be

tolerated, as long as it fulfills this condition.

For shell elements, some additional modifications are needed to fulfill 𝜎33 = 0 and account for the

reduction factor for transverse shear. This will be discussed in more detail in the context of the Fortran

coding for shell elements below.

© 2025 ANSYS, Inc. Ansys LS-DYNA user-defined 38

The keyword interface for this material model should allow for input of elastic constants (Young’s

modulus E and Poisson’s ration ) and a hardening curve. In addition, the user is given some control

over the Newton iterations outlined above, with respect to the required tolerance and the maximum

allowed number of iterations. Since epsp already is a separate parameter in the interface to the user

subroutine, see Table 2, no history variables are, strictly speaking, required in this case. Still, one history

variable will be used to indicate if yielding takes place or not. This will be used by the tangent stiffness

routine utan later on. In all, this means that the keyword interface for the J2 – plasticity model will be

*MAT_USER_DEFINED_MATERIAL_MODELS_TITLE

J2 plasticity by UMAT41

$#1 MID RO MT LMC NHV IORTHO IBULK IG

 mat_id  41 8 3 4
$#2 IVECT IFAIL ITHERM IHYPER IEOS LMCA UNUSED UNUSED

$# P1 P2 P3 P4 P5 P6 P7 P8

 Young’s Poisson’s K G LCID tol limiter el.ID

where blue text indicates that the user should input sensical data, and red text indicates values that

should not be changed (since these fixed values also will be assumed by the Fortran implementation).

The curve ID of the hardening curve (*DEFINE_CURVE) is input as P5. The tolerance for the Newton

iterations is optionally input as P6 and the maximum number of allowed iterations is optionally input as

P7. For additional debug output, an element ID may be specified as P8.

It shall be mentioned that the LS-DYNA usermat package already contains the subroutines metalshl,

metalsld and metaltan (in dyn21umats.f and dyn21utan.f) which are ready-to-use subroutines for J2

– plasticity (but have no Newton iterations for the radial return).

The user subroutine umat41 will be used to implement the material model in Fortran code. The first part

of the subroutine follows:

 subroutine umat41 (cm,eps,sig,epsp,hsv,dt1,capa,etype,tt,

 1 temper,failel,crv,nnpcrv,cma,qmat,elsiz,idele,reject)

c

c**

c| Livermore Software Technology Corporation (LSTC) |

c| -- |

c| Copyright 1987-2008 Livermore Software Tech. Corp |

c| All rights reserved |

c**

c

c isotropic elastic-plastic material

c

c Variables

c

c cm(1)=first material constant, here young's modulus

c cm(2)=second material constant, here poisson's ratio

c .

c .

c .

c cm(n)=nth material constant

c

© 2025 ANSYS, Inc. Ansys LS-DYNA user-defined 39

Here, many lines of detailed comments of the original Fortran file are omitted. The comments of the

files of the usermat package in general provide valuable information in connection with the respective

subroutine.

After this follows some variable declarations and initializations. The array sshl(6) will hold temporary

values of the stress tensor. The arrays s(6) and s2(6) will be used for stress deviator values. The von

Mises effective stress will be stored in the variable vonMises. The history variable hsv(1) will indicate if

yielding takes place or not, as a way of communicating this to the utan41 subroutine.

 include 'nlqparm'

 include 'bk06.inc'

 include 'iounits.inc'

 dimension cm(*),eps(*),sig(*),hsv(*),crv(lq1,2,*),cma(*),qmat(3,3)

 integer nnpcrv(*)

 logical failel,reject

 character*5 etype

 integer idele

c

 real vonMises,h,sigy,s(6),depsp,gc,tol, ep_tr

 real sig3e,sig3p, eps3e, eps3p, sshl(6), f1, f2

 real s2(6),p2,f3, strainlim

 integer iter, limiter

Then tolerances (tol) and iteration limit (limiter) are initialized, with their default values, but if the

user provides reasonable input in cm(6) and cm(7), it replaces the default values. The strainlim is a

(presently hard-coded) limit on the increment of accumulated effective plastic strain (Δϵ𝑝 above); for

implicit, a reject will be issued in case this limit is exceeded. After that, an initial message is written to

the mes0* - files, to confirm that the umat41 is active. Finally, some material constants are computed,

and the yield limit for the current value of effective plastic strains is evaluated by crvval.

 tol=1.E-4

 limiter=10

 if(cm(6).gt.0.)

 1 tol=cm(6)

 if(cm(7).gt.0.)

 1 limiter = int(cm(7))

 strainlim = 5.E-2

c

 if (ncycle.le.1) then

 if(idele.eq.int(cm(8)))then

 write(iomsg,*) 'mat41:iterative elastoplastic code. E=',cm(1),

 1 'nu=',cm(2),'lcid=',cm(5)

 write(iomsg,*) 'mat41:limiter =',limiter,'tol=',tol

 endif

 endif

c

c compute shear modulus, g

c E is cm(1), pr is cm(2)

c

 g2 =abs(cm(1))/(1.+cm(2))

 g =.5*g2

 gc =capa*g

© 2025 ANSYS, Inc. Ansys LS-DYNA user-defined 40

 hsv(1) = 0.

C -- Yield curve val and tangent h : starting vals

 call crvval(crv,nnpcrv,cm(5),epsp,sigy,h)

Next follows the implementation for solid elements, starting with computation of the

elastic trial stress:

 if(etype.eq.'solid')then

C

C --- For solids (iterative) ---

C Compute elastic trial stress

c

 davg=-sum(eps(1:3))/3.

 p=-davg*abs(cm(1))/(1.-2.*cm(2))

 sig(1:3)=sig(1:3)+p+g2*(eps(1:3)+davg)

 sig(4:6)=sig(4:6)+g*eps(4:6)

C --- Effective stress, first the deviatoric

 s(1:3) = sig(1:3)-sum(sig(1:3))/3.

 s(4:6) = sig(4:6)

c compute the von Mises stress

 vonMises = s(1)**2+s(2)**2+s(3)**2+2.*(s(4)**2+s(5)**2+s(6)**2)

 vonMises = sqrt(1.5*vonMises)

 if (vonMises.le.sigy) then

 return

 else

 hsv(1)= 1.

 endif

At this point, the subroutine will return in case of an elastic response. In the following, the iterative

radial return scheme outlined above is implemented. In the convergence check, the tolerance is

multiplied by the current yield stress to obtain a relative measure. The iterations will be aborted if the

convergence criterion is met, otherwise limiter iterations will be performed, and a message is printed.

Also, an extra message is written for user feedback.

C - radial return, iterative

 ep_tr=epsp

 depsp = 0.

 f1 = vonMises - sigy

 do iter=1,limiter

 depsp = depsp + f1/(h+3.*g)

C re-eval hardening curve

 ep_tr = epsp + depsp

 call crvval(crv,nnpcrv,cm(5),ep_tr,sigy,h)

 f1 = vonMises - 3.*g*depsp - sigy

 if(abs(f1).lt.tol*sigy)

 1 exit

 enddo

C --- debug

 if(iter.ge.limiter)then

 write(iomsg,*) 'mat41:iter=',iter,'idele=',idele,

 1 'stressdiff=',abs(sigy-vonMises)

 endif

 if(idele.eq.int(cm(8)))then

 write(iomsg,*) 'mat41:iter=',iter,'idele=',idele,

 1 'stressdiff=',abs(sigy-vonMises),'f1*sigy=',f1*sigy,

 2 'depsp=',depsp

© 2025 ANSYS, Inc. Ansys LS-DYNA user-defined 41

 endif

Finally, the stress is updated, and this concludes the part of the subroutine for solid elements. The

check for the increment in effective plastic strain is performed after the stress update, since the reject

option is only active for implicit analysis.

 epsp = ep_tr

 s2 = sigy*s/vonMises

 p2 = sum(sig(1:3))/3.

 sig(1:3) = s2(1:3)+p2

 sig(4:6) = s2(4:6)

 if(depsp.gt.strainlim)then

 reject = .true.

 endif

Then comes the part of the implementation for shell elements. Due to the requirement of zero normal

stress, this becomes more involved. In addition, considering the reduction factor for transverse shear

capa also complicates the calculations. The present approach uses a two-step scheme, where first the

through-thickness strain 33 is estimated by linear interpolation between two extrema. Then, the stress

state is determined using a slightly different approach for the radial return algorithm based on the

estimate of 33. This solution approach for shells is adopted from the subroutine metalshl already

present in the usermat package.

First, the elastic trial stress is computed, and yielding is checked.

 elseif(etype.eq.'shell')then

C

C --- For shells (iterative) ---

C Compute elastic trial stress and eps3

c

 eps(3) = -cm(2)*(eps(1)+eps(2))/(1.-cm(2))

 davg=-sum(eps(1:3))/3.

 p=-davg*abs(cm(1))/(1.-2.*cm(2))

 sshl(1:2)=sig(1:2)+p+g2*(eps(1:2)+davg)

 sshl(3)=0.

 sshl(4)=sig(4)+g*eps(4)

 sshl(5:6)=sig(5:6)+gc*eps(5:6)

C --- Effective stress, first the deviatoric

 s(1:3) = sshl(1:3)-sum(sshl(1:2))/3.

 s(4:6) = sshl(4:6)

c compute the von Mises stress

 vonMises = s(1)**2+s(2)**2+s(3)**2+2.*(s(4)**2+s(5)**2+s(6)**2)

 vonMises = sqrt(1.5*vonMises)

C -- check yield

 if(vonMises.le.sigy)then

 sig(1:6) = sshl(1:6)

 return

 endif

Again, if the response is elastic the subroutine returns. In the following, the required updates of

stresses, effective plastic strain and through-thickness strain due to the plastic deformation are

performed. The first step is to estimate the through-thickness strain. This is done from linear

interpolation between the first elastic estimate, and a fully plastic estimate.

© 2025 ANSYS, Inc. Ansys LS-DYNA user-defined 42

C --- secant iterations for eps(3) estimate

C radial return from elastic

 f1=4.5*g*(capa-1.)*(sshl(5)**2+sshl(6)**2)/(vonMises**2)

 depsp = (vonMises - sigy)/(h+3.*g+f1)

 sig3e = - 3.*g*depsp*s(3)/vonMises

 eps3e = eps(3)

C --- first point is (eps3e, sig3e)

C second point, radial return from plastic

 eps3p = -eps(1)-eps(2)

 sshl(1:2)=sig(1:2)+g2*eps(1:2)

 sshl(3) = g2*eps3p

C --- Effective stress, first the deviatoric

 s(1:3) = sshl(1:3)-sum(sshl(1:3))/3.

c compute the von Mises stress

 vonMises = s(1)**2+s(2)**2+s(3)**2+2.*(s(4)**2+s(5)**2+s(6)**2)

 vonMises = sqrt(1.5*vonMises)

C -- check yield, radial return if required

 if(vonMises.ge.sigy)then

 f1=4.5*g*(capa-1.)*(sshl(5)**2+sshl(6)**2)/(vonMises**2)

 depsp = (vonMises - sigy)/(h+3.*g+f1)

 sshl(3) = sshl(3) - 3.*g*depsp*s(3)/vonMises

 endif

C --- second point is (eps3p, sshl(3))

C linear interpolation between p.1 and p.2

 if (abs(sig3e-sshl(3)).gt.tol*

 1 max(abs(sig3e),abs(sig3p))) then

 eps(3)=eps3e-sig3e*(eps3e-eps3p)/(sig3e-sshl(3))

 else

 eps(3)=eps3p

 endif

In this case, the variable f1 holds extra terms of 𝑑σ𝑣𝑀
𝑑Δϵ𝑝

 due to the transverse shear reduction factor. It

vanishes in the case capa = 1. After this, it assumed that 33 is known, and it remains to determine the

corresponding stress state. This starts with again computing an elastic trial stress:

c

c now we have estimate for eps(3): update stresses

c

 davg=-sum(eps(1:3))/3.

 p=-davg*abs(cm(1))/(1.-2.*cm(2))

 sig(1:2)=sig(1:2)+p+g2*(eps(1:2)+davg)

 sig(3)=0

 sig(4)=sig(4)+g*eps(4)

 sig(5:6)=sig(5:6)+gc*eps(5:6)

C --- Effective stress, first the deviatoric

 s(1:3) = sig(1:3)-sum(sig(1:3))/3.

 s(4:6) = sig(4:6)

c compute the von Mises stress

 vonMises = s(1)**2+s(2)**2+s(3)**2+2.*(s(4)**2+s(5)**2+s(6)**2)

 vonMises = sqrt(1.5*vonMises)

 if (vonMises.le.sigy) then

 return

 else

 hsv(1)= 1.

© 2025 ANSYS, Inc. Ansys LS-DYNA user-defined 43

 endif

 ep_tr=epsp

 depsp = 0.

 f2 = 3.*g/vonMises

 f3 = f2*capa

Then, as the final step for shell elements, iterative radial return is performed. For shells, a different

approach than for solids is used, where the stresses are updated in each iteration. This makes it easier

to account also for the transverse shear reduction factor. If the limiter iterations are not enough to

reach the specified tolerance, a message is printed.

 do iter=1,limiter

C --- radial return

 f1=4.5*g*(capa-1.)*(sig(5)**2+sig(6)**2)/(vonMises**2)

 depsp = depsp + (vonMises - sigy)/(h+3.*g+f1)

 sshl(1:2)= sig(1:2)-f2*depsp*s(1:2)

 sshl(3)=0

 sshl(4)= sig(4)-f2*depsp*s(4)

 sshl(5:6)= sig(5:6)-f3*depsp*s(5:6)

c -- compute the von Mises stress

 s2(1:3) = sshl(1:3)-sum(sshl(1:3))/3.

 vonMises = sum(s2(1:3)**2)+2.*sum(sshl(4:6)**2)

 vonMises = sqrt(1.5*vonMises)

C re-eval hardening curve

 ep_tr = epsp + depsp

 call crvval(crv,nnpcrv,cm(5),ep_tr,sigy,h)

C --- check convergence

 if(abs(sigy-vonMises).lt.tol*abs(sigy))

 1 exit

 enddo

C --- debug

 if(iter.ge.limiter)then

 write(iomsg,*) 'mat41:iter=',iter,'idele=',idele,

 1 'stressdiff=',abs(sigy-vonMises)

 endif

 sig(1:6)=sshl(1:6)

 epsp = ep_tr

 if(depsp.gt.strainlim)then

 reject = .true.

 endif

Most likely, the above implementation for shell element can be improved, both for increased efficiency

and accuracy. The subroutine ends with printing an error message, in case attempts are made to apply

the material model to other element types than solids or shells.

