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 Abstract 

In this document, some of the possibilities for user-defined features in Ansys LS-DYNA software 

will be presented. The objective is to provide a basic foundation for users with previous 

experience of the Ansys LS-DYNA software that are interested in starting to develop customized 

functionality. Both Fortran code examples of user subroutines and accompanying simulation 

models (keyword files) are provided  

 

This document is under continuous development, and future improved revisions will be released. 
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Disclaimer 

By using this Guideline, you hereby consent to this disclaimer and agree to its terms.  

All the information in this Guideline, comprised of this document and the 

accompanying simulation models, is published in good faith and for general 

information purposes only. Neither Ansys nor the authors make any warranties about 

the completeness, reliability, and accuracy of the information in this Guideline. Any 

action you take upon the information you find in this Guideline is strictly at your own 

risk. Neither Ansys nor the authors will be liable for any losses and/or damages in 

connection with the use of the Guideline. It is always up to the user of this Guideline to 

verify the results.  
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1 Introduction 

The multi-physics solver software Ansys LS-DYNA [1][3] has many pre-defined building blocks 

(traditional finite elements and other spatial discretization options, over 250 material models [2], many 

possible contact interactions etc.) for a wide range of different analysis types. For these pre-defined 

building blocks, the user can input parameter values, for example the hardening curve for a material 

model, while the behavior based on the given parameter values will be determined by the software.  

In addition to these pre-defined modelling capabilities, Ansys LS-DYNA software also offers many 

possibilities for the user to define fully customized building blocks, like material models, elements, 

friction models and loadings, see Ref. [20]  for an overview. These customer defined features plug into 

LS-DYNA via user interfaces, involving (amongst others) writing Fortran code. However, most analysis 

demands are met by corresponding built-in keywords, and it shall be stressed that writing subroutines 

in Fortran is rarely required for standard analysis. 

The wide range of user interfaces offers great possibilities for researchers, either academic or company 

research, to implement their own developments as building-blocks within the already available 

LS-DYNA solver environment (rather than developing a complete FE-solver from scratch for research 

purposes). It is possible to develop a more-or-less fully customized FE-solver in a stepwise fashion: for 

example, starting with a user defined material model in combination with pre-defined elements, then 

writing user defined element routines, in the next step combining with user defined friction, and in the 

end adding even a user defined linear equation solver for implicit analysis. 

The purpose of the present document is to provide an overview of some of the possibilities for user-

defined features. Traditionally, the user defined features have been seen as a very advanced topic, 

mostly used by senior researchers and highly experienced specialists. Hopefully, this guideline can shed 

some light on the development of user defined features from a more applied viewpoint, opening 

possibilities for experienced LS-DYNA users to also work with user defined features.  The everyday user 

should be able to gain insight into the possibilities that user defined features offer, should the pre-

defined building blocks of LS-DYNA seem insufficient for solving a specific task. 

It is assumed that the reader is familiar with common engineering terms and has knowledge of 

continuum mechanics and finite element theory. In addition, some years of experience of the Ansys 

LS-DYNA software is assumed. Basic keywords or FE modelling will not be discussed. 

For most user-defined features treated in this Guideline, examples will be given both in the form of 

Fortran code and keyword files. Please note that the provided examples are intended for 

demonstrational purposes only. They should not be used in any type of daily production analysis. The 

user should review all provided examples with critical eyes.  

This Guideline assumes that version R11 or later of the Ansys LS-DYNA software is used. Note that user 

defined features may be changed, removed, or added in later versions. Versions prior to R11 partially 

had a different lay-out of the source code for the user defined features. This will not be discussed in any 

detail in the present document. 

This Guideline is currently focused on developing user features in a Linux environment, but some 

details regarding user feature development in Windows will also be mentioned.  
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For general support, see lsdyna.ansys.com/knowledge-base/. Useful publications from LS-DYNA users 

and developers may be found on lsdyna.ansys.com/conference-papers/. Example keyword files can be 

found at lsdyna.ansys.com/. For further questions, or if errors are found in this document, please 

contact your local Ansys LS-DYNA supplier.   

The present document is based on the course notes [4][5] developed by Dr. Thomas Borrvall, Dr. Jesper 

Karlsson, and others. Course notes [6][7] developed by Dr. Tobias Erhart have also been of great help. 

The present document was developed by Dr. Anders Jonsson. 

1.1 Co-simulation and interaction with other software 

There are potentially many applications for running Ansys LS-DYNA software together with some other 

software, as a part of co-simulation, for example for applying hydraulic pressure from a system-level 

simulation tool to a detailed structure model [32]. Even though it may be possible to interact directly 

with other software via user-defined interfaces [33] the preferable approach is to use the Functional 

Mock-up Interface (see https://fmi-standard.org/ ) standard for exchanging data and synchronization of 

the solutions. This is available in Ansys LS-DYNA since R12, via the FMU Manager (see Ref. [1] for details 

and download instructions) and the built-in *COSIM [30][31] keywords. It offers many possibilities for 

transferring loads, pressures, displacements etc. both ways between LS-DYNA and other software 

(Python, Matlab/Simulink, Adams, etc.).  In that sense, FMI can provide functionality similar to user 

defined loadings. For a general introduction to the co-simulation capabilities of the Ansys LS-DYNA 

software, see the Webinar available from the Ansys Training Center. 

2 Overview 

See Table 1 for a quick guide to the user features, corresponding subroutine, which Fortran source code 

file it can be found in, and the section of the Guideline where it is discussed. 

In Section 3, some prerequisites required to get started are discussed, including some instructions 

regarding the LS-DYNA usermat package, and some hints to Fortran programming.  

In Section 4, user defined material models are discussed. The user defined materials are accessed via 

the keyword *MAT_USER_DEFINED_MATERIAL_MODELS, and the related subroutines umatXX are found in 

the Fortran files dyn21umats.f and dyn21umatv.f of the usermat package. 

In Section 5, user defined friction models are presented. The related keyword is 

*USER_INTERFACE_FRICTION, and the subroutines usrfrc and mortar_usrfrc are found in the Fortran 

file dyn21cnt.f of the usermat package. 

In Section 6, user defined weld tie conditions are described. The related keyword is 

*CONTACT_AUTOMATIC_SURFACE_TO_SURFACE_MORTAR_TIED_WELD_THERMAL, and the subroutines 

mortar_usrtie are found in the Fortran file dyn21cnt.f of the usermat package. 

In Section7 the (almost) inverse, namely user defined tiebreak conditions for Mortar contact are 

described. The related keyword is *CONTACT_AUTOMATIC_SURFACE_TO_SURFACE_TIEBREAK_USER_MORTAR, 

and the subroutines mortar_usrtbrk are found in the Fortran file dyn21cnt.f of the usermat package. 

https://lsdyna.ansys.com/knowledge-base/
https://lsdyna.ansys.com/conference-papers/
https://lsdyna.ansys.com/
https://fmi-standard.org/
https://www.ansys.com/training-center/course-catalog/ls-dyna/co-simulation-with-ansys-ls-dyna-software-using-functional-mock-up-interface
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Section 8 briefly treats user defined loadings. The related keyword is *USER_LOADING_{SET}, and the 

subroutines loadud and loadsetud are found in the Fortran file dyn21.f of the usermat package. 

Table 1. Overview of the user defined features 

User defined feature Subroutine Fortran file Section 

Material models umatXX, utanXX dyn21umats.f, 

dyn21utan.f 

4 

umatXXv dyn21umatv.f 

Friction usrfrc, 

mortar_usrfrc 

dyn21cnt.f 5 

Weld tie mortar_usrtie dyn21cnt.f 6 

Tiebreak mortar_usrtbrk dyn21cnt.f 7 

Loading loadud, loadsetud dyn21.f 8 

 

Provided examples (keyword files, Fortran code) were tested with mpp/LS-DYNA R13.1, R14.1.0 and 

R15.0.2 double precision, sse2 (also avx2 for examples not involving contacts) under Linux, with 

acceptable results in all cases. All examples except the user defined friction for non-Mortar contacts 

(usrfrc) were also tested with smp/LS-DYNA R14.1.0 and R15.0.2, with acceptable results. 

3 Prerequisites 

This Section describes what is required to get started with creating user defined features for Ansys 

LS-DYNA software. The first step is to download a programming environment (the usermat package) 

from your LS-DYNA provider, see Section 3.1. Since all interaction with the user defined features will 

require Fortran programming, a Fortran compiler is a fundamental requirement for getting started. 

This is not included in the LS-DYNA usermat package. An overview of recommended compilers is 

presented in Section 3.2, and a very brief introduction to Fortran programming is given in Section 3.6. 