C --- unsupported element formulation ==> Error termination

 else

 cerdat(1)=etype

 call lsmsg(3,MSG_SOL+1151,ioall,ierdat,rerdat,cerdat,0)

 endif

 end

For implicit analysis, also the tangent modulus is required. The user subroutine utan41 is used to

implement the tangent modulus in Fortran code. The implementation for solids is based on the results

presented in Section 12.2 of Ref. [11], that is

© 2025 ANSYS, Inc. Ansys LS-DYNA user-defined 44

𝐶𝑖𝑗𝑘𝑙
𝑒𝑝
= 𝐶𝑖𝑗𝑘𝑙 −

9𝐺2

𝐻 + 3𝐺

𝑠𝑖𝑗𝑠𝑘𝑙

σ𝑣𝑀
2

For shells, an approximate tangent modulus is applied: basically, the same as for solid elements is used,

only some minor corrections for the transverse shear reduction are made. The first part of the

subroutine, which starts with the subroutine declaration according to Section 4.3.1, and some variable

declarations follows:

 subroutine utan41(cm,eps,sig,epsp,hsv,dt1,unsym,capa,etype,tt,

 1 temper,es,crv,nnpcrv,failel,cma,qmat)

c

c**

c| Livermore Software Technology Corporation (LSTC) |

c| -- |

c| Copyright 1987-2008 Livermore Software Tech. Corp |

c| All rights reserved |

c**

c

 include 'nlqparm'

 include 'bk06.inc'

 include 'iounits.inc'

 dimension cm(*),eps(*),sig(*),hsv(*),crv(lq1,2,*),cma(*)

 integer nnpcrv(*)

 dimension es(6,*),qmat(3,3)

 logical failel,unsym

 character*5 etype

c

 real*8 factor, g,b, bg23,bg43

 real*8 vonMises,h,sigy,s(6),sf(6),depsp,gc,tol, ep_tr

 real*8 sig3e, sig3p, eps3e, eps3p, sshl(6), f1

 real*8 dpfac, A, shrf

 integer k, l

c

 factor=1.

 if (failel) factor=1.e-8

This section ends with a stiffness reduction for elements that are indicated as failed. Then, some elastic

constants are computed, element type is checked, and an attempt to make a small modification for

shells is made:

 g=factor*.5*abs(cm(1))/(1.+cm(2))

 b=factor*abs(cm(1))/3./(1.-2.*cm(2))

 bg23=b-2.*g/3.

 bg43=b+4.*g/3.

c

 if(etype.eq.'solid')then

 shrf=1.

 elseif(etype.eq.'shell')then

 shrf=capa

 else

 cerdat(1)=etype

 call lsmsg(3,MSG_SOL+1151,ioall,ierdat,rerdat,cerdat,0)

 return

 endif

© 2025 ANSYS, Inc. Ansys LS-DYNA user-defined 45

This means that if the routine is applied to other element types than solids or shells, LS-DYNA will stop

with an error message. The next step is the elastic part of the tangent stiffness modulus:

 es(1,1)=bg43

 es(2,2)=bg43

 es(3,3)=bg43

 es(2,1)=bg23

 es(3,1)=bg23

 es(3,2)=bg23

 es(1,2)=es(2,1)

 es(1,3)=es(3,1)

 es(2,3)=es(3,2)

 es(4,4)=g

 es(5,5)=g*shrf

 es(6,6)=g*shrf

and finally, the plastic part, which only is required in case the material routine umat41 indicated that

yielding takes place, by setting hsv(1) = 1.

 if(hsv(1).gt.0.)then

 call crvval(crv,nnpcrv,cm(5),epsp,sigy,h)

 s(1:3) = sig(1:3) - sum(sig(1:3))/3.

 s(4:6) = sig(4:6)

 vonMises =s(1)**2+s(2)**2+s(3)**2+2.*(s(4)**2+s(5)**2+s(6)**2)

 vonMises = sqrt(1.5*vonMises)

 A = h + 3.*g

 dpfac = (9.*g**2)/A/(vonMises**2)

 sf = dpfac*s

 do k=1,6

 do l=k,6

 es(k,l) = es(k,l) - sf(k)*s(l)

 es(l,k) = es(k,l)

 enddo

 enddo

 endif

In this implementation, the symmetry of the tangent stiffness matrix has been utilized in the reduced

inner DO – loop. This concludes the subroutine utan41 for the tangent modulus. Clearly, since the

tangent is based on the implementation for solid elements, convergence properties for shell elements

are not as good.

4.5.3 Non-linear spring

This section describes the implementation of a simple material for discrete beam elements (ELFORM = 6

on *SECTION_BEAM) representing a (optionally non-linear) spring. The material can either represent a

linear relationship between force and beam elongation,

𝐹𝑟 = 𝑘𝛿

or a non-linear relationship given by a curve,

𝐹𝑟 = 𝑓(𝛿).

© 2025 ANSYS, Inc. Ansys LS-DYNA user-defined 46

In case the curve is only defined for positive elongation, the material model will use

𝐹𝑟 = 𝑓(|𝛿|)𝑠𝑖𝑔𝑛(𝛿).

This material model is similar to a mix of the built-in materials *MAT_LINEAR_ELASTIC_DISCRETE_BEAM

(MAT_66) and *MAT_NONLINEAR_ELASTIC_DISCRETE_BEAM (MAT_67).

The keyword interface for this material model should allow for input of either a constant stiffness k or a

curve ID. This is done by the parameter P1: if P1 > 0, it is assumed to be a constant stiffness value, and if

P1 < 0, it is assumed that the curve ID is |P1|. The user should also provide reasonable values for K and G,

which are important for calculating the explicit time step.

*MAT_USER_DEFINED_MATERIAL_MODELS_TITLE

Spring material by UMAT44

$#1 MID RO MT LMC NHV IORTHO IBULK IG

 mat_id  44 8 4 3 4
$#2 IVECT IFAIL ITHERM IHYPER IEOS LMCA UNUSED UNUSED

$# P1 P2 P3 P4 P5 P6 P7 P8

 p1 K G

where blue text indicates that the user should input sensical data, and red text indicates values that

should not be changed (since these fixed values also will be assumed by the Fortran implementation).

The user subroutine umat44 will be used to implement the material model in Fortran code. The first part

of the subroutine follows:

 subroutine umat44 (cm,eps,sig,epsp,hsv,dt1,capa,etype,tt,

 1 temper,failel,crv,nnpcrv,cma,qmat,elsiz,idele,reject)

c

c**

c| Livermore Software Technology Corporation (LSTC) |

c| -- |

c| Copyright 1987-2008 Livermore Software Tech. Corp |

c| All rights reserved |

c**

c

 include 'nlqparm'

 include 'bk06.inc'

 include 'iounits.inc'

 dimension cm(*),eps(*),sig(*),hsv(*),crv(lq1,2,*),cma(*),qmat(3,3)

 integer nnpcrv(*)

 character*5 etype

 logical failel,reject

 integer*8 idele

c

 real*8 stiff,lcid,yfval

 integer*8 iid

The first rows are the standard declarations for a user-defined material subroutine. After that the

declaration of the model-specific local variables follow. The variable stiff holds the constant stiffness

value, the variable lcid holds the curve ID and yfval is the current force at the current elongation,

evaluated from the curve. The integer variable iid is the interval ID of the curve.

© 2025 ANSYS, Inc. Ansys LS-DYNA user-defined 47

 if (ncycle.eq.1) then

 write(iomsg, *) 'User defined mat44 for discrete beams'

 if(cm(1)>0.d0)then

 write(iomsg, *) '---discrete beam found.Constant stiffness'

 write(iomsg, *) ' useing k factor:',cm(1)

 else

 write(iomsg, *) '---discrete beam found.Curve'

 lcid=abs(cm(1))

 iid=lcids(nint(lcid))

 hsv(4)=crv(1,1,iid)

 write(iomsg, *) ' using Curve ID:',nint(abs(cm(1)))

 if(hsv(4).lt.0.d0)then

 write(iomsg, *) ' curve exists also for negative x vals'

 else

 write(iomsg, *) ' reflected curve will be used for ',

 1 'negative x vals'

 endif

 endif

 endif

Then follows some initial checks and output of messages to the user, performed at cycle 1. The main

check is if a constant stiffness or a curve ID is to be used, and if the curve also is defined for negative

(compressive) elongation. This latter check is done by directly inspecting the first ordinate value of the

curve, crv(1,1,iid), and storing it to history variable #4. The internal ID of the curve is found by

lcids(nint(lcid)).

Then follows the force calculations, for discrete beams only:

 if (etype.eq.'dbeam') then

In case a constant stiffness is used, the force update is uncomplicated.

 if(cm(1).ge.0.d0)then

 stiff=cm(1)

 sig(1)=sig(1)+eps(1)*stiff

 else

If a curve is used, different actions must be taken in case the elongation is negative or compressive. In

case of a positive elongation, the curve can be evaluated directly:

 lcid=abs(cm(1))

 hsv(1)=hsv(3)+eps(1)

 if(hsv(1).gt.0.d0)then

 call crvval(crv,nnpcrv,lcid,hsv(1),yfval,stiff)

 else

The current elongation of the beam is stored in history variable #1, based on the previous elongation

which is stored in history variable #3. Using history variables for storage of the elongation is also useful

if a continuation of analysis using a dynain – file is to be performed.

If the elongation is compressive, we must check if the curve also exists for compression. If so, the curve

can be evaluated directly:

 if(hsv(4).lt.0.d0)then

© 2025 ANSYS, Inc. Ansys LS-DYNA user-defined 48

 call crvval(crv,nnpcrv,lcid,hsv(1),yfval,stiff)

 else

Otherwise, the absolute value of the elongation is passed to crvval, and the sign of the obtained force

is reversed.

 call crvval(crv,nnpcrv,lcid,abs(hsv(1)),yfval,stiff)

 yfval=-1.d0*yfval

 endif

 endif

 sig(1)=yfval

 endif

The remaining force components are set to zero. The spring only gives a force in the r – direction,

between n1 and n2, see Figure 4.

 sig(2)=0.0

 sig(3)=0.0

 sig(4)=0.0

 sig(5)=0.0

 sig(6)=0.0

The accumulated elongation is stored in history variable #3, based on the current time tt and the time

from the previous call to the routine stored in history variable #2.

 if(tt.ne.hsv(2))then

 hsv(3)=hsv(1)

 endif

 hsv(2)=tt

In case the user tries to apply the material model to other elements than discrete beams, an error

message is issued.

 else

 cerdat(1)=etype

 call lsmsg(3,MSG_SOL+1150,ioall,ierdat,rerdat,cerdat,0)

 endif

 return

 end

Since user-defined material models cannot be used for discrete beam elements in implicit, the

computation of a corresponding tangent modulus is not required.

4.6 Ansys LS-DYNA simulation examples

In this Section, some simulation examples to demonstrate and verify the user defined material models

of Sections 4.5.1 - 4.5.3 are presented. Comparisons to results obtained using the pre-defined material

models of LS-DNYA are made. All LS-DYNA keyword files are supplied as attachments to this guide.

4.6.1 Examples of the Saint-Venant Kirchhoff material model

The first example applies the hyperelastic material model of umat45 to an explicit analysis using solid

elements. Material parameters typical for steel were used, that is a Young’s modulus of 200 GPa and a

© 2025 ANSYS, Inc. Ansys LS-DYNA user-defined 49

Poisson’s ratio of 0.5. A ¼ - model of a bar (20x20x100 mm) is subjected to alternating prescribed

displacement, see Figure 5. The stress vs. strain in response in one element is shown in Figure 6,

compared to results using LS-DYNA’s built-in hypoelastic material *MAT_ELASTIC and to the

hyperelastic material *MAT_ORTHOTROPIC_ELASTIC. For stresses above 1 %, the response from umat45

differ noticeable from *MAT_ELASTIC, which also is expected [2], while the agreement to the

hyperelastic material *MAT_ORTHOTROPIC_ELASTIC (red dots in Figure 6) is very good throughout the

whole strain range.

Figure 5. A ¼ model of a solid bar. The model consists of 40 solid elements. The blue symbols indicate symmetry

boundary conditions applied at the nodes. One short end is fixed, while the other short end is subjected to a

pulsating prescribed displacement.

Figure 6. Stress vs. strain response for the hyperelastic Saint-Venant Kirchhoff model compared to the hypoelastic

material *MAT_ELASTIC and the hyperelastic *MAT_ORTHOTROPIC_ELASTIC, in an explicit analysis.

© 2025 ANSYS, Inc. Ansys LS-DYNA user-defined 50

In the second example, shell elements are used to model a cantilever beam, see Figure 7. Elastic

material properties typical for aluminum (E = 70 GPa,  = 0.31) are used. A prescribed displacement of

140 mm is applied at the bolt holes of the end bracket. Contact is considered between the square beam

and the cylindrical rigid support, using *CONTACT_AUTOMATIC_SINGLE_SURFACE_MORTAR. Results from

implicit analyses using umat45 and *MAT_ELASTIC are compared in Figure 8 and Figure 9. Similar results

are obtained. Differences are expected due to the differences in material model formulations. Also,

similar performance with respect to iteration count and solution time is obtained for umat45 and

*MAT_ELASTIC for the implicit case.

Figure 7. A square (100 × 100 mm, t = 5 mm) cantilever beam is subjected to prescribed displacement at the end

bracket (green in the image) and contact with a rigid cylindrical support.

© 2025 ANSYS, Inc. Ansys LS-DYNA user-defined 51

Figure 8. Fringe plot of von Mises effective at 140 mm displacement. The top image shows results using

*MAT_ELASTIC, and the bottom image shows results using umat45.

Figure 9. Comparison of global force vs. displacement response using *MAT_ELASTIC (blue curve) and umat45

(red curve).

*MAT_ELASTIC

umat45

© 2025 ANSYS, Inc. Ansys LS-DYNA user-defined 52

4.6.2 Examples of the J2 – plasticity model

The first example is analysis of a tensile specimen, using shell elements, see Figure 10. Analyses were

performed both using the explicit and implicit solver of Ansys LS-DYNA. Force vs. displacement results

are compared in Figure 11. The peak forces for MAT_24 and umat41 are very similar, both for implicit and

explicit, while after necking some differences are found. Since necking is a local instability, small

differences will be magnified after this point. The results for the explicit analyses are quite close up to

about 20 mm of displacement, while the implicit umat41 results differ more. This may be due to the

approximate nature of the implemented tangential stiffness matrix for shells, or insufficient accuracy in

the through-thickness strain calculation. These analyses were performed with the update of shell

thickness active (by ISTUPD = 4 on *CONTROL_SHELL).

Figure 10. A tensile test specimen with gauge length ~ 70 mm, and width 14 mm. Thickness is 1.5 mm.

Figure 11. Force vs. displacement results for the tensile test specimen using different material models and the

implicit (blue and red curves) or explicit (green and black curves) solver of LS-DYNA.

The second example is axial crushing of a crash box, see Figure 12. The thickness of the profiles is 1.5

mm, and a hardening curve corresponding to steel HX420LAD is applied. For umat41, it was necessary

to disable the shell thickness update (by ISTUPD = 0 on *CONTROL_SHELL) in order to obtain useful

results. Instabilities caused premature termination when the shell thickness update flag was active,

most likely due to too low accuracy when solving the through-thickness strain. The crushing force

© 2025 ANSYS, Inc. Ansys LS-DYNA user-defined 53

using MAT_24 and umat41 are compared in Figure 13. Due to the indeterminate nature of this load case,

it is far from ideal for a benchmark, and exact agreement is hardly to be expected. However, the large

deformations and high plastic strain values pose a great challenge to the material model, and with

some modification of the control card settings, also the umat41 manages to handle this load case. With

respect to the crushing force, reasonable agreement is obtained, while the final deformed

configuration differs quite substantially, see Figure 14. The solution time using mpp/LS-DYNA with 8

processes7 is 1 h 42 min using MAT_24 and 2 h 25 min using the umat41, corresponding to an increase of

about 42 % in this example. This should be seen as a rough indication of the effect of using a user

defined material model on the solution time for an explicit analysis; probably the implementation of J2-

plasticity presented here as umat41 is not optimal, while MAT_24 is one of the most efficient material

models in LS-DYNA.

Figure 12. The crash box model. The profiles are made out of 1.5 mm thick HX420LAD steel, and the end plate

(blue in the image) is made out of 2.7 mm HX340LAD. The open end of the profile is fully constrained.

7 Intel Xeon E5-2687W v4 CPU (from 2017).

1
5
0
 m

m

480 mm

© 2025 ANSYS, Inc. Ansys LS-DYNA user-defined 54

Figure 13. Comparison of the crushing force of the crash box using MAT_24 and umat41.

Figure 14. The final deformation of the crash box. The fringe colors show the accumulated effective plastic strain

using umat41 (left image) and MAT_24 (right image).

The final example of J2 – plasticity consists of two pipes ( 90 mm, t = 10 mm) connected by a flange

joint with five bolts (M10, strength class10.9), see Figure 15. The geometry is meshed using solid

elements, and the example involves bolt pre-tensioning and contacts. Pipe 2 is fully constrained at the

free end (black dots to the left in Figure 15). After the bolt pre-tensioning is completed, a prescribed

© 2025 ANSYS, Inc. Ansys LS-DYNA user-defined 55

displacement is applied to the CNRB (blue, to the right Figure 15) of Pipe 1. This load case is solved using

the implicit solver in LS-DYNA.

Figure 15. Two pipes are connected by five bolts in a flange joint.

Analyses were performed using umat41 and MAT_24 for reference. The global force vs. displacement

results are compared in Figure 16. The results are in general agreement, with a slightly smoother

response for the umat41. This is probably because more time steps are taken at critical stages (which is

most likely triggered by the choice of strainlim = 5.E-2 in the user subroutine, see Section 4.5.2). The

final configurations are compared in Figure 17. The peak accumulated effective plastic strain occurs in

one of the bolts, and it is 1.73 using MAT_24 and 1.71 using umat41. The solution time using mpp/LS-

DYNA with 4 processes8 is approximately the same, 10 minutes, for both MAT_24 and umat41.

8 Intel Xeon SP 6148 CPU (from 2018).


x

© 2025 ANSYS, Inc. Ansys LS-DYNA user-defined 56

Figure 16. Force vs. displacement for the pipe joint model.

Figure 17. Final configuration of the pipe joint model. The fringe colors show accumulated effective plastic strain.

The top image shows results using MAT_24, and the bottom image shows results using umat41.

4.6.3 Example of the non-linear spring material model

This basic example applies the non-linear spring material model of Section n4.5.3 to a seesaw-like

model, see Figure 18. Five non-linear springs (discrete beams) are attached to one end of the solid

beam (brown in Figure 18, 1350 hexas) via constrained nodal rigid bodies. The input force-displacement

curve for the non-linear springs is shown in Figure 19. A linearly increasing loading is applied to a

constrained nodal rigid body at the other end of the beam during 100 ms. The peak applied loading is 1

kN. The solid beam is constrained at 2/3 between the ends.

The force vs. displacement response in one of the springs is shown in Figure 20, compared to the

response from LS-DYNA’s built-in non-linear spring material model MAT_67. The two models show

good agreement.

MAT_24

umat41

© 2025 ANSYS, Inc. Ansys LS-DYNA user-defined 57

Figure 18. A simple FE-model for demonstrating the user-defined material model for discrete beams.

Figure 19. Non-linear force-displacement curve, input to the discrete beam material model.

© 2025 ANSYS, Inc. Ansys LS-DYNA user-defined 58

Figure 20. Comparison of the force-displacement response from the user-defined material model and the built-

in material model MAT_67.

5 Friction models interface

Ansys LS-DYNA offers a variety of different ways to handle contact between model entities, see for

example Ref. [8] [9]. The related keywords start with *CONTACT_, see Ref. [1]. A crucial component in any

sliding contact is the definition of friction. The standard friction models in LS-DYNA for 3D contacts

include:

• Static and dynamic friction coefficients

• Viscous damping

• A cap shear stress, typically related to the yield stress of the materials involved, limiting the peak
tangential force in a contact

• Friction coefficients depending on contact pressure and/or temperature

• Orthotropic friction (for some contacts only)

The offering for 2D contacts is limited to static and dynamic friction coefficients with a cap shear stress.

Friction coefficients can be defined per contact interface, per part using *PART_CONTACT, or via

interaction tables (*DEFINE_FRICTION).

The user defined friction interface makes it possible to develop customized and general friction models

for some of the different 3D contacts in LS-DYNA. Due to the internal architecture of the LS-DYNA code,

different subroutines are required for the smp9, mpp and Mortar contact formulations. User defined

friction does not apply to the non-Mortar segment-based contacts (SOFT = 2) and also not for the non-

9 Since the subroutine for smp/LS-DYNA is more complex than the other options, it is left out
of the current presentation. It will be included in coming revisions of this document.

© 2025 ANSYS, Inc. Ansys LS-DYNA user-defined 59

Mortar single surface contacts (but *CONTACT_AUTOMATIC_SINGLE_SURFACE_MORTAR is supported).

Customized friction models are also provided by some third-party companies, for example Triboform

[28].

It is currently not possible to define a user friction law for 2D contacts (*CONTACT_2D_).

Note that the user subroutines for user defined friction are called in each explicit time step or implicit

iteration, but only for the segments in contact at that particular time.

See also Appendix G of the LS-DYNA Keyword manual [1].

5.1 Keyword interface to the user defined friction models

To activate a user defined friction model from a keyword file, three steps are required:

1. On Card 2 of *CONTROL_CONTACT, set USRFRC to the number of parameters passed to the user
defined friction model, plus the number of history variables that are stored.

2. To make the user defined friction model active for a specific contact ID, the keyword
*USER_INTERFACE_FRICTION is used.

a. This also implies that the option *CONTACT_..._ID must be used, in order to assign an ID
to a specific contact definition.

b. Set the variable IFID (interface number) to the Contact ID of the *CONTACT definition

c. The extent of material history variables passed to the user friction routines is determined
by the NEHIS variable. By setting NEHIS = 0 (which is the default), the plastic strain, yield
stress and material directions will be passed. By setting NEHIS > 0, the plastic strain and
the element history variables up to NEHIS -1 (in original order) will be passed.

3. For the user defined friction to have effect on a specific contact interface, a non-zero static
friction (FS) must be defined for that contact interface. Also, for the non-automatic contacts, the
shell thickness offset must be activated. This is done by setting SHLTHK = 1 or 2 on
*CONTROL_CONTACT, or on Optional Card B of the *CONTACT_... keyword.

To specify different friction models for different contact interfaces in a subroutine (usrfrc or

mortar_usrfrc), it might be convenient to let the first user defined input parameter denote a

reference number to a specific friction model.

A keyword example follows:

*USER_INTERFACE_FRICTION

$# IFID NOC NOCI NHSV NEHIS MHSV

 35 2 2 1 0 0

$# UC1 UC2 UC3 UC4 UC5 UC6 UC7 UC8

 1. 3501.0

*CONTACT_AUTOMATIC_SURFACE_TO_SURFACE_MORTAR_ID

$# cid title

 35Block to base

$#1 SURFA SURFB SURFATYP SURFBSTYP SAPR SBPR

 2 5 3 3 1 1

$# fs fd dc vc vdc penchk bt dt

 0.15

$# sfsa sfsb ...

The variables of the *USER_INTERFACE_FRICTION keyword are:

© 2025 ANSYS, Inc. Ansys LS-DYNA user-defined 60

• IFID: The ID of the *CONTACT to be affected. In this case, the user defined friction shall apply to
Contact ID 35 (Block to base).

o If a Mortar contact is referred by the ID, the subroutine mortar_usrfrc will be called,
otherwise the subroutine usrfc will be called.

• NOC: The number of variables to be stored for the interface.

• NOCI: The number of variables to be initialized by the user (variables UC1, UC2 … etc.). NOCI must
be smaller or equal to NOC.

• NHSV: The number of history variables per interface node. For Mortar contact it is the number of
history variables per tracked10 segment.

• NEHIS: The number of material history variables to be passed to the subroutine usrfrc.

• MHSV: The number of history variables per reference11 segment for Mortar contact (ignored by
*CONTACT_AUTOMATIC_SINGLE_SURFACE_MORTAR_ID).

• UC1, UC2 etc. : Parameters to be passed to the user subroutine.

5.2 Post processing user defined friction models

The history variables of the user defined friction models can be post-processed from the intfor12 – file

using LS-PrePost 4.8 (or later). To be able to fringe plot the history variables, it is required to set SPR = 1

on the *CONTACT_ - card in question (setting also MPR = 1 is recommended). On the keyword

*DATABASE_EXTENT_INTFOR, specify the number of friction history variables to be written to the intfor

file using the NHUF parameter. Finally, the keyword *DATABASE_BINARY_INTFOR_FILE is required to

specify the filename (intfor is recommended) and output frequency of the contact data. See Figure 25

for an example of a fringe plot of a user defined friction history variable.

5.3 Interfaces to the user defined friction subroutines

Depending on the type of *CONTACT_ (non-Mortar or Mortar) that gets a user defined friction model

associated with it, either the subroutine usrfrc or mortar_usrfrc is called. They are both found in the

Fortran file dyn21cnt.f. In both cases, curve data as defined by the keyword input is passed via the

parameters crv and nnpcrv, in a similar way as for the user defined material routines.In order to

evaluate curves, the subroutine crvval as described in Section 4.4 may be used. The smp and mpp

versions of the subroutine usrfric differ quite substantially. Currently, only the mpp version will be

discussed in this presentation.

The subroutine usrfrc is called for defining the friction coefficients in non-Mortar contacts (SOFT = 0 or

1). The subroutine definition was extended with additional arguments, adding input of more detailed

temperature information, starting with R14 of LS-DYNA. For versions R11 to R13, the subroutine

definition for implementing a user defined friction model for non-Mortar contacts in mpp/LS-DYNA is

 subroutine usrfrc(fstt,fdyn,uc,nc,prs,temp,v,vx,vy,vz,uh,nh,

 . crv,nnpcrv,nosl,

 . ictype,side,time,ncycle,dt2,fric1,fric2,fric3,fric4,lsv,idele8,

10 Previously denoted as ”slave”.
11 Previously denoted as ”master”.
12 This is a file for 3D visualization of contact results, for example contact pressure.

© 2025 ANSYS, Inc. Ansys LS-DYNA user-defined 61

 . sfac1,sfac2,insv,fni,areas,stfk,ix1,ix2,ix3,ix4,aream,

 . rn1,rn2,rn3,ue,ne,uhnew)

For R14 and R15, the subroutine definition instead is

 subroutine usrfrc(fstt,fdyn,uc,nc,prs,temp,v,vx,vy,vz,uh,nh,

 . crv,nnpcrv,nosl,

 . ictype,side,time,ncycle,dt2,fric1,fric2,fric3,fric4,lsv,idele8,

 . sfac1,sfac2,intr,fni,areat,stfk,ix1,ix2,ix3,ix4,arear,

 . rn1,rn2,rn3,ue,ne,uhnew,ttrs,trfs,flxrfs)

and an overview of the parameters to the subroutine is shown in Table 8.

The main objective of the subroutine is to compute user defined frictional coefficients, that shall be

output in the variables fstt (static) and fdyn (dynamic).

© 2025 ANSYS, Inc. Ansys LS-DYNA user-defined 62

Table 8. Overview of the arguments for the usrfrc subroutine

Argument Description Input / Output
fstt static frictional coefficient Output
fdyn dynamic frictional coefficient Output

uc(nc) user defined friction parameters Input
nc number of user defined friction parameters Input
prs interface pressure on reference side Input
temp temperature(1) Input
v magnitude of relative tangential velocity Input

vx,vy,vz components of relative tangential velocity Input
uh(nh) user defined friction history variables Input/Output

uhnew(nh) user defined friction history variables Input/Output
nh number of user defined friction history variables Input
crv curve array Input

nnpcrv # of discretization points per crv Input
nosl number of the sliding interface Input

ictype contact type Input
side Info on which side of the contact is being processed Input
time current solution time Input

ncycle number of current cycle Input
dt2 time step size at n+1/2 Input

fric1 static friction coefficient FS from keyword Input
fric2 dynamic friction coefficient FD from keyword Input
fric3 decay constant DC from keyword Input
fric4 viscous friction coefficient VC from keyword Input
lsv reference segment number Input

idele8 external user element number of reference segment Input
sfac1 Coulomb friction scale factor FSF from keyword Input
sfac2 Viscous friction scale factor VSF from keyword Input
insv SURFA(5) node user id Input
fni normal force Input

areas SURFA node area(2) Input
stfk penalty stiffness Input

ix1, ix2,

ix3, ix4

 SURFB(6) segment nodes - internal node numbers(3) Input

aream SURFB segment area Input
rn1,rn2,rn3 x, y, z components of SURFB segment normal Input

ue Element history data(4) Input
ne number of element history variables Input

ttrs(7) temperature of the tracked node Input, from R14
trfs(7) averaged temperature on the reference segment Input, from R14

flxrfs(7) averaged nodal flux vector on reference segment Input, from R14

Notes: (1) Available for coupled analysis, as the average value between SURFA and SURFB. Not yet

supported for SOFT = 4 contact. (2) The SURFB node pressure is obtained from fni / areas. (3) To go from

internal to external (user) node numbers, use ix1ext=lqfinv8(ix1,1). (4) The extent of the element history

data, ue, is determined by the parameter NEHIS on the keyword *USER_INTERFACE_FRICTION, see

Section 5.1. (5) Previously denoted “slave”. (6) Previously denoted “master”. (7) Additional thermal input,

available from R14 of LS-DYNA.

© 2025 ANSYS, Inc. Ansys LS-DYNA user-defined 63

From these arguments, it is possible to define a friction coefficient for non-Mortar contacts dependent

on, for example,

• the effective plastic strain, or other history variables, of the involved materials (Note that this
functionality is available from rev. 144575 of LS-DYNA),

• also, history variables associated with the contact segments,

• time, temperature, contact pressure and sliding velocity.

Note that in order to include the segment history variables in the infor file, the parameters uhnew

should be used. The parameters uh will not be output in the intfor file.

Since only one subroutine usrfric is defined, accommodating for several friction models can be

achieved by letting one of the user-defined parameters, for example uc(1), denote the ID of a friction

model.

The subroutine mortar_userfrc is called for defining the friction coefficient in Mortar contacts. The

subroutine definition for implementing a user defined friction model for Mortar contacts, up until R13

of LS-DYNA is:

 subroutine mortar_usrfrc(init,mfrc,nprm,cprm,shst,mhst,icnt,

 1 selm,sprt,styp,stmp,seps,shis,

 2 melm,mprt,mtyp,mtmp,meps,mhis,

 3 cprs,vtan,crv,nnpcrv,dt)

For R14 and later versions of LS-DYNA, names of some of the parameters have changed:

 subroutine mortar_usrfrc(init,mfrc,nprm,cprm,thst,rhst,icnt,

 1 telm,tprt,ttyp,ttmp,teps,this,

 2 relm,rprt,rtyp,rtmp,reps,rhis,

 3 cprs,vtan,crv,nnpcrv,dt)

But the number of parameters is the same.

An overview of the parameters to the subroutine is shown in Table 9. The main objective of the

subroutine is to compute a user defined frictional coefficient, that shall be output in the variables mfrc.

© 2025 ANSYS, Inc. Ansys LS-DYNA user-defined 64

Table 9. The arguments to the subroutine mortar_usrfric

Argument, R13 R14 → Description Input/Output

init Initialization phase (.true. or .false.) (currently not active) Input

mfrc User defined friction coefficient Output

nprm number of user friction parameters Input

cprm list of user friction parameters Input

shst thst SURFA friction history variables input/output

mhst rhst rference friction history variables input/output

icnt contact interface id Input

selm telm element id for SURFA segment Input

sprt tprt part id for SURFA segment Input

styp ttyp element type for SURFA segment ('beam ','solid','shell' or 'tshel') Input

stmp ttmp temperature of SURFA segment (n/a during initialization) Input

seps teps effective plastic strain on SURFA side Input

shis this material history variables for the SURFA segment Input

melm relm element id for SURFB segment (n/a during initialization) Input

mprt rprt part id for SURFB segment (n/a during initialization) Input

mtyp rtyp element type for SURFB segment ('beam ','solid','shell' or 'tshel',

n/a during initialization)

Input

mtmp rtmp temperature of SURFB segment (n/a during initialization) Input

meps reps effective plastic strain on SURFB side Input

mhis rhis material history variables for the SURFB segment Input

cprs contact interface pressure (n/a during initialization) Input

vtan tangential relative sliding velocity (n/a during initialization) Input

crv curve object (to be used in evaluating curve/table, n/a during

initialization)

Input

nnpcrv curve parameters (to be used in evaluating curve/table, n/a during

initialization)

Input

dt time step Input

From these arguments, it is possible to define a friction coefficient for Mortar contacts dependent on,

for example,

• the effective plastic strain, or other history variables, of the involved materials,

• history variables associated to the contact segments,

• temperature, contact pressure and sliding velocity.

The current solution time is not passed to the mortar_usrfric subroutine. The time in contact can be

obtained by using a history variable for summing up the time steps dt.

© 2025 ANSYS, Inc. Ansys LS-DYNA user-defined 65

5.4 Subroutine examples

In this Section, examples of user defined friction models for mpp13/LS-DYNA are presented, for both

Mortar and non-Mortar contacts. The related subroutines are found in the Fortran file dyn21cont.f.

Both Fortran code and keyword input are presented, while the complete examples, see also Section 5.5,

can be found as attachments to this document. It shall be stressed that these examples are not

intended for use in any kind of production analysis, and there may very well contain errors or flaws.

5.4.1 Time dependent friction coefficient for Mortar contact

For Mortar contact, the implementation of a time dependent friction coefficient is described. Two

methods for computing the time in contact will be implemented, either by

• friction model 1: dt is summed up and stored in a history variable for the tracked segment, or

• friction model 2: dt is summed up and stored in history variables for both tracked and reference
segment, and the time is taken as the maximum value of these.