How to build a user defined module is described in Section 3.3, and how to integrate it in a simulation 

model using the appropriate LS-DYNA keywords is described in Section 3.4. 

It is mainly assumed that programming and user feature development is done in a Linux environment, 

but some special considerations when working in Windows environment are mentioned in Section 3.5.  

Appendix A of Ref. [1] also contains a general overview of how to get started working with user defined 

features. 

Do not hesitate to contact your local Ansys LS-DYNA provider for questions regarding download of 

required files, or setup of compilers for different environments, or other issues related to the user 

defined features. 
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3.1 Download the Ansys LS-DYNA usermat package 

It is possible to integrate the user defined features into LS-DYNA using either static or dynamic1 linking. 

Static linking means that a special version of LS-DYNA is built, which contains the user defined 

features. This was the traditional way of working with user-defined features. It is straight-forward but 

offers little flexibility. It is hard to integrate more features from different sources, for example 3rd party 

material routines with in-house development friction models. 

Dynamic linking, see also Figure 1, means that a shared object (a file with extension .so in Linux) is built 

which then can be dynamically linked to a sharelib – version of LS-DYNA using the *MODULE - keywords, 

see Section 3.4. The dynamic linking approach offers more flexibility since many shared objects from 

different sources can be linked to the same (standard) LS-DYNA main binary. Building a shared object 

may also be less resource intensive in terms of compiler and linking time. Currently2, the dynamic 

linking approach is only supported by LS-DYNA under Linux. 

 

Figure 1. Integrating the user defined features into LS-DYNA using the shared object approach. Image from Ref. 

[7]. 

 

The first step to get started with the development of user-defined features for LS-DYNA is to decide 

which approach to use, either static or dynamic linking, and then download the required files from your 

local Ansys LS-DYNA provider. The Linux-version package for dynamic linking will typically be named 

ls-dyna_mpp....sharelib.usermat.tar.gz or ls-dyna_mpp....sharelib.usermat.tar.gz_extractor.sh  

and for static linking 

 
 

1 From R9. Currently only supported for LS-DYNA under Linux. 
2By official LS-DYNA versions available up to 2024-12-15. 
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ls-dyna_....usermat.tar.gz or ls-dyna_....usermat.tar.gz_extractor.sh 

The files will be packaged in a compressed archive format, so after downloading unpacking will be 

required. 

Just as for “standard” LS-DYNA, it is important to distinguish between SMP/MPP/hybrid and 

single/double precision. This means that the user defined features must be compiled and linked for the 

right “flavor” and version of LS-DYNA; for example, a shared object compiled for single precision LS-

DYNA can in general not be plugged into double-precision LS-DYNA executable, and vice versa.  Also, 

the sse2/avx2/avx512 extensions must be taken into consideration, so that the shared object is built for 

the corresponding extension – a shared object file based on sse2 will not work properly when used with 

LS-DYNA with the avx2 - extension. 

When working with static linking, it is obvious that re-compilation and new linking of the user-defined 

features will be required in order to use the user defined features with a new LS-DYNA version. It will 

also be required for the dynamic linking approach: the shared object file must be built with the 

corresponding environment for a specific LS-DYNA version, since for example interfaces and 

arguments to subroutines may have changed between versions. This means that also when working 

with dynamic linking, the user features must be re-compiled in order to be used with a new LS-DYNA 

version. 

The Fortran files of the usermat package come with some example material models and related 

subroutines, which may be used as templates for further developments. 

3.2 Fortran compilers 

Intel’s Fortran compiles are in general recommended for both Linux and Windows. More specifically [4], 

for  

• Linux Redhat or CentOS, use  

o Intel Fortran Compiler [10] 2013 for LS-DYNA R9, 

o Intel Fortran Compiler 2016 for LS-DYNA R11 and R12,  

o Intel Fortran Compiler 2019 for LS-DYNA R13, R14 and R15. 

• Linux Suse, use PGI Fortran Compiler 16.5 (10.5 for LS-DYNA R9) for LS-DYNA R11 and R12, 

• Windows x64, see Section 3.5. 

 

Some special setup of the system environment will most likely be required. For example, when working 

with the Intel Fortran compiler under Linux, the command 

compilervars.sh -arch intel64 -platform linux 

found in the compiler installation directory, under (for Intel Fortran 2016) 

compilers_and_libraries_2016/linux/bin/ must be issued in order to apply appropriate settings 

before compilation can be performed. For compiling mpp/LS-DYNA, or shared objects, also the 

appropriate mpi-Fortran wrapper (for example mpiifort for Intel MPI) must be configured. For Intel 

MPI under linux, the command 

compilervars.sh -arch intel64 -platform linux 
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found in the MPI installation directory, under (for Intel MPI 2019) 

compilers_and_libraries_2019/linux/bin/ must be issued in order to apply appropriate settings 

before compilation for mpp, using mpiifort, can be performed. 

For further details on this, consult the documentation of the compiler in question, or contact your local 

Ansys LS-DYNA provider for support.  

3.3 Compiling the subroutines for using Ansys LS-DYNA with user 

defined features 

Once the LS-DYNA usermat package has been downloaded and unpacked, the next step is to set up 

the compiler environment and test-compile the files as-is, without any modifications. In Linux, the 

Makefile contains the instructions for compiling and linking that are required to build either a shared 

object file (libmppdyna_ … .so) or a statically linked customized LS-DYNA-version (the result will in the 

latter case be a monolithic executable called mppdyna or lsdyna). In Linux, open the text file Makefile 

and edit the Fortran compiler command to the appropriate for the present installation (see Section 3.2). 

The next step is to build the desired shared object, which is obtained by executing the Linux make 

command. In some cases, it may be required to re-compile all objects, this can be achieved by first 

issuing make clean and then the make command. 

Finally, run a small test model, for example tension of some solid elements (see for example, Section 

4.6.1), without any user defined features active in the model but still including the shared object (see 

Section  3.4 for details) to verify that that LS-DYNA runs as expected.  

The purpose of this initial testing stage is to establish a basis for further development of user defined 

features for LS-DYNA. It is good practice to have sorted out any problems directly related to compiling 

and linking the shared object files, or problems related to loading them into the LS-DYNA simulation 

model, before starting to work with the development of advanced user-defined features. Then, if errors 

should occur at later stages, troubleshooting can be more efficiently focused directly on the likely 

cause. 

Once this testing stage is completed, the development of user defined features can commence, 

preferably in an incremental and iterative way, as outlined in Section 3.6.5. 

3.4 Plugging a user-defined shared object into Ansys LS-DYNA 

The shared object file must be built with the corresponding environment (usermat package) for a 

specific LS-DYNA version. This means that also when working with dynamic linking, the user features 

must be re-compiled in order to be used with a new LS-DYNA version. Note also that specific double / 

single precision versions of the .so – files must be built. Also, the hardware acceleration extension 

(sse2, avx2 or avx512) must match between the usermat package and the LS-DYNA version. For 

example, let us assume that a user-defined material model has been developed for LS-DYNA R11.1.0 sse 

2, and this has been compiled to the shared object file libmppdyna_R111.so. In order to use this user-

defined material model with LS-DYNA R12.2.2 avx2, a new shared object file (which can be named for 

example libmppdyna_R121_avx2.so) must be built using the corresponding usermat package. This 
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means adapting the user contributed source code to the dyn21-files in the new package. The dyn21-

files should never be copied between versions. 

The LS-DYNA keywords required to dynamically link a user-defined shared object to the main LS-DYNA 

binary all begin with *MODULE [1]. The path to a shared object can be specified by the keyword 

*MODULE_PATH. A shared object is loaded by the keyword *MODULE_LOAD. In order to map the user 

subroutines loaded in shared objects to the model, the keyword *MODULE_USE is applied, for example in 

situations where user defined materials for different 3rd party suppliers should be combined in the 

same simulation model.  If only a single shared object is used, it can also be linked using the 

environment variable LD_LIBRARY_PATH or the command line argument “module=”, instead of *MODULE. 

An example of the use of these keywords is also presented in Section 4.1. 

3.5 User-defined feature development in a Windows environment 

In this section, some special details regarding user defined feature development for LS-DYNA running 

in a Windows environment will be mentioned. For the Windows versions of LS-DYNA, the only option 

currently available is to work with static linking. This means that a special version of LS-DYNA is built, 

including the user defined features. The Windows-version package for static linking will typically be 

named ls-dyna_..._winx64_.._lib.zip, or ls-dyna_..._winx64_.._lib_installer.exe, see also Figure 2.  

A brief instruction on how to build a LS-DYNA executable is given in the readme.txt – file provided in 

the Windows usermat package. 

 

Figure 2. Example of contents of the usermat package for Windows.  