The user will have to select a friction model and give a curve ID specifying the coefficient of friction as a

function of time. Also, a default friction coefficient can be given, to be use in case the curve evaluation

should result in a negative value. The coefficient of friction will be stored as the second tracked side

history variable. The keyword interface will be

*USER_INTERFACE_FRICTION

$# IFID NOC NOCI NHSV NEHIS MHSV

contact ID 3 3 2 1

$# UC1 UC2 UC3 UC4 UC5 UC6 UC7 UC8

 1 or 2 LCID default µ

where blue text indicates that the user should input sensical data, and red text indicates text that

should not be changed.

The fist part of the subroutine mortar_usrfrc, involving subroutine and variable declarations, follows:

 subroutine mortar_usrfrc(init,mfrc,nprm,cprm,shst,mhst,icnt,

 1 selm,sprt,styp,stmp,seps,shis,

 2 melm,mprt,mtyp,mtmp,meps,mhis,

 3 cprs,vtan,crv,nnpcrv,dt)

 implicit none

 include 'nlqparm'

 include 'iounits.inc'

 logical init

 real mfrc,cprm(*),shst(*),mhst(*),cprs,vtan,stmp,mtmp,crv(lq1,2,*)

 real shis(*),mhis(*),seps,meps,dt

 integer selm,sprt,melm,mprt,nprm,icnt,nnpcrv(*)

 character*5 styp,mtyp

C

 real dmdp,dmdv

13 An example for user defined friction in smp/LS-DYNA will be provided in coming versions of
this Guideline.

© 2025 ANSYS, Inc. Ansys LS-DYNA user-defined 66

 real epsfac,prsfac,tdum, maxeps,cfrc

Here, the implicit none statement will require all variables to be declared explicitly, reducing the risk

for programming errors.

In the original dyn21cnt.f Fortran file of the usermat package, the comments after the subroutine

declaration provide some documentation regarding the parameters of the user friction subroutine.

These comments are omitted here.

The coding for the friction model 1 follows:

C --- Law 1: use curve to define friction coefficient, time is time in

C contact for the tracked segment

c ---- cprm(1) = Law id, cprm(2)=lcid, cprm(3)=default friction

 if (cprm(1).eq.1.) then

 if(shst(1).eq.0)then

 write(iomsg,*) ' --- mortar usrfric law ',cprm(1),' using ',

 1 'lcid',cprm(2),' default friction is ',cprm(3)

 endif

 shst(1)=shst(1)+dt

 call crvval(crv,nnpcrv,cprm(2),shst(1),mfrc,dmdp)

 if(mfrc.ge.0)then

 shst(2)=mfrc

 else

 mfrc=cprm(3)

 shst(2)=mfrc

 endif

 endif

It starts by writing a debug output message, in case the tracked side history variable is zero. Then the

time in contact is updated and stored in the tracked side history variable shst(1). The subroutine

crvval is then called to evaluate the curve and obtain the coefficient of friction in the mfrc variable.

Finally, checking is done and in case a negative value was returned, it is replaced by the default

coefficient of friction given as UC3 from *USER_INTERFACE_FRICTION in the variable cprm(3). The

applied coefficient of friction is stored in the 2nd history variable for visualization purposes.

The second friction model is similar:

C --- Law 2: use curve to define friction coefficient, time is max

C time in contact for the tracked or reference segment

c ---- cprm(1) = Law id, cprm(2)=lcid, cprm(3)=default friction

 if (cprm(1).eq.2.) then

 if(shst(1).eq.0)then

 write(iomsg,*) ' --- mortar usrfric law ',cprm(1),' using ',

 1 'lcid',cprm(2),' default friction is ',cprm(3)

 endif

 shst(1)=shst(1)+dt

 mhst(1)=mhst(1)+dt

 dmdv=max(shst(1), mhst(1))

 shst(1)=dmdv

 call crvval(crv,nnpcrv,cprm(2),dmdv,mfrc,dmdp)

 if(mfrc.ge.0)then

 shst(2)=mfrc

© 2025 ANSYS, Inc. Ansys LS-DYNA user-defined 67

 else

 mfrc=cprm(3)

 shst(2)=mfrc

 endif

 endif

The difference to the friction model 1 is that also the reference side history variable mhst(1) is used for

storing the time in contact. Then the maximum value of the time of the tracked and reference side is

taken as the time in contact, and this value is then also stored in the 1st reference side history variable

mhst(1). Again, in case a negative coefficient of friction should be obtained from the curve, it is

replaced by the default value input as UC3 from *USER_INTERFACE_FRICTION.

An example of a simulation using this mortar_usrfrc subroutine is provided in Section 5.5.1.

5.4.2 Friction depending on contact pressure and plastic strain

To illustrate the implementation of a user defined friction model for non-Mortar contacts, a model

using curves to scale the friction as a function of contact pressure and accumulated effective plastic

strain is described in this section. The user interface will involve two curve ID:s, and a max and min

value to limit the coefficient of friction. The coefficient of friction will be stored as the 1st history variable,

the scale factor related to plastic strain as the 2nd, and the scale factor related to contact pressure as the

3rd. The keyword interface will be

*USER_INTERFACE_FRICTION

$# IFID NOC NOCI NHSV NEHIS MHSV

contact ID 11 5 3 3

$# UC1 UC2 UC3 UC4 UC5 UC6 UC7 UC8

 1 LCID1 LCID2 min.frict max.frict

where blue text indicates that the user should input sensical data, and red text indicates text that

should not be changed. In this case, UC1 is reserved for (future) use as a friction model ID, but since only

one model will be implemented, the only sensical input is 1. The LCID1 should correspond to a curve ID

scaling the coefficient of friction by a factor depending on the accumulated effective plastic strain, and

LCID2 should correspond to a curve ID scaling the coefficient of friction as a function of the contact

pressure. The lower and upper bounds should be input as UC4 and UC5 respectively, in order to keep the

applied coefficient within reasonable limits (making it possible to avoid unrealistic extrapolations in

curves, which may be caused by for example very high values of plastic strain locally).

The fist part of the subroutine usrfrc, involving subroutine and variable declarations, follows:

 subroutine usrfrc(fstt,fdyn,uc,nc,prs,temp,v,vx,vy,vz,uh,nh,

 . crv,nnpcrv,nosl,

 . ictype,side,time,ncycle,dt2,fric1,fric2,fric3,fric4,lsv,idele8,

 . sfac1,sfac2,insv,fni,areas,stfk,ix1,ix2,ix3,ix4,aream,

 . rn1,rn2,rn3,ue,ne,uhnew)

c

 implicit none

 include 'nlqparm'

 include 'iounits.inc'

 real fstt,fdyn

 integer nc,nh,nosl,ictype,ncycle,lsv,insv,ix1,ix2,ix3,ix4

 integer ne

© 2025 ANSYS, Inc. Ansys LS-DYNA user-defined 68

 real uc(nc),uh(nh),uhnew(nh),ue(ne)

 real prs,temp,v,time,dt2,fric1,fric2,fric3,fric4,sfac1,sfac2,

 . fni,areas,stfk,aream,rn1,rn2,rn3,vx,vy,vz

 real crv(lq1,2,*)

 integer nnpcrv(*)

 character*(*) side

 integer*8 idele8

C

 real cfrc, epsfac, prsfac, tdum

Here, the implicit none statement will require all variables to be declared explicitly, reducing the risk

for programming errors.

In the original dyn21cnt.f Fortran file of the usermat package, the comments after the subroutine

declaration provide some documentation regarding the parameters of the user friction subroutine.

These comments are omitted here.

In the next section of the subroutine, the output variables fstt and fdyn are initialized to the values

input on the *CONTACT_ … keyword card, and a debug message is written in the mes0* - files.

c

c set coefficients to keyword values

c

 fstt=fric1

 fdyn=fric2

C --- Law 1: use curves to scale fric1 as a function of plastic strain

C and contact pressure

c ---- uc(1) = Law id, uc(2)=lcid for plascit strain, uc(3)=lcid

C for pressure, uc(4) = min friction, uc(5) = max friction

 if (uc(1).eq.1.) then

 if(time.le.1E-3)then

 write(iomsg,*) ' --- forming usrfrc law ',uc(1),' using ',

 1 'lcid for plastic strain:',uc(2),

 2 'lcid for contact pressure:',uc(3),

 3 'min friction is ',uc(4),'max friction is ',uc(5)

 endif

In the final part of the subroutine, the curves are evaluated to extract the scale factors for plastic strain

and contact pressure respectively, and a candidate friction coefficient crfc is computed by scaling the

input static friction coefficient FS of the *CONTACT_ … card, which is passed in the variable fric1.

Finally, this candidate coefficient is checked against the min and max allowed values. The history

variables uhnew are updated, for post-processing purposes, with the coefficient of friction as the 1st

history variable, the scale factor for plastic strain as the 2nd history variable and the scale factor for

contact pressure as the 3rd.

 call crvval(crv,nnpcrv,uc(2),ue(1),epsfac,tdum)

 call crvval(crv,nnpcrv,uc(3),prs,prsfac,tdum)

 cfrc = fric1*epsfac*prsfac

 fstt = cfrc

 if(cfrc.lt.uc(4))then

 fstt = uc(4)

 else if(cfrc.gt.uc(5))then

© 2025 ANSYS, Inc. Ansys LS-DYNA user-defined 69

 fstt = uc(5)

 endif

 uhnew(1) = fstt

 uhnew(2) = epsfac

 uhnew(3) = prsfac

 endif

An example of a simulation using this usrfrc subroutine is provided in Section 5.5.2. This friction model

is also implemented for Mortar contact, as friction model 3 (UC1 = 3) in the mortar_usrfc subroutine

provided as an attachment to this Guideline.

5.5 LS-DYNA simulation examples

In this section, two LS-DYNA simulation examples of user defined friction are presented.

5.5.1 Mortar contact: a cube on a tilting plane

This is an implicit simulation of a classical set-up for determining the coefficient of friction between two

bodies, see Figure 21. A cube (50×50×50 mm) is placed on a plane, and during the first second, gravity is

ramped up. Then, the plane is tilted to an angle of 8.3 from t = 2 to t = 7 seconds, see Figure 23. The

coefficient of friction is ramped down according to Figure 22, causing the cube to start sliding. The final

configurations, using friction model 1 and 2 respectively, are compared in Figure 24. Using friction

model 1, the time in contact is defined only on the tracked segment side. This means that once the

cube starts sliding as the coefficient of friction is reduced by the time in contact (following the curve of

Figure 22), contact will be made with “new” segments with (initially) zero time in contact, causing a

high coefficient of friction again, which in turn reduces the sliding velocity and, as the cube falls of the

plane, causing it to rotate. Using the friction model 2, this phenomenon is reduced. This is also

illustrated by the comparison of the final coefficient of friction (output as contact history variable #2) in

Figure 25. Note that the contact history variables are found in the intfor file for fringe plotting.

© 2025 ANSYS, Inc. Ansys LS-DYNA user-defined 70

Figure 21. A cube (gray) is resting on a plane (light gray).

Figure 22. Time-dependent coefficient of friction used in the Mortar contact example.

© 2025 ANSYS, Inc. Ansys LS-DYNA user-defined 71

Figure 23. The plane is tilted to an angle of 8.3, and then the coefficient of friction is decreased.

Figure 24. The left image shows the configuration at t = 10 s using friction model 1. The right image shows the

configuration at t = 10 s using friction model 2.

© 2025 ANSYS, Inc. Ansys LS-DYNA user-defined 72

Figure 25. The fringe colors show the final coefficient of friction from 0 (blue) to 0.15 (red) using friction model 1 (left

image) compared to the friction model 2 (right image).

5.5.2 Forming analysis using pressure and plastic strain dependent friction

In this example, the forming of a so-called S-rail [25] is studied, see

Figure 26. The S-rail forming simulation case.

. The analysis is performed using the explicit solver in LS-DYNA, with adaptive mesh refinement and

three forming contacts (*CONTACT_FORMING_ONE_WAY_SURFACE_TO_SURFACE_ID). The assumed curves

used for scaling the friction coefficient as a function of plastic strain and contact pressure are shown in

Figure 27. In the reference simulation, a constant coefficient of friction (µ = 0.125) was used. The shell

thickness results are compared in Figure 28, where some minor differences in shell thickness due to

the different friction models can be found. The distribution of the coefficient of friction at an

intermediate state is shown in Figure 29.

© 2025 ANSYS, Inc. Ansys LS-DYNA user-defined 73

Figure 26. The S-rail forming simulation case.

Figure 27. The left image shows the curve for scaling the friction coefficient as a function of contact pressure. The

right image shows the curve for scaling the friction as a function of plastic strain.

© 2025 ANSYS, Inc. Ansys LS-DYNA user-defined 74

Figure 28. The resulting shell thickness distribution using constant friction (left image) and the user defined

friction model.

Figure 29. The friction history variable #1 for the contact between the bank and the punch, which is the current

static friction coefficient, for the S-rail example.

6 Tied contact using Mortar weld tie

The original purpose of the tied weld options (*CONTACT_AUTOMATIC_SURFACE_TO_SURFACE_...

_TIED_WELD) is for simulating a welding process: a sliding contact is irreversibly transformed to a

(penalty based) tied contact when the temperature exceeds a user-specified value. This behavior is

useful for simulating for example two materials that are joined by partial melting of the surfaces by an

external heat source (weld torch) and when the melted metal cools down, the parts remain joined.

The user defined tie condition is only available for the Mortar formulation of this contact. It also requires

that a coupled thermomechanical analysis (SOLN = 2 on *CONTROL_SOLUTION) is performed. The user

defined tied condition is available from revision 143414 of LS-DYNA.

Another possibility for tying surfaces which are originally separated together is to use the OPTION = 1 of

*CONTACT_AUTOMATIC_SURFACE_TO_SURFACE_TIEBREAK. By this, the surfaces will be permanently tied

together as soon as they make contact, independent of the temperature.

© 2025 ANSYS, Inc. Ansys LS-DYNA user-defined 75

6.1 Keyword interface to the user defined weld tie condition

The keyword interface to the user defined tie weld condition is activated by specifying a negative value

of TEMP on the contact defined via *CONTACT_AUTOMATIC_SURFACE_TO_SURFACE_MORTAR_THERMAL_TIED_

WELD_ID. A keyword example follows:

*CONTACT_AUTOMATIC_SURFACE_TO_SURFACE_MORTAR_TIED_WELD_THERMAL_ID

 32Base to film

$#1 SURFA SURFB SURFATYP SURFBSTYP SAPR SBPR

 3 2 3 3 1 1

$#2 FS

 0.15

$#3

$#4 TEMP CLOSE HCLOSE NTPRM NMHIS NSTWH NMTWH

 -1. 1.E+3 3 2

$# TPRM1 TPRM2 TPRM3 TPRM4 TPRM5 TPRM6 TPRM3 TPRM4

 0.5 102. 5.

$# Thermal properties

 0.000 0.000 1.E+3 1.0000E-3 5.0000E-3 0.5 1

The variables related to the user defined tie condition are:

• TEMP: Set -1000 < TEMP < 0 to activate a user defined tie condition. The absolute value of TEMP
will be passed to the user subroutine mortar_usrtie as the tied weld ID, which then can be
used for specifying different user defined conditions.

• CLOSE: Segments within this distance are considered for tying. The default is 1 % of the
characteristic mesh length scale.

• HCLOSE: The thermal contact conductivity when tied.

• NTPRM: Number of user defined weld tie parameters (TPRM1, TPRM2 etc.)

• NMHIS: Number of material history variables (in addition to plastic strain) to be accessible in the
subroutine mortar_usrtie

• NSTWH: Number of tracked side tied weld history variables.

• NMTWH: Number of reference side tied weld history variables.

• TPRM1, TPRM2, etc: User parameters.

Note that the accumulated effective plastic strain for reference and tracked side is accessible even if

NMHIS = 0.

6.2 Post processing user weld tie condition

The history variables of the user defined weld tied condition subroutine can be post-processed from

the intfor file using LS-PrePost 4.8 (or later). To be able to fringe plot the history variables, it is

required to set SPR = 1 on the *CONTACT_...TIED_WELD_ID – card (setting also MPR = 1 is recommended).

On the keyword *DATABASE_EXTENT_INTFOR, specify the number of SURFA and SURFB weld tie history

variables to be written to the intfor file using the 7th and 8th positions on Card 2, respectively. It is also

recommended to activate the output of a tie indicator by setting NTIED =1 on Card 2. The keyword

*DATABASE_BINARY_INTFOR_FILE is required to specify the filename (intfor is recommended) and

output frequency of the contact data. See Figure 32 for examples of fringe plots of user defined tied

weld history variables.

© 2025 ANSYS, Inc. Ansys LS-DYNA user-defined 76

6.3 Interface to the user defined tie condition in the subroutine

mortar_usrtie

The condition for switching from sliding to tied contact is defined in the subroutine mortar_usrtie,

which is found in the dyn21cnt.f Fortran file. The subroutine definition for implementing a user

defined tie condition, up until R13 of LS-DYNA, is:

 subroutine mortar_usrtie(tid,init,tie,nprm,cprm,

 . shst,mhst,icnt,

 1 selm,sprt,styp,stmp,seps,shis,

 2 melm,mprt,mtyp,mtmp,meps,mhis,

 3 cprs,cshr,crv,nnpcrv,time,dt)

 For R14 and later versions of LS-DYNA, names of some of the parameters have changed:

 subroutine mortar_usrtie(tid,init,tie,nprm,cprm,

 . thst,rhst,icnt,

 1 telm,tprt,ttyp,ttmp,teps,this,

 2 relm,rprt,rtyp,rtmp,reps,rhis,

 3 cprs,cshr,crv,nnpcrv,time,dt)

The subroutine is called for each pair of reference-tracked contact segments. Note that the user

subroutine is only called for the segments in consideration for contact, which is also related to the

CLOSE parameter value. For those segments further away than the CLOSE value, the contact is not

considered as active, and the subroutine is not called. The objective of the subroutine is to indicate if

the segments are to be tied together or not, by the logical parameter tie. Note that tie must be

initialized to .false. in the subroutine in order to make sure that undesired tying is avoided. An

overview of the parameters to the subroutine is shown in Table 10. Curve data as defined by the

keyword input is passed via the parameters crv and nnpcrv, in a similar way as for the user defined

material routines, and in order to evaluate curves, the subroutine crvval as described in Section 4.4

may be used.

© 2025 ANSYS, Inc. Ansys LS-DYNA user-defined 77

Table 10. Overview of the arguments for the mortar_usrtie subroutine

Argument From R14 → Description Input / Output
tid tie interface id Input
tie set to .true. if tie condition is met, otherwise .false. Output
init initialization phase (.true. or .false.) (currently not active) (Input)
nprm number of user tie parameters Input
cprm list of user tie parameters, use only nprm Input

 shst Thst tie history variables SURFA side Input/output
 mhst Rhst tie history variables SURFB side Input/output
 icnt contact interface id Input
 selm selm element id for SURFA segment Input
 sprt sprt part id for SURFA segment Input
 styp styp element type for SURFA segment ('beam ','solid','shell' or

'tshel')

Input

 stmp stmp temperature of SURFA segment (n/a during initialization) Input
 seps seps effective plastic strain on SURFA side Input
 shis shis material history variables for the SURFA segment Input
 melm melm element id for SURFB segment (n/a during initialization) Input
 mprt mprt part id for SURFB segment (n/a during initialization) Input
 mtyp mtyp element type for SURFB segment ('beam ','solid','shell' or

'tshel')

Input

 mtmp mtmp temperature of SURFB segment (n/a during initialization) Input
 meps meps effective plastic strain on SURFB side Input
 mhis mhis material history variables for the SURFB segment Input

cprs contact interface pressure (n/a during initialization) Input
cshr contact interface shear stress (n/a during initialization) Input
crv curve object (to be used in evaluating curve/table) Input

npcrv curve parameters (to be used in evaluating curve/table) Input
time simulation time Input
dt time step size Input

From these arguments, it is possible to define a tie condition depending on, for example,

• the effective plastic strain, or other history variables, of the involved materials,

• also history variables associated with the contact segments on the tracked (SURFA) and
reference (SURFB) side,

• time, temperature, and contact pressure.

Once the tied condition is met, and tie is set to .true., the segment pair is removed from the

checking loop, and will not be passed to the subroutine again. This means that the segment history

variables cannot be updated once the tied condition is met.

6.4 Subroutine example

In this section, a basic tie condition depending on the time in contact, contact pressure and

temperature will be implemented. It shall be stressed that this example is not intended for use in any

kind of production analysis, and it may very well contain errors or flaws.

This may have some similarity with hot glue that cures (or solidifies) below a certain temperature,

which in combination with a certain contact pressure being applied for a specified amount of time

creates a glued bond. For this, three parameters would be required: a critical minimum contact

© 2025 ANSYS, Inc. Ansys LS-DYNA user-defined 78

pressure p0, a critical transition temperature tthresh, and the time ctime required to create the bond.

One history variable for storing the time in contact, during which these requirements are fulfilled, is a

minimum, but in addition a second history variable for storing the first time of contact will be created

for post-processing and visualization.

The keyword interface will be:

*CONTACT_AUTOMATIC_SURFACE_TO_SURFACE_MORTAR_TIED_WELD_THERMAL_ID

CID Title

$#1 SURFA SURFB SURFATYP SURFBSTYP SAPR SBPR

Specify what should be in contact

$#2 FS

Specify friction

$#3

$#4 TEMP CLOSE HCLOSE NTPRM NMHIS NSTWH NMTWH

 -1. therm.cond 3 2

$# TPRM1 TPRM2 TPRM3 TPRM4 TPRM5 TPRM6 TPRM3 TPRM4

 tthresh p0 ctime

$# Thermal properties

Specify thermal properties

where blue text indicates that the user should input sensical data, and red text indicates values that

should not be changed.

The first part of the subroutine mortar_usrtie involving subroutine and variable declarations, follows:

 subroutine mortar_usrtie(tid,init,tie,nprm,cprm,

 . shst,mhst,icnt,

 1 selm,sprt,styp,stmp,seps,shis,

 2 melm,mprt,mtyp,mtmp,meps,mhis,

 3 cprs,cshr,crv,nnpcrv,time,dt)

 implicit none

 include 'nlqparm'

 include 'iounits.inc'

 real dt

 logical init,tie

 real cprm(*),shst(*),mhst(*),cprs,cshr,stmp,mtmp,crv(lq1,2,*)

 real shis(*),mhis(*),seps,meps,time

 integer tid,selm,sprt,melm,mprt,nprm,icnt,nnpcrv(*)

 character*5 styp,mtyp

In the original dyn21cnt.f Fortran file of the usermat package, the comments after the subroutine

declaration provide some documentation of the user tie subroutine, regarding for example parameters.

These comments are omitted here.

The main part of the subroutine starts by initializing the tie indicator to .false. and writing a message

to the mes0* files, to confirm what subroutine is active.

 tie = .false.

 if (tid.eq.1) then

 if(time.lt.0.1) then

 write (iomsg,*) "Using Test Mortar usertie Law:1"

 write (iomsg,*) " tie will be active if temperature < ",

 1 cprm(1)," and contact pressure is > ",

© 2025 ANSYS, Inc. Ansys LS-DYNA user-defined 79

 2 cprm(2)," and time in contact is > ",

 3 cprm(3)

 endif

Then the history variables are updated. The first time in contact, with a contact pressure above the

critical value p0, is stored in the first history variable shst(1). If the contact pressure is above p0 and

temperature is below tthresh, then the time in contact, stored in the 2nd history variable shst(2), is

incremented by the current time step size dt.

 if((stmp.le.cprm(1)).and.(cprs.ge.cprm(2))) then

 shst(2) = shst(2) + dt

 endif

 if((shst(1).lt.time).and.(cprs.lt.cprm(2)))then

 shst(1) = 0.

 endif

 if((shst(1).eq.0.).and.(cprs.ge.cprm(2)))then

 shst(1) = time

 endif

Finally, the tie condition is checked: if the contact pressure is above the critical value p0 and the

temperature is below tthresh and the time in contact, stored in the 2nd history variable shst(2),

exceeds the required ctime, the tie flag is set to true, and a message is printed to confirm which

element that got tied.

c tie when tracked temperature is below cprm(1) and contact

c pressure is above cprm(2) and time in contact is greater than

C cprm(3)

 if((stmp.le.cprm(1)).and.(cprs.ge.cprm(2))) then

 if(shst(2).gt.cprm(3)) then

 tie=.true.

 write (iomsg,*) '--- Test Mortar usertie 1:elem ',

 1 selm,' now tied at temp ',stmp, ' cpress ',

 2 cprs,' time in contact ',shst(2)

 endif

 endif

 endif

This is a rather basic example. Much more involved criteria are possible based on the accessible model

quantities, and the history variables of the contact segments can of course have more intricate

evolution laws. An example of a simulation using this mortar_usrtie subroutine is provided in Section

6.5.

6.5 LS-DYNA simulation example

In this example, a rubber sheet is pressed against an aluminum plate by a steel cube, see Figure 30 for

geometries and initial temperatures. The test case is analyzed using the implicit solver of LS-DYNA, as a

coupled thermomechanical simulation.

© 2025 ANSYS, Inc. Ansys LS-DYNA user-defined 80

Figure 30. The geometry and initial temperatures for the test case.

A user defined weld tie condition is applied between the rubber sheet and the aluminum plate, using

the subroutine as described in Section 6.4, with a critical pressure p0 = 0.5 MPa, a critical transition

temperature tthresh, = 102C and a required time ctime = 5 seconds.

Mechanical loading is applied to the set-up in two steps:

1. A distributed loading is applied to the topside of the steel cube: ramped up for 1 second, kept
constant for 9 seconds, and then ramped down.

2. A distributed loading is applied to the topside of the rubber sheet, in order to illustrate which
segments that got bonded with the aluminum plate.

The loading history is also illustrated in Figure 31. The tie indicator and contact history variable #2 (time

in contact) is shown in Figure 32. The final deformed configuration is shown in Figure 33, from which it

is concluded that the tied condition between the rubber sheet and the aluminum plate is enforced

correctly.

© 2025 ANSYS, Inc. Ansys LS-DYNA user-defined 81

Figure 31. Load case description. First the cube is pushed down (left image) then the sheet is lifted (right image).

Figure 32. The left image shows a fringe plot of the tied indicator from the intfor file. The right image shows the

2nd history variable, time in contact.

© 2025 ANSYS, Inc. Ansys LS-DYNA user-defined 82

Figure 33. Deformed configuration during load step 2, application of the distributed loading to the rubber sheet.

7 Mortar tiebreak contact

The main purpose of a tiebreak contact is to model surfaces that are initially connected (bonded, glued,

welded etc.) but due to high loading or other effects may separate during the analysis. An initially tied

contact is irreversibly transformed into a sliding contact. Alternatively, cohesive material models, for

example *MAT_COHESIVE_MIXED_MODE or *MAT_COHESIVE_GENERAL may be applied in an interface layer

with cohesive elements between parts that may separate.

In this section only the Mortar formulation of the tiebreak contacts is described. The relevant keyword

for the tiebreak functionality is *CONTACT_AUTOMATIC_SURFACE_TO_SURFACE_TIEBREAK_USER_MORTAR.

The tiebreak contacts have many predefined criteria for damage and failure of the tied interface, see

Ref. [1], based on stress, energy release rate or cohesive models, see for example Figure 34.

© 2025 ANSYS, Inc. Ansys LS-DYNA user-defined 83

Figure 34. Cohesive mixed-mode law (according to *MAT_COHESIVE_MIXED_MODE) for traction-separation,

invoked by option = 9 in the tiebreak contacts.

In a sense, the tiebreak contact is the inverse of the Mortar weld tie contact (see Section 6). It is possible

to inherit history variables from a joining simulation where a *CONTACT_AUTOMATIC_SURFACE_TO_

SURFACE_MORTAR_THERMAL_TIED_WELD_ID was used and formulate a separation criterion based on the

adhesion process results.

The user defined mortar tiebreak condition is fully supported from revision R13-1674-g3b7bda8165 of

LS-DYNA, but with exception of the access to material history variables and plastic strain is available

already in R13.0.0.

For the contact segments where the tied contact is released, a “normal” Mortar sliding contact remains,

keeping the segments from penetrating each other.

7.1 Keyword interface to the user defined tiebreak condition

The keyword interface to the user defined tiebreak condition is activated by the keyword

*CONTACT_AUTOMATIC_SURFACE_TO_SURFACE_TIEBREAK_USER_MORTAR_ID. A keyword example follows:

*CONTACT_AUTOMATIC_SURFACE_TO_SURFACE_TIEBREAK_USER_MORTAR_ID

 32Base to film

$#1 SURFA SURFB SURFATYP SURFBSTYP SAPR SBPR

© 2025 ANSYS, Inc. Ansys LS-DYNA user-defined 84

 3 2 3 3 1 1

$#2 FS

 0.15

$#3

$#4 OPTION NHV CT2CN CN OFFSET NHMAT NHWLD

 103 3 1. 3 2

$# UP1 UP2 UP3 UP4 UP5 UP6 UP7 UP8

 0.5 102. 5.

$# UP9 UP10 UP11 UP12 UP13 UP14 UP15 UP16

$# SOFT SOFSCL LCIDAB MAXPAR SBOPT DEPTH BSORT FRCFRQ

$# PENMAX THKOPT SHLTHK SNLOG ISYM I2D3D SLDTHK SLDSTF

 1.0

The variables related to the user defined tiebreak condition are:

• OPTION: User tiebreak type. 101 ≤ OPTION ≤ 105.

• NHV: Number of history variables

• CT2CN: Ratio of tangential stiffness to normal stiffness.

• CN: Normal stiffness. If left blank, the penalty stiffness divided by the segment area is used
(default).

• OFFSET: Not applicable to Mortar contact.

• NHMAT: Number of material history variables (in addition to plastic strain) to be accessible in the
subroutine mortar_usrtbrk

• NHWLD: Number of tied weld history variables to be read in the user tiebreak routine, assuming
they have been carried over from a previous simulation.

• UP1..UP16: User parameters.

Note that the accumulated effective plastic strain for reference and tracked side is accessible even if

NHMAT = 0.

Surfaces that are initially close enough will be tied. The tolerance distance for tying can be set by the

PENMAX parameter (1.0 on the last row of the keyword example above).

7.2 Post processing user tiebreak condition

The tied status, as an indicator from 1 (meaning perfectly tied) to 0 (meaning completely released) can

be output by setting NTIED =1 on Card 2 of *DATABASE_EXTENT_INTFOR, and visualized in LS-PrePost, see

Figure 38 for an example. The keyword *DATABASE_BINARY_INTFOR_FILE is required to specify the

filename (intfor is recommended) and output frequency of the contact data.

© 2025 ANSYS, Inc. Ansys LS-DYNA user-defined 85

7.3 Interface to the user defined tiebreak condition in the subroutine

mortar_usrtbrk

The condition for releasing the tied contact is defined in the subroutine mortar_usrtbrk, which is

found in the dyn21cnt.f Fortran file. The subroutine definition for implementing a user defined

tiebreak condition is14:

 subroutine mortar_usrtbrk(tid,dmg,pn,ps,iconv,dpndn,dpnds,dpsdn,

 1 dpsds,istif,prm,hst,whst,selm,melm,sprt,mprt,styp,mtyp,

 2 dn,ds,en,es,ts,tm,seps,meps,shis,mhis,time,dt)

For R14 and later versions of LS-DYNA, names of some of the parameters have changed:

subroutine mortar_usrtbrk(tid,dmg,pn,ps,iconv,dpndn,dpnds,dpsdn,

 1 dpsds,istif,prm,hst,whst,telm,relm,tprt,rprt,ttyp,rtyp,

 2 dn,ds,en,es,tt,tr,teps,reps,this,rhis,time,dt)

The subroutine is called for each pair of reference-tracked contact segments. Note that the user

subroutine is only called for the segments in consideration for tied contact, which is also related to the

PENMAX parameter value. For those segments that are not tied, the subroutine is not called. The

objective of the subroutine is to update the damage parameter dmg, where 0 indicates no damage (a

complete tied contact) and 1 indicates a complete release of the tied contact. If required for implicit

calculations (indicated by istif.ne.0), also the tangent stiffness matrix should be calculated.

An overview of the parameters to the subroutine is shown in Table 11.