 

The recommended Fortran compiler for LS-DYNA R11 and R12 is  

Intel Parallel Studio XE 2017 
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and the corresponding Microsoft application environment, required for linking and access to standard 

libraries, is 

Microsoft Visual C++ 2017 x64 Cross Tools.  

For LS-DYNA R13, R14 and R15, the recommended Fortran compiler is  

Intel Parallel Studio XE 2019 (Update 6, Composer Edition) 

and the corresponding Microsoft application environment, required for linking and access to standard 

libraries, is 

Microsoft Visual C++ 2019 x64 Cross Tools.   

Note that the recommended compilers and tools may change for coming LS-DYNA versions, please see 

the information provided in the readme.txt – file for updated information.  

In addition, the MPI for mpp/LS-DYNA under Windows is required. Note that it is also required to install 

the MS MPI Software Development Kit (SDK). Recommended are Microsoft MPI v8.1 for R11, and 

Microsoft MPI v10 for R12 of LS-DYNA, which are available for free download from www.microsoft.com.  

The command nmake.exe [26] is used for building the LS-DYNA executable, based on the information in 

the makefile text file. Note that it may be required to update the search paths in the makefile text file 

depending on the local installation. 

In order to run the customized LS-DYNA version, the executables ansyscl.exe and lstc_client.exe 

and the library libiomp5md.dll (provided with the Intel Fortran compiler installation) need to be in the 

same folder as the LS-DYNA executable. In some cases, Windows security settings or antivirus 

programs may prevent execution of a customized LS-DYNA version. How this may be remedied is 

discussed further in Appendix A. 

3.6 A very brief introduction to Fortran programming 

All interaction with the user defined features of LS-DYNA will involve some amount of Fortran 

programming. This section is taken from the course material [4] and the purpose is to give a very brief 

introduction to programming in Fortran. Other sources are for example, from Intel. Fortran’s official 

home page is https://fortran-lang.org/.  

Another good starting point seems to be 

https://www.tutorialspoint.com/fortran/fortran_useful_resources.htm 

3.6.1 Input format 

Fortran is an imperative programming language. A typical program consists of a set of statements, 

which are executed sequentially. In pseudo-code, a typical lay-out looks something like this: 

PROGRAM name 

declarations 

executable statements 

END 

 

http://www.microsoft.com/
https://www.intel.com/content/www/us/en/develop/documentation/get-started-with-fortran-compiler/top/get-started-on-linux.html
https://fortran-lang.org/
https://www.tutorialspoint.com/fortran/fortran_useful_resources.htm
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The input is case-insensitive, and recommended practice is to always use lower case (upper case only 

use for emphasis here). Often fixed-format input is used, which means that each Fortran statement is 

written in positions 7 – 72 on a line. Position 6 is reserved as a continuation marker; in order to continue 

a statement on the next line, put a character in position 6 of the continued line. If a ‘C’ or ‘c’ is found in 

position 1 of a line, that line is taken as a comment. This is a convenient feature, making it easy to write 

explanations about what certain parts of the code are supposed to do, or simply de-activating certain 

lines of code. Position 1 – 5 are reserved for statement numbers or labels.  

3.6.2 Variables and arrays 

Variables can be of type INTEGER, REAL (floating point numbers) or REAL*8 (double precision floating 

point numbers), CHAR (characters or strings) or LOGICAL (Boolean). Variable names can be up to 31 

characters long. For example: 

INTEGER i, j,k 

REAL a,b,c 

REAL*8 d,e,f 

If the variable declarations are omitted, the compiler will make certain assumptions regarding types of 

variables, for example, that variables beginning with the letters I, J, K, L, M, N are INTEGER. The lack of 

specification often leads to program errors, and it is strongly recommended that variable types are 

always declared. The statement IMPLICIT NONE means that all variables must be declared, and use of 

an undeclared variable will cause a compilation error. 

Arrays are fields of variables, and are declared as for example 

INTEGER ii(10), ndx(100) 

REAL*8 sigma(6), avec(100) 

Variables can then be assigned values by the = statement and be used for arithmetic operations 

(summation by +, multiplication by *, division by / and subtraction by -), for example: 

j=20 

b=2.49 

avec(j) = b 

 

The Fortran 90 standard offers convenient input for operations on arrays, where a sequence of 

elements can be accessed in one line, reducing the need for DO – loops, for example: 

s(1:3) = sig(1:3)-sum(sig(1:3))/3.0 

3.6.3 Subroutines 

Subroutines are used to simplify coding and should be used for code that must be executed many 

times. 

SUBROUTINE subname(parameters) 

IMPLICIT NONE 

declarations 

statements 

RETURN 

END 

In the main program, or from other subroutines, the subroutine is called by 
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CALL subname(parameters) 

The list of parameters in the call and the subroutine declaration must match. In subroutines, arrays in 

the parameter list can be declared with assumed size, by use of an asterisk / star within parenthesis to 

declare its size as flexible, for example 

SUBROUTINE setzero(a, la) 

IMPLICIT NONE 

REAL*8 a(*) 

INTEGER la 

… 

statements 

RETURN 

END 

In Fortran, all parameters to a subroutine are passed by reference. This means that if a parameter is 

changed (assigned a new value) in the subroutine, it will also be changed in the context where it was 

called from. This also means that special care must be taken when programming, so that only variables 

that are intended as output from a subroutine are updated. 

3.6.4 Some basic Fortran statements 

To repeat statements iteratively a specified number of times, the DO / ENDDO construct can be used, for 

example   

DO var=first, last 

  statements 

ENDDO 

The variable var will take values first, first + 1, … , last. In order to break a DO – loop, the 

statement EXIT can be used, for example 

DO iter=1, maxiter 

  statements 

  IF(residual.LE.tol)THEN 

    EXIT 

  ENDIF 

ENDDO 

To control the program flow based on logical conditions, the IF / THEN / ELSE construct can be used, for 

example 

IF ABS(s) .GT. 1.E-15 THEN 

  si = 1./s 

ELSE 

  si = 1.E16 

ENDIF 

The GOTO statement can be used to make the execution continue on the line with a specified statement 

number, for example 

GOTO 10 

jumps to statement number 10. 

3.6.5 Programming for user-defined features 

In this Section, some tips specific for programing user-defined features in Ansys LS-DYNA follow. 
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When developing the user-defined feature, it is recommended to add some debug printouts in order 

to make sure that the user-defined feature actually is active and called from the main LS-DYNA binary. 

The user can get access to LS-DYNA’s message files (messag, mes0*) and highspeed-printout file 

(d3hsp) via the standard Fortran write – command. This is simplified by including the file iouinits.inc 

in the subroutine, which contains the unit number for the message files (mes0*) in the variable iomsg 

and the d3hsp – file in the variable iohsp. An example follows: 

. 

INCLUDE ‘iounits.inc’ 

. 

write(iomsg, *) ‘user defined feature writes to the message file’ 

. 

RETURN 

END 

It is recommended to work with the development in a stepwise fashion, making small modifications 

and checking that each modification has the intended effect. Also starting with small (a couple of 

hundred elements for example) FE-models is recommended. It is good practice to verify the results 

from the user defined feature by comparing to handbook solutions or built-in LS-DYNA functions. 

Once the developed feature is considered ready for use in a larger scale context, it is recommended to 

disable or limit debug printouts, since these may slow down performance significantly and create big 

output files. 

4 Material models interface 

The over 250 built-in material models in LS-DYNA [2] cover many applications, from linear elasticity to 

orthotropic plasticity models, foams, and composites. A web-based material model selection guide is 

available from https://lsdyna.ansys.com/dynamat/ [24]. Still, there may be cases where specific 

customer demands cannot be perfectly matched by the existing material models, and perhaps the 

most common customization of Ansys LS-DYNA is the development of a specialized material model. 

Third-party companies, like MatFEM [16] and E-Extreme / Digimat [17], deliver material models for 

specific purposes, like advanced failure modelling and analysis of composites. From R13 of LS-DYNA, 

also the option to add plasticity, viscoelasticity, creep etc. to already existing material models is 

available by the keyword *MAT_ADD_INELASTICITY [29] in a quite general manner. Fairly advanced 

damage and failure models can be added to many of the built-in material models, by the keywords [2] 

*MAT_ADD_DAMAGE_{GISSMO/DIEM} see for example Refs. [14][15] for examples and background. 

This section will not focus specifically on material modelling as such, since it is a very wide field, with 

many specializations for metals, composites etc. A vast amount of published research is available, and it 

is currently a very active research field. For a background to material modelling and continuum 

mechanics, the reader is referred to for example Refs. [11][12][13]. 