14 Re-formatted from the original in dyn21cnt.f (where 12 continuation lines are used).

© 2025 ANSYS, Inc. Ansys LS-DYNA user-defined 86

Table 11. Overview of the arguments for the mortar_usrtbrk subroutine

Argument From R14→ Description Input / Output
tid tiebreak interface id, integer between 101 and 105 Input
dmg damage. should be increased between 0 (completely tied) and

dmg = 1. indicates complete release

and 1 (completely released)

Input/Output

pn normal traction (unit: pressure) Output
ps tangential traction (unit: pressure) Output

iconv flag for converged step in implicit (check iconv.eq.0) Input
dpndn tangent of normal traction wrt normal separation

(unit: pressure / length) needed when istiff.ne.0

Output

dpnds tangent of normal traction wrt to tangential separation

(unit: pressure / length) needed when istif.ne.0

NOTE: dpnds = dpsdn is required

Output

dpsdn tangent of tangential traction wrt to normal separation

(unit: pressure / length) needed when istif.ne.0

NOTE: dpsdn = dpnds is required

Output

dpsds tangent of tangential traction wrt to tangential separation

(unit: pressure / length) needed when istif.ne.0

Output

istif flag if stiffness is needed for implicit, check istif.ne.0 Input
prm input parameters Input
hst history variables Input/Output
whst Weld tie history variables from previous tied weld analysis Input

 selm telm element id for SURFA segment Input
 melm relm element id for SURFB segment Input
 sprt tprt part id for SURFA segment Input
 mprt rprt part id for SURFB segment Input
 styp ttyp Element type for SURFA segment ('beam ','solid','shell' or 'tshel') Input
 mtyp rtyp Element type for SURFB segment ('beam ','solid','shell' or 'tshel') Input

dn Normal separation (unit: length, positive means tensile) Input
ds Tangential separation (unit: lengt, always positive) Input
en Normal stiffness (unit: pressure / length) Input
es Tangential stiffness (unit: pressure / length) Input

ts tt Temperature of SURFA segment Input
tm tr Temperature of SURFB segment Input

 seps teps Effective plastic strain on SURFA side Input
 meps reps Effective plastic strain on SURFB side Input
 shis this material history variables for the SURFA segment Input
 mhis rhis material history variables for the SURFB segment Input

time simulation time Input
dt time step size Input

From these arguments, it is possible to define a tiebreak condition depending on, for example,

• the effective plastic strain, or other history variables, of the involved materials,

• also, history variables associated with the contact segments on tracked and reference side,
which can be inherited from a previous analysis using MORTAR_TIED_WELD.

• time, temperature, and contact pressure.

© 2025 ANSYS, Inc. Ansys LS-DYNA user-defined 87

Note that it is required that the tangent stiffness matrix (stored in variables dpndn, dpnds, dpsdn,

dpsds)

𝑫 =

(

∂𝑝𝑛
∂𝑑𝑛

∂𝑝𝑛
∂𝑑𝑠

∂𝑝𝑠
∂𝑑𝑛

∂𝑝𝑠
∂𝑑𝑠)

be symmetrical, 𝑫 = 𝑫T, which in turn implies ∂𝑝𝑛
∂𝑑𝑠
 =

∂𝑝𝑠

∂𝑑𝑛
 . If a model with an unsymmetrical stiffness

matrix is used, it must be symmetrized internally in the mortar_usrtbrk routine.

In the intfor file, 1 – dmg (see Table 11) is output as the “tied at top face” / “tied at bottom face” tie

indicator, which can be visualized in LS-PrePost, see Figure 38.

7.4 Subroutine example

In this section, a basic tiebreak condition depending on a history variable of the materials in contacts

will be implemented. This example requires revision R13-1674-g3b7bda8165 or later of LS-DYNA. It shall

be stressed that this example is not intended for use in any kind of production analysis, and it may very

well contain errors or flaws.

The damage will be mapped linearly from 0 to 1 when the material history goes from a lower threshold

value thresh to an upper limit maxlim. For this, three parameters would be required: in addition to the

limits also an identifier for the (tracked side) history variable to scale the damage.

The keyword interface will be:

*CONTACT_AUTOMATIC_SURFACE_TO_SURFACE_TIEBREAK_USER_MORTAR_ID

CID Title

$#1 SURFA SURFB SURFATYP SURFBSTYP SAPR SBPR

Specify what should be in contact

$#2 FS

Specify friction

$#3

$# OPTION NHV CT2CN CN OFFSET NHMAT NHWLD

 103 1 hisvarid

$# UP1 UP2 UP3 UP4 UP5 UP6 UP7 UP8

thresh maxlim hisvarid

$# UP9 UP10 UP11 UP12 UP13 UP14 UP15 UP16

$# SOFT SOFSCL LCIDAB MAXPAR SBOPT DEPTH BSORT FRCFRQ

$# PENMAX THKOPT SHLTHK SNLOG ISYM I2D3D SLDTHK SLDSTF

Optional distance for tying

where blue text indicates that the user should input sensical data, and red text indicates values that

should not be changed. By setting hisvarid = 0, the maximum plastic strain from either tracked or

reference side material will scale the damage.

The first part of the subroutine mortar_usrtbrk involving subroutine and variable declarations, follows:

 subroutine mortar_usrtbrk(tid,dmg,pn,ps,iconv,dpndn,dpnds,dpsdn,

© 2025 ANSYS, Inc. Ansys LS-DYNA user-defined 88

 1 dpsds,istif,prm,hst,whst,selm,melm,sprt,mprt,styp,mtyp,

 2 dn,ds,en,es,ts,tm,seps,meps,shis,mhis,time,dt)

 implicit none

 include 'nlqparm'

 include 'iounits.inc'

 integer tid

 real dmg

 real pn,ps

 integer iconv

 real dpndn,dpnds,dpsdn,dpsds

 integer istif

 real prm(*),hst(*),whst(*)

 integer selm,melm

 integer sprt,mprt

 character*5 styp,mtyp

 real dn,ds

 real en,es

 real ts,tm

 real seps,meps

 real shis(*),mhis(*)

 real time,dt

c

 real pd,prmdiff,seval

 integer ihvar

In the original dyn21cnt.f Fortran file of the usermat package, the comments after the subroutine

declaration provide some documentation of the user tiebreak subroutine, regarding for example

parameters. These comments are omitted here. The variable pd will be used to store the previous

damage value (dmg) when the subroutine is called. The variable prmdiff will hold the difference

between maxlim and thresh, and seval is the quantity to compare with (plastic strain or history

variable value). The variable ihvar simply is the number of the history variable.

The main part of the subroutine starts by writing a message to the mes0* files, to confirm what

subroutine is active.

 if (tid.eq.103) then

C --- add some initial diagnose print out

 if(time.le.1.E-3)then

 write(iomsg, *) ' --- mortar tiebreak 103'

 if(int(prm(3)).gt.0)then

 write(iomsg, *) ' using material history variable ',

 1 int(prm(3))

 else

 write(iomsg, *) ' using plastic strain'

 endif

 write(iomsg, *) ' damage scaled from ',prm(1),' to ',prm(2)

 write(iomsg, *) ' --- '

 endif

Then the linear, undamaged surface tractions are computed, and the reference quantity seval is

evaluated:

 pn=en*dn

 ps=es*ds

© 2025 ANSYS, Inc. Ansys LS-DYNA user-defined 89

 pd = dmg

 ihvar=int(prm(3))

 if(ihvar.eq.0)then

 seval=max(seps, meps)

 else

 seval=shis(ihvar)

 endif

Then follows the damage calculation, where it is ensured that the damage cannot decrease, nor exceed

unity.

 prmdiff = max(1.E-5,abs(prm(2) - prm(1)))

 if(seval.gt.prm(2)) then

 dmg = 1.0

 elseif(seval.gt.prm(1)) then

 dmg = (seval-prm(1))/prmdiff

 endif

 dmg=max(pd, dmg)

 dmg=min(dmg,1.)

The damage value is stored in the 1st history variable, and the damaged surface tractions are computed.

 if(dmg.gt.0.)then

 hst(1)=dmg

 pn=(1.-dmg)*pn

 ps=(1.-dmg)*ps

 endif

A message is output if the tied contact is fully released.

 if (dmg.eq.1.and.pd.lt.1..and.iconv.eq.0) then

 write (iomsg,1) styp,selm,sprt,mtyp,melm,mprt,time

 endif

Finally, the tangential stiffness is computed. Since there are no couplings between the normal and

tangential components, we get ∂𝑝𝑛
∂𝑑𝑠
 =

∂𝑝𝑠

∂𝑑𝑛
= 0.

 if (istif.ne.0) then

c compute normal stiffness, accounting for damage

 dpndn=en*(1.-dmg)

c compute tanegntial stiffness, accounting for damage

 dpsds=es*(1.-dmg)

c no couplings

 dpnds=0.

 dpsdn=0.

 endif

which concludes this subroutine example. A simulation example using this subroutine is presented in

Section 7.5.

7.5 LS-DYNA simulation example

In this example, a cantilever beam (similar to the example of Section 4.6.1, 4.6.2) with a weld-on

reinforcement plate, purple in Figure 35, is subjected to severe overloading. In the first stage, a

© 2025 ANSYS, Inc. Ansys LS-DYNA user-defined 90

prescribed vertical displacement of -140 mm and then +140 mm is applied at the bolt holes of the end

bracket. In the second stage, longitudinal compression of 500 mm is applied to the deformed beam.

Elastic-plastic material properties typical for aluminum (E = 70 GPa,  = 0.31, Y = 140 MPa) are used.

Contact is considered between the square beam and the cylindrical rigid support, using

*CONTACT_AUTOMATIC_SURFACE_TO_SURFACE_MORTAR, as well as self-contact within the C-section beam

(red in Figure 35). The side-plate reinforcement is attached to the C-section using a tiebreak contact

(*CONTACT_AUTOMATIC_SURFACE_TO_SURFACE_TIEBREAK_USER_MORTAR) with user-defined release

condition based on plastic strain in the materials involved, according to the subroutine of Section 7.4.

Deformation results from implicit analysis are shown in Figure 36 - Figure 37. The tied indicator is

shown in a fringe plot in Figure 38 and as a history plot in Figure 39. Some of the nodes release already

during the initial vertical loading (t < 1) while most damage to the tied contact occur during the final

axial compression (t > 4).

Figure 35. A C-profile (100 × 100 mm, t = 5 mm) cantilever beam with a weld-on reinforcement is subjected to

prescribed displacement at the end bracket (green in the image) and contact with a rigid cylindrical support.

© 2025 ANSYS, Inc. Ansys LS-DYNA user-defined 91

Figure 36. The left image shows the initial vertical displacement of -140 mm (t=1), and the right image shows the

deformed configuration after the vertical displacement of +140 mm (t=3).

Figure 37. The left image shows an initial phase of the axial compression. The right image shows the final

configuration.

© 2025 ANSYS, Inc. Ansys LS-DYNA user-defined 92

Figure 38. The fringe plot shows the tied indicator at the beginning of the axial compression stage from 0 (blue)

to 1 (red).

Figure 39. The evolution of the tied indicator in some of the nodes closes to the cylindrical support (marked by

black dots in Figure 38).

8 Loads interface

There are many ways of defining customized loading using the built-in LS-DYNA keywords. For

example, the *LOAD_{OPTION} keywords for applying loads to nodes or segments also accept definition

of the loading scale factor not only via curves (*DEFINE_CURVE) but also via functions of time, initial

coordinate and current coordinate using *DEFINE_FUNCTION, via a C-like programming language (see

Example 2 under *DEFINE_FUNCTION in Ref. [1], where the definition of a hydrostatic pressure is

© 2025 ANSYS, Inc. Ansys LS-DYNA user-defined 93

demonstrated). By the *LOAD_SEGMENT_{OPTION}_NONUNIFORM keyword, pressure loading acting at a

specified direction to the surface (not necessarily the normal direction) can be applied.

In addition to the built-in keywords for loading definitions, it is possible to provide user defined

loadings by the keywords *USER_LOADING and *USER_LOADING_SET and the corresponding Fortran

subroutines loadud and loadsetud of the file dyn21.f in the usermat package. These subroutines also

give access to nodal accelerations, velocities, and masses etc. These user defined loadings are

supported by both the implicit and explicit mechanical solver of LS-DYNA. Under certain conditions, the

user defined loading subroutines can also involve element deletion.

An overview (including both keyword and Fortran code examples) of the user defined loading options

has previously been presented in Ref. [19]. A very brief description of the loadsetud subroutine can be

found in Ref. [1] under the *USER_LOADING_SET keyword.

8.1 Keyword interface to the user defined loadings

The keyword interface to the user defined loadings is given by

• *USER_LOADING, mainly for applying nodal loads and

• *USER_LOADING_SET, for applying more general loadings, including temperatures.

The keyword input for the *USER_LOADING option is quite straight-forward:

*USER_LOADING

$ PARM1 PARM2 PARM3 PARM4 PARM5 PARM6 PARM7

 1. 2041. 2. 100. 5.

The variables of this keyword (PARM1, PARM2 etc.) are simply parameter values to be read by the user

subroutine loadud. The documentation of the subroutine should preferably describe what each

parameter corresponds to. This is discussed further in Sections 8.3 and 8.4.

An example of keyword input for the *USER_LOADING_SET option follows:

*USER_LOADING_SET

$ SID LTYPE LCID CID SF1 SF2 SF3 IDULS

 2 PRESSS 100 0 0.0 0.0 0.0 1

where the variables are:

• SID: The ID of the set that the loading should be applied to. The set type is determined by the
loading type (LTYPE).

• LTYPE: Loading type, for example PRESSS for pressure on segments.

• LCID: Curve ID for scaling the loading.

• CID: Coordinate system ID. Default is the global coordinate system.

• SF1, SF2, SF3: Scale factors with different meanings depending on the loading type.

• IDULS: An ID number that is passed to the subroutine loadsetud.

© 2025 ANSYS, Inc. Ansys LS-DYNA user-defined 94

These keywords can also be combined. By this, additional parameters for *USER_LOADING_SET can be

specified by the *USER_LOADING keyword input (see Section 8.5.3 for an example of this).

8.2 Post processing user defined loadings

Currently, there are no options to output data or results from the user defined loading subroutines,

other than writing text in the mes0* and d3hsp – files. While for example forces applied using

*LOAD_NODE_{OPTION} are output for post-processing in the bndout – file, the forces from the user

defined loadings are not.

8.3 Interfaces to the user-defined loading subroutines

There are two different subroutines for defining the loading:

• loadud, corresponding to the *USER_LOADING keyword, for applying nodal loadings by direct
modification of the global load vector. This is a scalar subroutine.

• loadsetud, corresponding to the *USER_LOADING_SET keyword, for providing a user defined load
scale factor. This is a vectorized subroutine.

They are both found in the dyn21.f file. The parameter list for the user defined loading subroutine is:

 subroutine loadud(fnod,dt1,time,ires,x,d,v,a,ixs,

 . numels,ixb,numelb,idrflg,tfail,isf,p,npc,fval,iob,iadd64,numelh,

 . ixh,nhex_del,nbeam_del,nshell_del,hexarray,hextim,bemarray,

 . bemtim,shlarray,shltim,parm,numnp,fnodr,dr,vr,ndof,xmst,xmsr)

From R13 of LS-DYNA, some additional parameters related to thick shell elements were added:

 subroutine loadud(fnod,dt1,time,ires,x,d,v,a,ixs,

 . numels,ixb,numelb,idrflg,tfail,isf,p,npc,fval,iob,iadd64,numelh,

 . ixh,nhex_del,nbeam_del,nshell_del,hexarray,hextim,bemarray,

 . bemtim,shlarray,shltim,parm,numnp,fnodr,dr,vr,ndof,xmst,xmsr,

 . numelt,ixt,ntsh_del,tsharray,tshtim)

See also the attached Fortran file example for details. The objective of the loadud subroutine is to

modify the force array fnod and/or the moment array fnodr, based on the input parameters of the

array parm and other model data. An overview and brief description of the parameters to the

subroutine is shown in

Table 12.

If the ires parameter has a negative value, it means that |ires| input parameters should be read in and

stored in the parm array. NOTE! This must be done by explicit coding inside the loadud subroutine. A

template for this is provided in the example code of the usermat package. See further Section 8.4.1 for

an example.

In addition to allowing access to (almost) all nodal data of the current model (coordinates, velocities,

accelerations, masses, etc.) the loadud subroutine may also trigger element deletion. This requires that

the keyword *DEFINE_ELEMENT_DEATH is present in the main keyword deck, for one or more elements

© 2025 ANSYS, Inc. Ansys LS-DYNA user-defined 95

of the type to be deleted. The deletion time (variable TIME of the *DEFINE_ELEMENT_DEATH keyword) can

be set to a value that greatly exceeds the termination time for the run.