In the following, it is assumed that an existing valid material model is to be implemented as a user 

defined material model in LS-DYNA. The user-defined material subroutine umatXX (where 41 ≤ XX ≤ 50) 

is called in the solution sequence, with the strain rate (or deformation gradient) as main input, and its 

objective is to update the (Cauchy) stress  (and history variables, if required) for the next time step, in 

order that nodal forces can be computed, see Figure 3. All input quantities are passed to the user 

https://lsdyna.ansys.com/dynamat/
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subroutine in the local element coordinate system, so no additional transformations are required by 

the user. In the case of an anisotropic material model, the same options for specifying material 

directions as for the built-in LS-DYNA materials are available (see the remarks related to *MAT_2 of Ref. 

[2]). Some care must be taken when implementing the material model for shells and beam elements, 

since it is then required that the material model will deliver stresses that are consistent with the 

assumptions related to structural elements (for example 33 = 0 for shells). In the implicit solution 

sequence, also the material stiffness matrix is required, and the corresponding subroutine utanXX is 

called when assembling the global stiffness matrix. 

It is also possible to create user defined thermal material models, see Appendix H of Ref. [1], but this 

option will not be discussed further in the present release of this Guideline. 

The keyword interface for passing parameter values etc. to the user defined material model is 

described in Section 4.1. Post-processing the results from user subroutines is outlined in Section 4.2. 

The Fortran interface to the user subroutines is described in Section 4.3. Some useful pre-defined 

subroutines for common operations, such as push-forward, are described in Section 4.4.  Finally, in 

Section 4.5, some examples of material model implementation are presented.  

 

Figure 3. In the explicit solution sequence, the objective of the user-defined material interface is to output the 

updated stress based on provided incremental strain and current stress. Image from Ref. [7]. 

 

See also Appendix A of the Keyword manual [1] for more details on user defined material models. A 

dedicated course in User Defined Material Models is available from the Ansys Training Center. 

 

https://www.ansys.com/training-center/course-catalog/ls-dyna/user-defined-material-models-in-ansys-ls-dyna
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4.1 Keyword interface to the user defined material models 

The keyword interface to the user defined material models is given by 

*MAT_USER_DEFINED_MATERIAL_MODELS. By this, a user defined material can be assigned a Material ID 

(MID) that in turn can be referenced by a *PART – definition. One example of the keyword syntax 

follows: 

*MAT_USER_DEFINED_MATERIAL_MODELS_TITLE 

User defined J2 plasticity UMAT41 

$#1    MID        RO        MT       LMC       NHV    IORTHO     IBULK        IG 

         3  2.700E-9        41         8         1         0         3         4 

$#2  IVECT     IFAIL    ITHERM    IHYPER      IEOS      LMCA    UNUSED    UNUSED 

                              

$#      P1        P2        P3        P4        P5        P6        P7        P8 

     70.E3      0.31   61404.0    26718.      103. 

The variables of this keyword are: 

• MID: The Material ID.  

• RO: Mass density. This, in combination with the bulk and shear moduli, is required input for 
LS-DYNA to be able to compute the critical time step size for explicit analysis, and penalty 
factors for contacts and joints.  

• MT: The user material type. In this case, MT = 41 means that the subroutine umat41 (and also 
utan41 in the case of an implicit analysis) will be called. 

• LMC: The number of material parameters to be input on the keyword and passed to the 
subroutine.  In this case 8, meaning that the variables P1 – P8 will be read during initialization 
and passed to the subroutine umat41 in the cm array. Fields left blank in the keyword input will 
be passed as zero. 

• NHV: The number of history variables to be stored on integration-point level (max. 200). In this 
case, one history variable is defined. 

• IORTHO:  Set to 1 if material is orthotropic (necessary for definition of material axes). The default is 
an isotropic material model. 

• IBULK, IG: The addresses of the bulk and shear moduli, respectively, in the parameters array. In 
this case, IBULK = 3 means that LS-DYNA can find the bulk modulus as the variable P3, and IG = 
4 means that LS-DYNA can find the shear modulus as the variable P4.   

• IVECT: If set to 1 the vectorized version of the material routine is called. Default is that the scalar 
version is called, once for each integration point. The vectorized vs. scalar version of a user 
subroutine is discussed mode in Section 4.3. 

• IFAIL: Set to 1 if the material routine should be able to control element erosion of solids and 
shells.  

• ITHERM: Set to 1 if the integration point temperature shall be computed and passed to the user 
subroutine. 

• IHYPER: Flag for hyperelastic materials. By setting IHYPER = 1, the deformation gradient will be 
passed to the user subroutine. The implementation of a hyperelastic material is presented as an 
example in Section 4.5.1. 

• IEOS: Flag for equation of state. 

• LMCA: Length of additional material constants array (unlimited). 

• P1 … Pn: Material parameters passed to the user defined material subroutine in the array cm. In 
this case, material parameters for aluminum are defined. P2 is the Poisson’s ratio in this case, 
and P5 refers to a Load curve ID (103 in this case), which specifies the yield stress as a piecewise 
linear function of the accumulated effective plastic strain. 
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Should more than 10 different user defined material models be required, the *MODULE – keywords 

provide a handy solution. The following example illustrates this: first, the keywords *MODULE_PATH and 

*MODULE_LOAD read in two different shared objects, 

*MODULE_PATH 

 … path_to_modules … 

*MODULE_LOAD 

$#1            MDLID                                                 TITLE 

                   1 Library 1 

$#2 FILENAME 

sharedobje01.so 

*MODULE_LOAD 

$#1            MDLID                                                 TITLE 

                   2 Library 2 

$#2 FILENAME 

sharedobje02.so 

By this, the shared object sharedobje01.so is loaded and assigned the module ID 1, and the shared 

object sharedobje02.so is loaded and assigned the module ID 2. By the *MODULE_USE keyword, the user 

material types (typically 41 ≤ MT ≤ 50) can be re-mapped to new ID numbers: 

*MODULE_USE 

$#1            MDLID 

                   1 

$#2             TYPE              PARAM1                        PARAM2 

UMAT                                  41                          1001  

*MODULE_USE 

$#1            MDLID 

                   2 

$#2             TYPE              PARAM1                        PARAM2 

UMAT                                  41                          1002 

This means that the umat41 of sharedobj01.so can be referred to as material type 1001, and the umat41 

of sharedobj02.so can be referred to as material type 1002 when creating a user defined material 

model: 

*MAT_USER_DEFINED_MATERIAL_MODELS 

$#1    MID        RO        MT 

         1   7.85e-9      1001 

… 

*MAT_USER_DEFINED_MATERIAL_MODELS 

$#1    MID        RO        MT 

         2   2.70e-9      1002 

… 

 

Then these material models can be assigned to *PARTS, as any built-in LS-DYNA material model: 

*PART 

first part 

$#     PID     SECID       MID 

         1         1         1 

*PART 

second part 

$#     PID     SECID       MID 
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         2         2         2 

  

By a similar procedure, the limitation to 10 user defined material models can be overcome by 

separating the material models and placing 1 – 10 in the sharedobje01.se, and then 11 – 20 in the 

sharedobje02.so, and so on. 

Note that one user defined material type, for example MT = 41, may be referenced by an unlimited 

number of *MATERIALs (with different Material IDs). However, in that case only the parameters RO, and 

P1…Pn may be changed on each *MATERIAL. 

4.2 Post processing user defined material models 

The number of additional material history variables to be output to the binary 3D databases d3plot, 

d3part and d3drlf is controlled by the NEIPH (output for solid elements) and NEIPS (for shell elements) 

variables of the keyword *DATABASE_EXTENT_BINARY. For example, in order to post-process 5 material 

history variables for a user defined material model, set NEIPH = NEIPS = 5. This will store the first 5 

history variables (hisv(1:5), see Section 4.3) in the binary databases. This means that the history 

variables of interest for post-processing should appear in the beginning of the hisv array. Interactive 

post-processing of the binary 3D databases d3plot, d3part and d3drlf, including extra history results, 

should be possible using LS-PrePost [22], META [23] or other third-party post-processors.   

The number of additional material history variables to be output to the elout file (for history / 2D curve 

plotting) is controlled by the OPTION1 (for solid elements) and OPTION2 (for shell elements) variables of 

the keyword *DATABASE_ELOUT. For example, in order to post-process 5 material history variables for a 

user defined material model, set OPTION1 = OPTION2 = 5.  

For the history output, note that also *DATABASE_HISTORY_... keywords are required, in order to 

specify for which elements the data should be output. 

One motivation for writing a user material subroutine may be that is makes it possible to output 

additional history results from a “standard” material model, for example back stress terms, or the 

maximum effective stress during a simulation. 