Table 12. The arguments to the subroutine loadud

Argument Description Input / Output

fnod Global nodal forces Input / Output

dt1 Current time step size Input

time Current problem time Input

ires Restart flag(1) Input / Output

x Original nodal coordinates Input / Output

d Nodal displacements Input

v Nodal velocities Input

a Nodal accelerations Input

ixs Shell element connectivities Input

numels Number of shell elements Input

ixb Beam element connectivities(2) Input

numelb Number of beam elements Input

idrflg Nonzero if dynamic relaxation phase Input

tfail Shell element failure time Input / Output

isf Shell element failure flag (=1 → On) Input

p Load curve data pairs (abscissa, ordinate) Input

npc Pointer into p Input

fval fval(lc) is the value of load curve ID lc at the current time Input

iob i/o buffer

iadd64

numelh Number of solid elements Input

ixh Solid element connectivities Input

nhex_del if >0, element deletion option is active for solids Input

nbeam_del if >0, element deletion option is active for beam Input

nshell_del if >0, element deletion option is active for shells Input

hexarray Time to delete solid elements, the value should be > time Output

hextim Solid element deletion is checked when time is ≥ hextim Input

beamarray Time to delete beam elements, the value should be > time Output

bemtim Beam element deletion is checked when time is ≥ bemtim Input

shlarray Time to delete shell elements, the value should be > time Output

shltim Shell element deletion is checked when time is ≥ shltim Input

parm Array for storing input parameters Input/Output(3)

numnp Number of nodal points Input

fnodr Global nodal moments Input / Output

dr Nodal rotational displacements Input

vr Nodal rotational velocities Input

ndof Number of degrees of freedom per node in the solution phase (= 0

in the initialization phase)

Input

xmst Reciprocal of nodal translational masses in solution phase Input

© 2025 ANSYS, Inc. Ansys LS-DYNA user-defined 96

xmsr Reciprocal of nodal rotational masses in solution phase Input

numelt Number of thick shell elements Input, from R13

ixt Thick shell element connectivities Input, from R13

ntsh_del if >0, element deletion option is active for thick shells Input, from R13

tsharray Time to delete thick shell elements, the value should be > time Input, from R13

tshtim Thick shell element deletion is checked when time is ≥ tshltim Input, from R13

Notes: (1) The ires parameter has special meanings, for example ires < 0 means that |ires| input

parameters should be read. (2) To get also the third node defining beam orientation, set NREFUP = 1 on

*CONTROL_OUTPUT. (3) The subroutine should populate the array during the initialization phase, no data

passed by LS-DYNA.

 The parameter list for the user subroutine loadsetud is:

 subroutine loadsetud(time,lft,llt,crv,iduls,parm,nod,nnm1)

The parameter list for this subroutine is quite short, see Table 13 for an overview, since an approach

involving extensive use of common declarations is used. The objective of the loadsetud subroutine is to

provide a scale factor for the loading, to be stored in the udl array, based on the accessible data and the

parameters of the array parm (which is read by the loadud subroutine). Note that the loading type

defined by the ltype variable of the keyword *USER_LOADING_SET is not passed to the subroutine

loadsetud, but the value of the variable iduls can be passed as a load model ID for providing different

user-defined loading models for different sets.

Table 13. The arguments to the subroutine loadsetud

Argument Description Input / Output

time Current problem time Input

lft, llt Start, stop indices of arrays for vectorized input/output Input

crv Value of LCURV(1) at the current problem time Input

iduls ID of user loading set (1) Input

parm Array for storing input parameters(2) Input

 nod internal node numbers Input

 nnm1 offset for node block Input

Notes: (1) From the *USER_LOADING_SET – keyword. (2) from the *USER_LOADING keyword.

In the subroutine loadsetud access to nodal coordinates, displacements, temperatures etc. is provided

via a common block, see Table 14 for a brief overview.

© 2025 ANSYS, Inc. Ansys LS-DYNA user-defined 97

Table 14. Some of the arrays accessible via common block declarations in the subroutine loadsetud. Note that the

dimension of all arrays is nlq

Argument Description Input / Output

x1,x2,x3 Current coordinate of node or element center Input

d1,d2,d3 Displacement of node or element center Input

v1,v2,v3 Velocity of node or element center Input

temp temperature of node or element center Input

udl(nlq) Array for storing user defined load scale factor Output

8.4 Subroutine examples

In this Section, some basic examples of user defined loadings via the subroutines loadud and

loadsetud are given. It shall be stressed that these examples are not intended for use in any kind of

production analysis, and there may very well be errors or flaws in them.

8.4.1 Example of subroutine loadud

In order to illustrate the definition of a user loading subroutine loadud, three different cases are

considered:

1. Application of a nodal force controlled by a curve as a function of time. This is similar to the built-
in *LOAD_NODE keyword.

2. Application of a nodal force in a fixed direction in space, proportional to the magnitude of the
nodal displacement and scaled by a load curve as a function of time.

3. Application of nodal force, counteracting the displacement and scaled by a load curve as a
function of time. This is similar to the built-in functionality of an *ELEMENT_DISCRETE spring.

4. Read in parameters for *USER_LOADING_SET.

The user will have to select which load model to use, to which node the loading should be applied, a

scale factor and a curve ID for scaling the loading as a function of time. From the *USER_LOADING

keyword, the following variables will be used for models 1 - 3:

• P1: load model

• P2: node ID

• P3: Translational degree of freedom (1 – 3)

• P4: curve ID

• P5: scale factor.

The first part of the (pre R13) subroutine loadud follows, with subroutine and variable declarations:

 subroutine loadud(fnod,dt1,time,ires,x,d,v,a,ixs,

 . numels,ixb,numelb,idrflg,tfail,isf,p,npc,fval,iob,iadd64,numelh,

 . ixh,nhex_del,nbeam_del,nshell_del,hexarray,hextim,bemarray,

 . bemtim,shlarray,shltim,parm,numnp,fnodr,dr,vr,ndof,xmst,xmsr)

c

 include 'iounits.inc'

 include 'bigprb.inc'

 include 'txtline.inc'

 include 'nlqparm'

© 2025 ANSYS, Inc. Ansys LS-DYNA user-defined 98

c

 parameter (NPARM=1000)

c common/usrldv/parm(NPARM)

c

 integer*8 iadd64

 real*8 x

 real*8 d,dr

 dimension a(3,*),v(3,*),d(3,*),fnod(3,*),ixs(5,*),ixb(4,*),

 . x(3,*),tfail(*),p(*),npc(*),fval(*),iob(*),ixh(9,*),

 . hexarray(*),bemarray(*),shlarray(*),parm(*),fnodr(3,*),

 . vr(3,*),dr(3,*),xmst(*),xmsr(*)

c

 integer nid, idcrv, nidof, kk, nodext

 real sclfac, dist, f1,f2,f3, dfv(3)

In the original dyn21.f Fortran file of the usermat package, the comments after the subroutine

declaration provide some documentation of the user loading subroutine, regarding for example

parameters and some details on element deletion. These comments are omitted here.

The next part of the subroutine is active in the initialization phase. It reads in the parameter values (P1,

P2, etc.) of the *USER_LOADING keyword and stores them in the array parm. Also, some messages are

written in the mes0* files to confirm what parameter values are read. This part was taken (more or less)

from the original example subroutine provided in the usermat package.

 if (ires.lt.0) then

 n=abs(ires)

 write(iomsg,1030)

 call prludparm(0,parm,0,0)

 mssg='reading user loading subroutine'

 if (longs) then

 do 11 i=1,n,8

 call gttxsg (txts,lcount)

 read (txts,'(8e20.0)',err=400) (parm(j),j=i,min(i+3,n))

 write(iomsg,1040) (j,parm(j),j=i,min(i+3,n))

 call prludparm(1,parm,i,min(i+3,n))

 11 continue

 else

 do 10 i=1,n,8

 call gttxsg (txts,lcount)

 read (txts,1020,err=400) (parm(j),j=i,min(i+7,n))

 write(iomsg,1040) (j,parm(j),j=i,min(i+7,n))

 call prludparm(1,parm,i,min(i+7,n))

 10 continue

 endif

 write(iohsp,1050)

 call prludparm(2,parm,0,0)

 return

 endif

C

 if (ndof.eq.0) return

 if(parm(1).eq.4.) return

The last two rows of this part will return from the subroutine in case LS-DYNA is in the initialization

phase (indicated by ndof = 0) or the load model 4 is chosen, in which case only the parameter reading

© 2025 ANSYS, Inc. Ansys LS-DYNA user-defined 99

should be active. The final part of the subroutine applies the nodal forces, depending on what load

model is selected. First, the internal15 node ID to which the force should be applied, must be obtained.

 nodext = int(parm(2))

 nid =lqfe(nodext,1)

For going from the user-defined node ID given by the variable P2 of the *USER_LOADING keyword to the

node ID used by LS-DYNA internally, the lqfe function must be used in an mpp implementation. In

case the particular node ID is not accessible by the current mpi thread, lqfe will return a value ≤ 0

(while use of lqf or lqf8 will cause Error termination. However, lqf8 is required for use with

smp/LS-DYNA). Then follows some conversion of the entries of the parm array to more useful variables.

 if (nid.gt.0) then

 nidof = int(parm(3))

 idcrv = lcids(int(parm(4)))

 sclfac = parm(5)

 if(sclfac.eq.0.0) sclfac = 1.

By the last row, a similar behavior to the built-in *LOAD_ … keywords is obtained, since the load scale

factor is reset to a default value of 1 in case zero or no value is input by the user. Then follows the actual

modifications of the force vector, corresponding to the different loading models:

 if(parm(1).eq.1.)then

 fnod(nidof, nid) = fnod(nidof, nid) + fval(idcrv)*sclfac

 elseif(parm(1).eq.2.)then

 dist = sqrt(sum(d(1:3,nid)**2))

 fnod(nidof, nid) = fnod(nidof, nid) -

 1 fval(idcrv)*abs(sclfac)*dist

 elseif(parm(1).eq.3.)then

 dfv(1:3)= -d(1:3,nid)*abs(sclfac)*fval(idcrv)

 fnod(1:3, nid) = fnod(1:3, nid) + dfv(1:3)

 else

 cerdat(1)='Unsuported user loading model'

 call lsmsg(3,MSG_SOL+1447,ioall,ierdat,rerdat,cerdat,0)

 endif

 endif

c

 return

In case another load model than 1, 2, 3 or 4 is requested, the subroutine will trigger an error

termination. Some examples of simulations using this loadud subroutine are provided in Section 8.5.1

and 8.5.2.

15 In Table 7 some other useful functions for converting between internal and keyword-input
numbering are listed.

© 2025 ANSYS, Inc. Ansys LS-DYNA user-defined 100

8.4.2 Example of subroutine loadsetud

As an example of the subroutine loadsetud, the application of a hydrostatic16 (buoyancy) loading was

implemented. This will require the user to input, via the *USER_LOADING_SET,

• SID: a segment set ID,

• LTYPE: PRESSS to specify pressure on a segment set,

• LCID: a curve ID for scaling the loading,

and via the *USER_LOADING keyword the parameters

• P1: 4.

• P2: the direction of the gravity, in the global coordinate system, (1 for X-direction, 2 for Y and 3 for
Z which also is the default)

• P3: density of the fluid,

• P4: the gravitational acceleration,

• P5: the reference level for zero pressure.

The coding for the loadud subroutine, required for reading in the parameters P1 – P5 to the parm array,

was already presented in Section 8.4.1. The first part of the subroutine loasetdud follows, with

subroutine, common block and variable declarations:

 subroutine loadsetud(time,lft,llt,crv,iduls,parm,nod,nnm1)

c

c**

c| Livermore Software Technology Corporation (LSTC) |

c| -- |

c| Copyright 1987-2008 Livermore Software Tech. Corp |

c| All rights reserved |

c**

c

c Input (not modifiable)

c time : analysis time

c x : coordinate of node or element center

c d : displacement of node or lement center

c v : velocity of node or lement center

c temp : temperature of node or element center

c crv : value of LCURV at time=time

c iduls: id of user_loading_set

c parm : parameters from user_loading

c nod : internal node numbers

c nnm1 : offset for node block

c Output (defined by user)

c udl : user-defined load curve value

 include 'nlqparm'

 include 'iounits.inc'

c

 common/aux8loc/

 & x1(nlq),x2(nlq),x3(nlq),v1(nlq),

16 Hydrostatic loading in LS-DYNA in general does not require the coding of a user subroutine
but can be achieved by the *DEFINE_FUNCTION keyword (see the example of Ref. [1]).

© 2025 ANSYS, Inc. Ansys LS-DYNA user-defined 101

 & v2(nlq),v3(nlq),d1(nlq),d2(nlq),

 & d3(nlq),temp(nlq),udl(nlq),

 & xx11(nlq),xx21(nlq),xx31(nlq),

 & xx12(nlq),xx22(nlq),xx32(nlq),

 & xx13(nlq),xx23(nlq),xx33(nlq),

 & xx14(nlq),xx24(nlq),xx34(nlq),

 & xctr(nlq),yctr(nlq),zctr(nlq),

 & f(nlq), tr1(nlq), tr2(nlq), tr3(nlq)

c

 dimension parm(*),nod(*)

C

 integer dof, kk

 real grav, rho, refl, fact, cord(nlq)

In this case, the original comments of the dyn21.f file are kept. Then follows a translation of the values

of the parm array to explicit variables:

 dof = int(parm(2))

 rho = parm(3)

 grav = parm(4)

 refl = parm(5)

In order to simplify the final calculations, an array cord is assigned the current coordinate

corresponding to the direction of the gravity:

C --- z is the default direction

 cord(1:nlq) = x3(1:nlq)

 if(dof.eq.1)then

 cord(1:nlq) = x1(1:nlq)

 elseif(dof.eq.2)then

 cord(1:nlq) = x2(1:nlq)

 endif

And then the final calculation of the hydrostatic force and the corresponding load factor udl follows

 do kk=lft,llt

 fact = max(0., (refl-cord(kk))*grav*rho)

 udl(kk)= crv*fact

 enddo

which concludes the user subroutine.

8.5 LS-DYNA simulation examples

In this Section, some LS-DYNA simulation examples of the user defined loading options are presented.

8.5.1 Nodal force by load curve

An L-shaped beam, see Figure 40, is fully constrained at its base and subjected to transverse loading (5

kN). The tip deflection when the loading is applied by the built-in keyword *LOAD_NODE and the user

defined loading is compared in Figure 41. For the explicit analyses, the Y-displacement of the tip of the

beam is identical for the two different load application methods. The differences between the implicit

static analysis and the explicit analyses are explained by the dynamic effects induced by the ramp-up

© 2025 ANSYS, Inc. Ansys LS-DYNA user-defined 102

time of 20 ms. It is concluded that the coding of Section 8.4.1 and the related interfaces of the usermat

package gives an equivalent result as the built-in load application functionality.

Figure 40. An L-shaped beam is fully constrained at its base and subjected to transverse loading at the center

node of a *CONSTRAINED_NODAL_RIGID_BODY.

Figure 41. Results of LS-DYNA explicit and implicit simulations where the load is applied using *LOAD_NODE or

*USER_LOADING.

Fully constrained boundary
conditions

Transverse transient
loading

© 2025 ANSYS, Inc. Ansys LS-DYNA user-defined 103

8.5.2 Nodal force proportional to nodal displacement

In the second set of example analyses, the load model 3 as described in Section 8.4.1 is compared to a

model version where a discrete spring element is used to apply a force counteracting the nodal

displacement. The geometry of Figure 40 is used also in this case, and the loading (spring element) is

applied at the center node of the constrained nodal rigid body at the end of the horizontal beam part. A

transverse displacement of 40 mm is ramped-up during using *BOUNDARY_PRESCRIBED_MOTION with a

death time of 20 ms, and the vibration motion of the L-beam is studied. If a constant curve is used, the

user defined loading version gives the same tip deflection as the version using the built-in feature

*ELEMENT_DISCRETE, see Figure 42. It is again concluded that the coding of Section 8.4.1 and the related

interfaces of the usermat package gives an equivalent result as the built-in load functionality.

Figure 42. Comparison of tip displacement from the *USER_LOADING version (solid red curve) and the discrete

element version (dashed blue curve).