The user defined subroutines can also write text output to the message (mes0*) and d3hsp – files. This 

can be very useful, for example in case some initial parameter fitting to a given test curve is done, some 

quality measure indicating the validity of the fit can be output. It is at least during the development 

phase warmly recommended to add output of some text message to confirm which subroutine(s) that 

are called during the solution of a specific FE model. 
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4.3 Interface to the user-defined material models in the subroutine 

umat 

There are two3 basic categories of subroutines for user defined material models:  

• If the subroutine should be called once for each element and integration point, it is denoted as a 
scalar (or serial) material subroutine. This corresponds to IVECT = 0 on the 
*MAT_USER_DEFINED_MATERIAL_MODELS keyword. The subroutines are named umatXX, where 41 ≤ 
XX ≤ 50, and can be found in the dyn21umats.f – file. 

• If the subroutine can process an array of elements for each integration point, it is denoted as a 
vectorized material subroutine. This corresponds to IVECT = 1 on the 
*MAT_USER_DEFINED_MATERIAL_MODELS keyword. The subroutines are named umatXXv, where 41 
≤ XX ≤ 50, and can be found in the dyn21umatv.f – file. 

 

While the scalar approach may be easier to code – since only scala data needs to be handled – the 

vectorized version will probably lead to faster solution timing; the reduced number of subroutine calls 

will lead to less overhead processing. It is in all cases to be expected that a user-defined version of even 

a simple material model will not be as fast as a built-in equivalent material model. If a user defined 

material model is to be implemented, it should be motivated by other benefits, for example new 

material behavior or enhanced post-processing, than improved solution speed.   

The main subroutine for interfacing between LS-DYNA and the user defined material models is usrmat 

and can be found in the dyn21umat.f – file. It should normally not require editing, even though it is 

possible in order to pass additional information to the user defined subroutines [7]. 

As input to the material subroutine, LS-DYNA provides the 

• Incremental strain, 

• Current stress, 

• History variables, 

• Material parameters, 

• Element type (solid, shell, beam, discrete beam …) and 

• Temperature. 

The subroutine should, based on this and according to the material law, provide 

• The stress in the next time step,  

• strain corrections for structural elements (beams / shells), and if required also 

• updated history variables. 

 
 

3 In addition, there is also the possibility to define cohesive user material models, by the subroutines 

umatXXc of the dyn21umatc.f – file. This will not be discussed further in the present revision of this 

Guideline. 
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To be more specific, the parameter list for a scalar implementation of a user defined material model (in 

this case umat41) is: 

      subroutine umat41(cm,eps,sig,epsp,hsv,dt1,capa,etype,tt, 

     1 temper,failel,crv,nnpcrv,cma,qmat,elsiz,idele,reject) 

 

An overview and brief description of the parameters to the subroutine is shown in Table 2. 

Table 2. The arguments to the subroutine umatXX 

Argument Description Input / Output 

cm Material constants Input 

eps Local strain increment in Voigt(1) notation Input /Output(2) 

sig Local stress in Voigt notation Input / Output 

epsp Accumulated effective plastic strain Input / Output 

hsv History variables Input / Output 

dt1 Current time step size Input 

capa Reduction factor for transverse shear of shells and beams(3) Input 

etype String describing element type Input 

tt Current problem time Input 

temper Current temperature Input / Output 

failel Failure flag, set to .true. to indicate failure of an integration point 

(Requires IFAL = 1, see Section 4.1) 

Input / Output 

crv Array representation of curves in the keyword deck Input 

nnpcrv Number of discretization points(4) per curve Input 

qmat Transformation matrix in case of IHYPER =3 Input 

cma Additional memory for material data  Input 

elsiz Characteristic element size Input 

idele Element id Input 

reject For implicit analysis: set to .true. if the current implicit iterate should 

be rejected for some reason 

Output 

Notes: (1) This means that the symmetric stress and strain 3 × 3 tensors are represented as 6 × 1 vectors. 

(2) For shell elements, the through-thickness strain eps(3) shall be updated corresponding to the plane 

stress assumption. (3) This corresponds to SHRF on the *SECTION_SHELL or *SECTION_BEAM card. (4) The 

curves are internally re-discretized (to the number of points specified by LCINT on the 

*CONTROL_SOLUTION - keyword) in order to speed up the curve/table look up. 

In LS-DYNA, the symmetric 3 × 3 stress tensor () and the symmetric 3 × 3 strain rate tensor 𝜺̇ are 

represented as 6 × 1 vectors, stored in arrays sig and eps, using Voigt notation: 

sig(1:6) = (11, 22, 33, 12, 23, 13) 

and 

 eps(1:6) = (𝜀1̇1, 𝜀2̇2, 𝜀3̇3, 2𝜀1̇2, 2𝜀2̇3, 2𝜀̇13). 

Note that this representation differs from for example Ref. [11]. 
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The accumulated effective plastic strain (clearly a history variable) has its own parameter epsp outside 

the history variables array hsv. This means that for example basic J2 – plasticity can be defined (at least 

for explicit analysis) without any additional history variables (leaving NHV = 0 on 

*MAT_USER_DEFINED_MATERIAL_MODELS). In cases where both built-in materials (for example MAT_24) 

and user-defined materials are used in the same FE-model, post-processing (for example fringe 

plotting the accumulated effective plastic strain) is easier if the user-defined materials also use the 

parameter epsp to store the accumulated effective plastic strain (if applicable). 

The etype parameter is a string, describing the element type, see Table 3. If a material model should be 

generally valid also for structural elements (shells, beams) this will require special care with respect to 

different types of stress / strain updates in order to fulfill the assumptions (for example updating the 

through-thickness strain eps(3) for shells in order to fulfill sig(3) = 0.). This is illustrated further in 

the examples of Section 4.5. If is in any case good practice to add element type checks in the 

subroutine and stop LS-DYNA with a reasonable error description (see Section 4.4) in case there is an 

attempt to apply a user-defined material model to element types that are not properly supported. 

Table 3. The element types and their string values 

etype.eq. Description Coment 

‘solid’ 3D solid elements  

‘sph’ SPH, smoothed particle hydrodynamics Not covered in this Guideline 

‘sldax’ 2d solids, axisymmetric Shells elform 14 and 15 

‘shl_t’ Shells with thickness stretch Shells elform 25, 26, 27 

‘shell’ Shells without thickness stretch All other shell elforms, and thick shell 

elform 1, 2 

‘tshel’ For thick shells Thick shell elforms 3, 5. May use same 

material formulation as 3D solid 

elements 

‘hbeam’ For beam elements Beam elform 1, 11 

‘tbeam’ For trusses Beam elform 3 

‘dbeam’ Discrete element beams (springs, dashpots 

etc.) see also Section 4.3.1 

Beam elform 6.  

Not supported in implicit 

‘beam’ For beams All other beam elforms 

 

If the variable ITHERMAL = 1 on the *MAT_USER_DEFINED_MATERIAL_MODELS – keyword, the material 

temperature at the current integration point is available in the temper parameter. By this, temperature 

dependent material behavior can be implemented. The conversion of deformation to heat is taken care 

of by LS-DYNA outside the user-defined material models, so there is no need for the user subroutine to 

update the temperature. 

The user-defined material model can also involve a damage/failure model, and if the variable IFAIL = 1 

on the corresponding *MAT_USERDEFINED_MATERIAL_MODELS -keyword, the material model can also 

indicate failure of an integration point, by setting the Boolean parameter failel = .true. The 

parameter is also input to the subroutine, which means that the logic of the subroutine must handle 

what to do with output of for example of stress and plastic strain after an integration point is failed: 

should the data be set to zero, or kept constant?   
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The capa parameter is the transverse shear reduction factor, corresponding to the value of SHRF on 

*SECTION_SHELL. How to use it will be demonstrated in the examples of Section 4.5. 

For implicit analysis, the material routine can set the parameter reject = .true. to indicate that the 

current iterate should be rejected, for example if the increment of plastic strain (depsp in the example 

below) is above some tolerance threshold (epsinctol): 

      if(depsp.gt.epsinctol)then 

        reject = .true. 

        return 

      endif 

This will trigger a RETRY in the non-linear implicit solver, meaning that the time step will be tried again 

with a smaller time increment. 

For a vectorized implementation, which is invoked by setting IVECT = 1 on the 

*MAT_USER_DEFINED_MATERIAL_MODELS -keyword, data for a vector block of elements is passed to the 

user-defined material subroutine. It is required to include the file ‘nlqparm´ in the subroutine. The 

length of the vector block of integration point data is given by the parameter nlq, and the objective of 

the subroutine is to update the element data in the range from lft to llt. 

To be more specific, the parameter list for a vectorized implementation of a user defined material 

model (in this case umat41v) is: 

      subroutine umat41v(cm,d1,d2,d3,d4,d5,d6,sig1,sig2, 

     . sig3,sig4,sig5,sig6,epsps,hsvs,lft,llt,dt1siz,capa, 

     . etype,tt,temps,failels,nlqa,crv,nnpcrv,cma,qmat,elsizv,idelev, 

     . reject) 

 

A brief overview of the parameters is presented in Table 4. The main body of a vectorized 

implementation is outlined in pseudo – code below: 

      subroutine umat41v (...,lft,llt,...) 

      include ‘nlqparm‘ 

      . . . declare varibles and parametes … 

    

      do k=lft,llt 

        . . . 

        process element point k, update sig1(k), sig2(k)… sig6(k) etc. 

        . . . 

      enddo 

      return 

      end 

The implementation of an orthotropic material model can be simplified by setting IORTHO = 1 on the 

material card (*MAT_USER_DEFINED_MATERIAL_MODELS). By this, the local (material) coordinate system is 

defined by two additional cards, specifying how the coordinate system is formed and updated (this is 

described in some detail under *MAT_ORTHOTROPIC_ELASTIC of Ref. [2]). With IORTHO = 1, all data passed 

to the constitutive routine umatXX  (umatXXv) is in the local system and the transformation back to the 

global system is done outside this user defined routine. 
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Table 4. The arguments to the subroutine umatXXv 

Argument Description Input / Output 

cm Material constants Input 

dX(1)(nlq) The strain vector in element k is (d1(k), d2(k), d3(k), 

d4(k), d5(k), d6(k)) 

Input /Output 

sigX(nlq) Local stress in Voigt notation, components of the stress vector is 

(sig1(k), sig2(k) … sig6(k)) 

Input / Output 

epsp(nlq) Accumulated effective plastic strains Input / Output 

hsvs(nlq, *) History variables Input / Output 

lft ,llt Loop over vectors, from lft to llt  

dt1siz(nlq) Current time step sizes Input 

capa Reduction factor for transverse shear of shells and beams Input 

etype String describing element type Input 

tt Current problem time Input 

temps(nlq) Current temperature in element point k is temps(k) Input / Output 

failels(nlq) Failure flag, set to .true. to indicate failure of an integration point Input / Output 

crv Array representation of curves in the keyword deck Input 

nnpcrv Number of discretization points per curve Input 

cma Additional memory for material data  Input 

qmat Transformation matrices in case of IHYPER =3  

elsizv(nlq) Characteristic element sizes Input 

idelev(nlq) Element ids Input 

reject For implicit analysis: set to .true. if the current implicit iterate 

should be rejected for some reason 

Output 

Notes: (1) X goes from 1 to 6.  

4.3.1 Interface for discrete beam elements 

Since discrete beam elements (ELFORM = 6 on *SECTION_BEAM), like springs, dashpots etc., normally 

work based on changes in element length rather than strains, this data is passed in the eps(1:6) array, 

for each degree of freedom, instead of strains. The objective of the user material subroutine for discrete 

elements is then to update the (generalized) forces, which are stored in the sig(1:6) array, for each 

degree of freedom. Thus, for discrete beam elements,  

sig(1:6) = (F1, F2, F3, M1, M2, M3) 

and 

 eps(1:6) = (du1, du2, du3, dr1,dr2, dr3), 

both given in the local element coordinate system, see Figure 4. It is recommended to set scoor = ± 12 

on *SECTION_BEAM, for correct update of the beam orientation. 

User defined material models for discrete beams are currently not supported in implicit. 
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Figure 4. Orientation of discrete beams by a third node (n3). The (r,s) – plane is defined by the three points (n1, n2, 
n3). See Ref [1] under *SECTION_BEAM for other options of orientation. 

4.3.2 Material tangent modulus subroutine utan for implicit analysis 

For implicit analysis, also the material tangent modulus tensor for a user defined material must be 

provided. An algorithmically consistent implementation is required in order to achieve quadratic 

convergence rate in the global equilibrium iterations.  

For the user material type XX, the material tangent modulus should be provided by the subroutine 

utanXX in the case of a scalar material subroutine and by utanXXv if a vectorized implementation of the 

material routine is given. These subroutines are found in the file dyn21utan.f. The input to the 

material tangent stiffness subroutine is similar the input to the material routine itself, but LS-DYNA also 

provides a flag unsym in case the unsymmetrical linear equation solver is active (by LCPACK = 3 on 

*CONTROL_IMPLICIT_SOLVER). 

The subroutine utanXX(v) should, based on the input and according to the material law, provide the 

consistent4 material tangent modulus. This is to be stored in the 6 × 6 matrix es (or matrices 

dsave(nlq, 6, 6) for a vectorized implementation). If the local coordinate system option for 

orthotropic materials (IORTHO = 1) is invoked for solid elements, then it should be expressed in this 

local system. For shell elements, it should be expressed in the co-rotational system defined for the 

current shell element. All transformations back to the global system are made by LS-DYNA after exiting 

the user-defined routine. 

 
 

4 Or ”best possible” 
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The parameter list for a scalar implementation of a user defined material tangent routine (in this case 

utan41) is: 

 

      subroutine utan41(cm,eps,sig,epsp,hsv,dt1,unsym,capa,etype,tt, 

     1 temper,es,crv,nnpcrv,failel,cma,qmat) 

 

An overview of the parameters can be found in Table 2, with the main difference that for utan, almost 

all parameters except for es are purely input.  

Since the subroutine umatXX has no information if an implicit or explicit analysis is taking place from 

the default parameters passed to it, one way of communicating this could be to let the utanXX 

subroutine set a material history variable (one entry in the hsv – array) as a flag. Then, in case some non-

linear equation is solved (for example iterative radial return) different tolerances and iteration limits 

may be set to account for the higher accuracy requirements of an implicit analysis.  

To be more formal, LS-DYNA computes the material stiffness matrix based on the constitutive modulus 
T

ikjlC , relating the rate-of-deformation tensor to the Truesdell rate of Cauchy stress. The material 

stiffness matrix Kmat is expressed as 

mat dT JI
iIjJ ikjl

k l

NN
K C

x x






= 

   

where N denotes the Finite Element basis functions. For more details, see Ref. [3].  

4.4 Useful predefined subroutines 

In this Section, some of the pre-defined subroutines available within the LS-DYNA usermat package 

that may come in handy for different common tasks in user defined material subroutines are 

described. See also Appendix A of Ref. [1] for detailed descriptions of some of the subroutines. In 

addition, some generally useful subroutines for other user-defined interfaces are presented. 

Often, related to the material models, evaluation of curves input in the keyword deck via the 

*DEFINE_CURVE or *DEFINE_TABLE keywords, for example hardening curves, will be required. For this, 

the subroutines crvval and tabval may be called, in order to conveniently and consistently retrieve 

the values from the curve (or table) data to the subroutine. For example, in order to evaluate a curve to 

retrieve the yield stress corresponding to the current accumulated effective strain, the following could 

be used: 

      call crvval(crv,nnpcrv,lcid,epsp,sigy,h)  

 

which will look up the curve given by ID lcid and return the yield stress at plastic strain epsp in the 

variable sigy, and in addition the slope of the curve (hardening modulus) in the variable h. Note that 

the curve ID should be passed as a float (lcid should be declared as real) which is convenient if for 

example element 5 of the material constants array cm should be the ID of a curve which specifies the 

yield stress as a function of plastic strain, then  cm(5) can be passed directly to the subroutine crvval. 

The crv is the curve array and nnpcrv is the number of discretization points per curve; these data are 
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passed as parameters to the user material subroutine for the only purpose of evaluating curves, and 

should just be passed on to the look-up subroutines. The vectorized version of the call would be 

      call crvval_v(crv,nnpcrv,lcid,epsp_v,sigy_v,h_v,lft,llt)  

 

where the plastic strain epsp_v, the yield stress sigy_v, and slopes h_v will be arrays of dimension nlq. 

The curvval and tabval subroutines will extrapolate y – values for x-values beyond the last curve entry 

based on the slope of the last segment on the curve. See also Table 5 for an overview of the parameters 

to the subroutine curvval. 

Table 5. The arguments to the subroutine crvval 

Argument Description Input / Output 

crv Array representation of curves in the keyword deck Input 

nnpcrv Number of discretization points per curve Input 

lcid Curve id (from *DEFINE_CURVE) as float Input 

epsp x – value Input 

sigy y – value Output 

h Slope of the curve in point epsp Output 

  

The parameter list for a scalar implementation of the table-lookup subroutine tabval is: 

      subroutine tabval(crv,nnpcrv,lcid,dxval,yval,dslope,xval,slope) 

see Table 6 for an overview. 