By defining a non-constant curve for scaling the force, see for example the left image of Figure 43,

corresponding to a discrete spring with time-varying stiffness, functionality that is not present by the

built-in keywords is obtained. Clearly, the vibrational results are influenced by this time-varying

stiffness, see the right image of Figure 43.

© 2025 ANSYS, Inc. Ansys LS-DYNA user-defined 104

Figure 43. The left image: Curve for scaling the force as a function of time, corresponding to a varying spring

stiffness. The right image: results comparison.

8.5.3 Hydrostatic pressure loading

In this example, the user defined hydrostatic loading as described in Section 8.4.2 is compared to the

built-in keywords *LOAD_SEGMENT_SET and *DEFINE_FUNCION in an implicit, transient dynamic, analysis.

The geometry of this example is shown in Figure 44, where the reference level is outlined as a semi-

transparent plane. The Z-displacement of node ID 5375 is compared in Figure 45. It is concluded that

the results of the different load application techniques are very close.

Figure 44. Geometry for the hydrostatic loading example. The left image shows the initial (guessed)

configuration, and the right image shows the (equilibrium) position after 20 seconds. The reference level is

indicated by a semi-transparent plane.

© 2025 ANSYS, Inc. Ansys LS-DYNA user-defined 105

e

Figure 45. Comparison of the Z-displacement of the node ID 5375 from the simulation with user defined loading

(solid red curve) and the simulation using built-in load application functionality (dashed blue curve).

9 Other user interfaces

In this section some other possibilities for user defined interaction with LS-DYNA are listed. Some of

them will be described in more detail in coming revisions of this document.

• For wear analysis (*CONTACT_ADD_WEAR) a customized wear law can be defined by setting WTYPE
< 0 and using the subroutine usrwear in dyn21cnt.f.

• For non-Mortar tiebreak contacts (*CONTACT_AUTOMATIC_SURFACE_TO_SURFACE_TIEBREAK_USER),
custom tie failure conditions can be defined using the subroutines utb101, …, utb105 in
dyn21cnt.f.

• User defined thermal conductance for the 3D thermal contacts can be defined by the
subroutine usrhcon in dyn21.f. It is invoked by the keyword *USER_INTERFACE_CONDUCTIVITY.

• Shell and solid elements can be defined by the user, either via the keywords
*DEFINE_ELEMENT_GENERALIZED_{SHELL/SOLID} or via the user-defined interfaces of
subroutines ushl_bYYY in dyn21ushl.f and usld_bZZZ in dyn21usld.f, see Appendix C of Ref.
[1], and Ref. [18]

• User defined damage / failure criteria can be defined for some materials by the subroutine
matusr_24 in dyn21.f. The user define failure criteria is then invoked by setting FAIL < 0 for
the material types: 24, 36, 114, 123, 124, 133, 155, 182, 225, 238, 243, 251, 255. Also for MAT103, by the
subroutine matusr_103.

• For interacting with other solvers in coupled analysis, the keyword *COUPLE_TO_OTHER_CODES
can be used, which requires the family of user subroutines in the Fortran file
couple2other_user.f.

• For implicit analysis, it is possible (from R11) to provide a user-defined linear equation solver by
setting LSOLVR = 90 on *CONTROL_IMPLICIT_SOLVER.

© 2025 ANSYS, Inc. Ansys LS-DYNA user-defined 106

 References

[1] Ansys, LS-DYNA keyword user’s manual Volume I, 2024 (see also http://lstc.com/download/manuals).

[2] Ansys, LS-DYNA keyword user’s manual Volume II, 2024.

[3] Ansys, LS-DYNA theory manual, 2024.

[4] Karlsson, J., and Borrvall, T., Material modelling in LS-DYNA, Dynamore Course Notes, 2019.

[5] Karlsson, J., User defined material models in Ansys LS-DYNA, Ansys Course Notes, 2023.

[6] Erhart, T., User defined interface in LS-DYNA, Dynamore Course Notes, 2016.

[7] Erhart, T., User defined materials in LS-DYAN, Dynamore Course Notes, 2019.

[8] Forsberg, J., Contacts in LS-DYNA, Dynamore Course Notes, 2020.

[9] Contact types in LS-DYNA, Internet source: https://www.dynasupport.com/tutorial/contact-modeling-in-ls-

dyna/contact-types

[10] Internet source: https://software.intel.com/en-us/fortran-compilers

[11] Saaby Ottosen, N., and Ristinmaa, M., The mechanics of constitutive modelling, Division of Solid Mechanics,

Lund University, Lund (1999) Sweden

[12] Lemaitre J., and Chaboche, J. L., Mechanics of solid materials, Cambridge University Press, Cambridge 1998.

[13] Holzapfel, G. A., Nonlinear solid mechanics, John Wiley & Sons, New York 2000

[14] Andrade, F., Feucht, M. and Haufe, A., On the prediction of material failure in LS-DYNA: A comparison

between GISSMO and DIEM, 13th International LS-DYNA Users Conference, Detroit 2014.

[15] Mattiasson, K., Jergeus, J., and Dubois, P., Models for strain path independent necking prediction in LS-DYNA,

9th European LS-DYNA Conference 2013.

[16] MG GenYld + CrachFem, internet source: https://www.matfem.de/data/Info-MFGenYld-CrachFEM.pdf

[17] Digimat – The material modelling platform, internet source:

https://d2f709itdech1g.cloudfront.net/cdn/farfuture/Juq5VUV3VESVZlLYpVryCZmAdcjItn7uUzGFt9WWgRQ/

mtime:1553075971/sites/default/files/general_software_brochure_2019.0.pdf (https://www.e-

xstream.com/products/digimat/about-digimat)

[18] Borrvall, T., A user-defined element interface in LS-DYNA, 9th International LS-DYNA Users Conference,

Detroit 2006.

[19] Adoum, M., and Pitot, H., Examples’ manual for *USER_LOADING optoin, 4th European LS-DYNA Users

Conference, Ulm 2003.

[20] Erhart, T., An overview of user-defined interfaces in LS-DYNA, 9th LS-DYNA Forum, Bamberg 2010, internet

source: https://www.dynamore.de/de/download/papers/forum10/papers/L-I-01.pdf

[21] Benson, D. J., Radial return, internet source: https://www.dynasupport.com/tutorial/computational-

plasticity/radial-return

[22] LS-PrePost Online Documentation, internet source: http://www.lstc.com/lspp/

[23] META Post Processor version 20.0.X. User Guide, BETA CAE Systems International AG, 2019.

[24] Material selector for LS-DYNA, internet source: http://lstc.com/dynamat/

[25] Anon. S-Rail Benchmark Problem (1996). Proceedings of the 3rd International Conference: Numerical

Simulation of 3-D Sheet-Metal Forming Processes – Verification of Simulations with Experiments

(NUMISHEET ’96). Eds. Lee, Kinzel and Wagoner, September, 1996, pp. 612-799.

[26] NMAKE Reference, internet source: https://docs.microsoft.com/en-us/cpp/build/reference/nmake-

reference?view=vs-2019

[27] Hidling, D., User-defined modules in LS-DYNA and anti-virus software, Dynamore technical Note, April 29,

2020.

[28] Sigvant, M., et al., Friction modelling in sheet metal forming simulations: application and validation on an u-

bend product, internet source: https://www.triboform.com/tribo/wp-content/uploads/2016/02/Technical-paper-U-

bend-product_TriboForm-Engineering.pdf

[29] Borrvall, T., et al., Using MAT_ADD_INELASTICITY for Modelling of Polymeric Networks, 13th European

LS-DYNA Conference 2021, Ulm, Germany.

[30] Svenning, E., Co-simulation with LS-DYNA through FMI, DYNAmore Nordic document (Webinar 2020-10-22)

available from files.dynamore.se > Client Area

[31] Tong, X., and Yeh, I., Cross-platform co-simulation for vehicle safety analysis, 16th International LS-DYNA

conference 2020 (Virtual Event)

https://lsdyna.ansys.com/manuals/
https://www.dynasupport.com/tutorial/contact-modeling-in-ls-dyna/contact-types
https://www.dynasupport.com/tutorial/contact-modeling-in-ls-dyna/contact-types
https://software.intel.com/en-us/fortran-compilers
https://www.matfem.de/data/Info-MFGenYld-CrachFEM.pdf
https://d2f709itdech1g.cloudfront.net/cdn/farfuture/Juq5VUV3VESVZlLYpVryCZmAdcjItn7uUzGFt9WWgRQ/mtime:1553075971/sites/default/files/general_software_brochure_2019.0.pdf
https://d2f709itdech1g.cloudfront.net/cdn/farfuture/Juq5VUV3VESVZlLYpVryCZmAdcjItn7uUzGFt9WWgRQ/mtime:1553075971/sites/default/files/general_software_brochure_2019.0.pdf
https://www.e-xstream.com/products/digimat/about-digimat
https://www.e-xstream.com/products/digimat/about-digimat
https://www.dynamore.de/de/download/papers/forum10/papers/L-I-01.pdf
https://www.dynasupport.com/tutorial/computational-plasticity/radial-return
https://www.dynasupport.com/tutorial/computational-plasticity/radial-return
http://www.lstc.com/lspp/
http://lstc.com/dynamat/
https://docs.microsoft.com/en-us/cpp/build/reference/nmake-reference?view=vs-2019
https://docs.microsoft.com/en-us/cpp/build/reference/nmake-reference?view=vs-2019
https://www.triboform.com/tribo/wp-content/uploads/2016/02/Technical-paper-U-bend-product_TriboForm-Engineering.pdf
https://www.triboform.com/tribo/wp-content/uploads/2016/02/Technical-paper-U-bend-product_TriboForm-Engineering.pdf
https://www.dynalook.com/conferences/13th-european-ls-dyna-conference-2021/elastomers-and-polymers/borrvall_dynamore_nordic.pdf/view
https://www.dynalook.com/conferences/13th-european-ls-dyna-conference-2021/elastomers-and-polymers/borrvall_dynamore_nordic.pdf/view
https://www.dynalook.com/conferences/16th-international-ls-dyna-conference/simulation-t9-2/t9-2-c-simulation-214.pdf/@@download/file/T9-2-C-Simulation-214.pdf
https://www.dynalook.com/conferences/16th-international-ls-dyna-conference/simulation-t9-2/t9-2-c-simulation-214.pdf/@@download/file/T9-2-C-Simulation-214.pdf

© 2025 ANSYS, Inc. Ansys LS-DYNA user-defined 107

[32] Andersson, H., A co-simulation tool applied to hydraulic percussion units, Ph.D. Thesis, Linköping University,

Linköping 2022

[33] Wang, Z., Sha, Y., and Jakobsen, J.B., Coupled analysis of external dynamics and internal mechanics in ship-

floating bridge collision studies, Proceedings of the OMEA, Singapore 2024.

© 2025 ANSYS, Inc. Ansys LS-DYNA user-defined 108

10 Executing user-compiled LS-DYNA binaries under Windows

In some cases, the execution of a user-compiled LS-DYNA executable may be prevented by the

different security measures of Windows 10. The text of this Appendix is based on Ref. [27], and describes

the background and possible resolution to such situation.

To defend Windows 10 computers against unsafe or malicious software being executed or installed

typically several approaches are used, including:

• Microsoft Defender SmartScreen (MDS)

• Microsoft anti-virus software (AV)

• Third party anti-virus software (AV)

MDS and AV will typically prevent execution of any executable that is not white-listed and/or code

signed traceable back to a trusted root authority.

An independent software vendor will typically white-list and code sign all their executables and

software installers with Microsoft and major third-party AV-software products to avoid issues when the

end user is to install or execute the software from the ISV.

However, developing user-defined features in LS-DYNA in a Windows environment will result in a new,

customized LS-DYNA binary (.exe – file) and therefore AV and/or MDS may prevent execution. In turn,

this makes it impossible to make use of the user-defined features with LS-DYNA. A solution to this

needs to be sought by cooperation between the engineers developing user-defined features and the

department responsible for Windows IT security and management at each specific company (or

university). Some of the following approaches are typically applied:

1. Trusted users are allowed to locally white-list the custom LS-DYNA executables at the company
or on specified computers.

• This method works well, though it can have some IT-security implications.

2. The policy to require white-listed/signed code is disabled on selected computers and/or for
trusted users.

• This method works well, though it can have some IT-security implications that are larger
than method 1.

3. Allow trusted users to override warnings or blockings from the AV software or MDS for each
execution.

• This is rarely used with LS-DYNA because it prevents the use of queuing systems with LS-
DYNA and that reduces work productivity – sometimes considerably.

4. The custom LS-DYNA executable is white-listed at the relevant AV software companies and with
MDS (code signing).

• This is usually not doable as the during development of user-defined features as these
are rebuilt many times per day and the white-listing process is lengthy.

© 2025 ANSYS, Inc. Ansys LS-DYNA user-defined 109

Keywords: Ansys LS-DYNA; user-defined interfaces; Fortran

ANSYS, Inc.

Southpointe

2600 Ansys Drive

Canonsburg, PA 15317

U.S.A.

www.ansys.com

Any and all ANSYS, Inc. brand, product, service and feature names, logos and slogans are

registered trademarks of Ansys, Inc. or its subsidiaries in the United States or other countries. All

other brand, product, service and feature names or trademarks are the property of their

respective owners.

© 2025 ANSYS, Inc. All rights Reserved.

http://www.ansys.com/

	1 Introduction
	1.1 Co-simulation and interaction with other software

	2 Overview
	3 Prerequisites
	3.1 Download the Ansys LS-DYNA usermat package
	3.2 Fortran compilers
	3.3 Compiling the subroutines for using Ansys LS-DYNA with user defined features
	3.4 Plugging a user-defined shared object into Ansys LS-DYNA
	3.5 User-defined feature development in a Windows environment
	3.6 A very brief introduction to Fortran programming
	3.6.1 Input format
	3.6.2 Variables and arrays
	3.6.3 Subroutines
	3.6.4 Some basic Fortran statements
	3.6.5 Programming for user-defined features

	4 Material models interface
	4.1 Keyword interface to the user defined material models
	4.2 Post processing user defined material models
	4.3 Interface to the user-defined material models in the subroutine umat
	4.3.1 Interface for discrete beam elements
	4.3.2 Material tangent modulus subroutine utan for implicit analysis

	4.4 Useful predefined subroutines
	4.5 Subroutine examples
	4.5.1 The Saint-Venant Kirchhoff model for solids and shells
	4.5.2 J2-plasticity for solids and shells
	4.5.3 Non-linear spring

	4.6 Ansys LS-DYNA simulation examples
	4.6.1 Examples of the Saint-Venant Kirchhoff material model
	4.6.2 Examples of the J2 – plasticity model
	4.6.3 Example of the non-linear spring material model

	5 Friction models interface
	5.1 Keyword interface to the user defined friction models
	5.2 Post processing user defined friction models
	5.3 Interfaces to the user defined friction subroutines
	5.4 Subroutine examples
	5.4.1 Time dependent friction coefficient for Mortar contact
	5.4.2 Friction depending on contact pressure and plastic strain

	5.5 LS-DYNA simulation examples
	5.5.1 Mortar contact: a cube on a tilting plane
	5.5.2 Forming analysis using pressure and plastic strain dependent friction

	6 Tied contact using Mortar weld tie
	6.1 Keyword interface to the user defined weld tie condition
	6.2 Post processing user weld tie condition
	6.3 Interface to the user defined tie condition in the subroutine mortar_usrtie
	6.4 Subroutine example
	6.5 LS-DYNA simulation example

	7 Mortar tiebreak contact
	7.1 Keyword interface to the user defined tiebreak condition
	7.2 Post processing user tiebreak condition
	7.3 Interface to the user defined tiebreak condition in the subroutine mortar_usrtbrk
	7.4 Subroutine example
	7.5 LS-DYNA simulation example

	8 Loads interface
	8.1 Keyword interface to the user defined loadings
	8.2 Post processing user defined loadings
	8.3 Interfaces to the user-defined loading subroutines
	8.4 Subroutine examples
	8.4.1 Example of subroutine loadud
	8.4.2 Example of subroutine loadsetud

	8.5 LS-DYNA simulation examples
	8.5.1 Nodal force by load curve
	8.5.2 Nodal force proportional to nodal displacement
	8.5.3 Hydrostatic pressure loading

	9 Other user interfaces
	10 Executing user-compiled LS-DYNA binaries under Windows