The curves are internally re-discretized (to the number of points specified by LCINT on the 

*CONTROL_SOLUTION – keyword, default is 100 points) in order to speed up the curve/table look up. If an 

evaluation based on the user-input curve data for curve (or table) ID lcid is desired, this can be 

requested by passing -1.*lcid to the subroutine. 

Table 6. The arguments to the subroutine tabval 

Argument Description Input / Output 

crv Array representation of curves in the keyword deck Input 

nnpcrv Number of discretization points per curve Input 

lcid Table id (from *DEFINE_TABLE) as float Input 

dxval x2 – value Input 

yval y – value Output 

dslope 
Slope 

𝜕𝑦
𝜕𝑥2
⁄  of the curve in point (x1, x2) Output 

xval x1 – value Input 

slope 
Slope 

𝜕𝑦
𝜕𝑥1
⁄  of the curve in point (x1, x2) Output 
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When working with hyperelastic5 materials, there are some useful pre-defined subroutines for 

common operations (which will also be discussed in more detail related to the example of Section 4.5.1).  

By setting IHYPER = 1 on *MAT_USER_DEFINED_MATERIAL_MODELS, the deformation gradient F will be 

passed to the user subroutine in the history variables array, as 9 components right after the requested 

number of history variables (NHV).   

The transformation of a tensor from the reference configuration to the current configuration by use of 

the deformation gradient F is commonly denoted as a push-forward operation (see for example Section 

3 of Ref. [13]). The push-forward of a 2nd order tensor is performed by the subroutine push_forward_2s 

(or the vectorized version subroutine push_forward_2) which is useful when going from a material 

model formulated with respect to the 2nd Piola – Kirchhoff stress tensor S to Cauchy stress , which is 

the expected output from the user defined material subroutine. In that case, it is important to 

remember that  

𝛔 =
𝟏

det 𝐅
𝐅𝐒𝐅𝑻 

which means that after the subroutine push_forward_2s is called, also a division by det 𝐅 should be 

performed. The push-forward of a 4th order tensor (for example the material stiffness tensor) is 

performed by the subroutine push_forward_4s (or the vectorized version subroutine 

push_forward_4). Also, for working with shell elements and hyper-elastic materials, the subroutine 

compute_f3s updates the third row of the deformation gradient considering the through-thickness 

stretch (eps(3) or 33 in the local coordinate system).  

For solids elements, the LS-DYNA code will make the stress transformations required to obtain the 

objective Jaumann stress rate outside the user subroutine, but in cases where history variables also are 

stresses, for example the back stress tensor in a kinematic hardening model, the user must take care to 

apply the transformation to the history variables inside the user subroutine.   

It is good practice to add some checking to the user subroutine, for example if the user tries to apply 

the material model to an unsupported element type, or if some of the input parameters are invalid, or if 

the material model is intended for explicit only. One option is to simply write a text message in the 

mes0* - files to inform the user, using  

write(iomsg,*) ‘Warning message …’ 

  

as outlined in Section 3.6.5. Another option is to issue an error message and stop the analysis. This can 

be done using the subroutine lsmsg. Calling this subroutine also requires that the file iouinits.inc is 

included. An example follows: 

      include ‘iounits.inc’ 

… 

      if(etype.eq.’beam’)then 

         cerdat(1)=etype 

         call lsmsg(3,MSG_SOL+1150,ioall,ierdat,rerdat,cerdat,0) 

 
 

5 Or a material using a deformation-gradient based formulation 
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         return 

      endif 

      if(cm(3).gt.0.5)then 

         cerdat(1)=’Illegal Poissons ratio’ 

         call lsmsg(3,MSG_SOL+1447,ioall,ierdat,rerdat,cerdat,0) 

         return 

      endif 

 

which will output 

*** Error 41151 (SOL+1151) 

     element type beam can not be 

     run with the current material model. 

in case an attempt is made to apply the user defined material model to a beam element, and 

*** Error 41447 (SOL+1447) 

     Illegal Poissons ratio. 

in case an invalid value is passed by the user as parameter 3 from the keyword file. 

The relevant parameters to modify in the subroutine call are: 

• MSG_SOL + XXX, for changing the message ID / type 

• cerdat(1) to specify what error message to print. 

 

The error message ID MSG_SOL + 1447 will display the text passed to cerdat(1) as in the second part of 

the above example. 

Entities of the analysis model (nodes, parts, elements, etc.) will be stored using internal ID:s within the 

LS-DYNA code. These internal ID:s may differ from those specified by the user in the keywordfile. For 

example, if the user defines a node with ID 103, it may be assigned an internal ID of 1. In many cases, 

when handling user input to the user-defined interfaces, it will be required to convert between 

internal/external entity ID:s. Some useful functions for this purpose are listed in  

Table 7. In some cases, for example beam orientation nodes6, an offset may be applied to the internal 

node numbers. An extra check is then required before converting internal to external node numbers: 

if (i3.gt.1000000000) i3=i3-1000000000 

 
 

6 To obtain useful internal numbering of beam orientation nodes, it is required to set NREFUP = 
1 on *CONTROL_OUTPUT. 
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Table 7. List of some functions for converting entity ID:s between internal and external (user defined) numbering 

 Internal →  External ID External → Internal ID 

Entity  mpp smp 

Node lqfinv(ix,1) (1) lqfe(ex,1)(2) lqf8(ex,1) 

Element solid lqfinv(ix,2) lqfe(ex,2) lqf8(ex,2) 

Element beam lqfinv(ix,3) lqfe(ex,3) lqf8(ex,3) 

Element shell lqfinv(ix,3) lqfe(ex,4) lqf8(ex,4) 

Part lqfmiv(ipid) lqfm(epid)  

Curve ilcid(iid) lcids(eid)  

Notes: (1) There is also a function lqfinv8 returing INTERGER*8. (2) For mpp/LS-DYNA, lqfe will return -1 

in case an entity is not found in the current mpi thread. 

4.5 Subroutine examples 

In this Section, two examples of user defined material models are presented, with quite extensive 

descriptions. Both Fortran code and keyword input are presented, while the complete examples, see 

also Section 4.6, can be found as attachments to this document. It shall be stressed that these 

examples are not intended for use in any kind of production analysis, and they may very well contain 

errors or flaws. 

The Fortran files (dyn21umats.f, dyn21umatv.f and dyn21utan.f) of the usermat package already 

come with some examples of subroutines for user defined materials (which may vary slightly 

depending on version) and some general routines that can be used as a starting point for user defined 

subroutines, for example metalshl, metalsld (in dyn21umats.f) and metaltan (in dyn21utan.f) for J2 – 

plasticity. Also, Appendix A of Ref. [1] has some examples, including descriptions.  

4.5.1 The Saint-Venant Kirchhoff model for solids and shells 

This section describes the implementation of the Saint-Venant Kirchhoff model, a simple compressive 

isotropic hyperelastic material, for solids and shells. Using the Green-Lagrange strain tensor, 

E =
1

2
(FTF − I) 

this model gives the 2nd Piola-Kirchhoff stress tensor S via a linear relation, 

S = ℂ: 𝐄 

where ℂ is a fourth order stiffness tensor (this is basically what the subroutine utanXX should return). 

Using the Lamé constants µ and , the strain-energy function for the Saint-Venant Kirchhoff model is 

(see for example Section 6.5 of Ref. [13]) 

Ψ(𝐄) =
λ

2
(tr𝐄)2 + μ𝑡𝑟𝐄2 

which, by 

𝐒 =
∂Ψ

∂𝐄
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gives 

𝑆𝑖𝑗 = 2μ𝐸𝑖𝑗 + λ𝐸𝑘𝑘δ𝑖𝑗 

The first step in implementing a material model, once the theory is known, is to consider the 

parameters to be input by the user on the *MAT_USER_DEFINED_MATERIAL_MODELS – card. In the present 

implementation, it was decided to let the user input Youngs modulus E and Poisson’s ratio , since 

these elasticity parameters are often used in engineering applications, rather than the Lamé constants. 

By setting IHYPER = 1 on the *MAT_USER_DEFINED_MATERIAL_MODELS – card, the deformation gradient (in 

Voight – notation, with components 𝐹11, 𝐹21, 𝐹31, 𝐹12, 𝐹22, 𝐹32, 𝐹13, 𝐹23 and𝐹33) will be passed to the user 

subroutine in the history variables array hsv, on positions hsv(NHV+1:NHV+9). In this case, for a basic 

implementation of an elastic material, no history variables are required, so F can be retrieved from 

hsv(1:9). There is no indication by the interface parameters to the user subroutine (see Table 2) if the 

IHYPER variable actually is set to one, so the user subroutine will depend on correct user input.   

In this case, the keyword interface to the Sain-Venant Kirchhoff model will be 

*MAT_USER_DEFINED_MATERIAL_MODELS_TITLE 

Simple hyperelastic material UMAT43 

$#1    MID        RO        MT       LMC       NHV    IORTHO     IBULK        IG 

    mat_id                 43         8                             3         4 
$#2  IVECT     IFAIL    ITHERM    IHYPER      IEOS      LMCA    UNUSED    UNUSED 

                                       1                  

$#      P1        P2        P3        P4        P5        P6        P7        P8 

   Young’s Poisson’s         K         G     el.ID 

 

where blue text indicates that the user should input sensical data, and red text indicates values that 

should not be changed (since these fixed values also will be assumed by the Fortran implementation). 

By specifying an element ID for P5, some debug output (written to the mes0* - files) will be activated. 

The user subroutine umat43 will be used to implement the material model in Fortran code. The first part 

of the subroutine follows: 

      subroutine umat43 (cm,eps,sig,epsp,hsv,dt1,capa,etype,tt, 

     1 temper,failel,crv,nnpcrv,cma,qmat,elsiz,idele,reject) 

      include 'nlqparm' 

      include 'bk06.inc' 

      include 'iounits.inc' 

      dimension cm(*),eps(*),sig(*),hsv(*),crv(lq1,2,*),cma(*) 

      character*5 etype 

      logical failel 

C -- 

      real S(6), defgrad(3,3), green(3,3), detF, g, g2 

      real p, davg, lam, sigold, epsold, tol, deps 

      integer iter, limiter 

      tol=1.E-7 

      limiter=10 

C – initial output 

      if (ncycle.le.1) then 

        if(cm(2).ge.5.00000E-01)then 

           write(iomsg,*) 'mat43 --- illegal possions number,',cm(2) 

           cerdat(1)='Illegal Poissons number' 

           call lsmsg(3,MSG_SOL+1447,ioall,ierdat,rerdat,cerdat,0) 
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        endif 

        if(idele.eq.int(cm(5)))then 

          write(iomsg,*) 'mat43 --- my hyperelastic code. E=',cm(1), 

     1      'nu=',cm(2),'capa=',capa 

        endif 

      endif 

C -- Material parameters 

      g2 =.5*abs(cm(1))/(1.+cm(2)) 

      lam = g2*cm(2)/(1.-2.*cm(2)) 

 

This part starts with the declaration of the subroutine, as described in Section 4.3, then some variable 

declarations follow. The local variables of the subroutine are also declared, for example S(6) is an array 

for storing the 2nd Piola-Kirchhoff stress tensor, defgrad(3,3) is an array for storing the deformation 

gradient F, and detF for its determinant. The variable g2 is the shear modulus G or µ, and lam is /2. 

Some initial checking of input parameters is done, and if cm(5) gives an element ID, also a message will 

be printed in the mes0* - files, to confirm that the umat43 is active. 

The next part of the subroutine performs the stress update for solid elements. It starts with storing the 

deformation gradient in the matrix defgrad from the hsv array and computing its determinant. 

C --  for solids 

      if(etype.eq.'solid')then 

C -- extract deformation gradient 

        defgrad(1,1) = hsv(1) 

        defgrad(2,1) = hsv(2) 

        defgrad(3,1) = hsv(3) 

        defgrad(1,2) = hsv(4) 

        defgrad(2,2) = hsv(5) 

        defgrad(3,2) = hsv(6) 

        defgrad(1,3) = hsv(7) 

        defgrad(2,3) = hsv(8) 

        defgrad(3,3) = hsv(9) 

c ---   

        detF = defgrad(1,1)*defgrad(2,2)*defgrad(3,3)+ 

     1   defgrad(1,2)*defgrad(2,3)*defgrad(3,1)+  

     2   defgrad(1,3)*defgrad(2,1)*defgrad(3,2)-  

     3   defgrad(1,3)*defgrad(2,2)*defgrad(3,1)-  

     4   defgrad(1,2)*defgrad(2,1)*defgrad(3,2)-  

     5   defgrad(1,1)*defgrad(2,3)*defgrad(3,2) 

 

In the final part of the stress update for solid elements, the Green-Lagrange (or to be exact 2E) strain is 

computed, and based on this the 2nd Piola-Kirchhoff stress, which is finally transformed to Cauchy 

stress via a push-forward operation followed by division by det F. 

C -- compute 2*Green strain 

        do j=1,3 

          do i=1,j 

            green(i,j)= sum(defgrad(:,i)*defgrad(:,j)) 

            green(j,i)= green(i,j)  

          enddo 

        enddo 

        green(1,1) = green(1,1) - 1 

        green(2,2) = green(2,2) - 1 
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        green(3,3) = green(3,3) - 1 

 

        davg=lam*(green(1,1)+green(2,2)+green(3,3)) 

C -- Piola-Kirchhoff 

        S(1)=g2*green(1,1)+davg 

        S(2)=g2*green(2,2)+davg 

        S(3)=g2*green(3,3)+davg 

        S(4)=g2*green(1,2) 

        S(5)=g2*green(2,3) 

        S(6)=g2*green(1,3) 

C --- push forward for Cauchy stress 

        call push_forward_2s(S(1),S(2),S(3),S(4),S(5),S(6),hsv(1), 

     1   hsv(2),hsv(3),hsv(4),hsv(5),hsv(6),hsv(7),hsv(8),hsv(9)) 

        sig(1:6) = S/detF 

 

where the symmetry of E has been utilized in the nested do – loops. This concludes the stress update 

for solid elements. The strain and stress computations for shell elements are much more involved, since 

the condition 33 = 0 (sig(3) = 0) needs to be fulfilled. An iterative procedure, following the “Sample 

user subroutine 45” of Ref. [1] Appendix A, is applied. The secant method is used, which requires two 

starting guesses. The first one is given by plane stress elasticity, with 

ϵ33 = −
ν

1 − ν
(ϵ11 + ϵ22) 

and the second staring guess is simply ϵ33 =  0. The Fortran code follows: 

      else if(etype.eq.'shell')then 

C --- for shells 

C --- secant iterations for zero z-stress, find eps(3) 

      deps = 0. 

      do iter=1,limiter 

C first thickness strain increment initial guess 

c assuming Poisson's ratio different from zero 

c 

        if (iter.eq.1) then 

          eps(3)=-cm(2)*(eps(1)+eps(2))/(1.-cm(2)) 

c 

c second thickness strain increment initial guess 

c 

        else if (iter.eq.2) then 

          sigold=sig(3) 

          epsold=eps(3) 

          eps(3)=0. 

c 

c --- secant update of thickness strain increment 

c 

        else if (abs(sig(3)-sigold).gt.0.0) then 

          deps=-(eps(3)-epsold)/(sig(3)-sigold)*sig(3) 

          sigold=sig(3) 

          epsold=eps(3) 

          eps(3)=eps(3)+deps 

        endif 

c 

c --- update last row of F 

        call compute_f3s(hsv(3),hsv(6),hsv(9),eps(3)) 
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After that follows computation of the Green-Lagrange strain and 2nd Piola-Kirchhoff stress, just as for 

solids: 

C --- compute strain and stress 

        defgrad(1,1) = hsv(1) 

        defgrad(2,1) = hsv(2) 

        defgrad(3,1) = hsv(3) 

        defgrad(1,2) = hsv(4) 

        defgrad(2,2) = hsv(5) 

        defgrad(3,2) = hsv(6) 

        defgrad(1,3) = hsv(7) 

        defgrad(2,3) = hsv(8) 

        defgrad(3,3) = hsv(9) 

        detF = defgrad(1,1)*defgrad(2,2)*defgrad(3,3)+ 

     1   defgrad(1,2)*defgrad(2,3)*defgrad(3,1)+  

     2   defgrad(1,3)*defgrad(2,1)*defgrad(3,2)-  

     3   defgrad(1,3)*defgrad(2,2)*defgrad(3,1)-  

     4   defgrad(1,2)*defgrad(2,1)*defgrad(3,2)-  

     5   defgrad(1,1)*defgrad(2,3)*defgrad(3,2)  

C -- compute Green strain 

        do j=1,3 

          do i=1,j 

            green(i,j)= sum(defgrad(:,i)*defgrad(:,j)) 

            green(j,i)= green(i,j)  

          enddo 

        enddo 

        green(1,1) = green(1,1) - 1 

        green(2,2) = green(2,2) - 1 

        green(3,3) = green(3,3) - 1 

 

        davg=lam*(green(1,1)+green(2,2)+green(3,3)) 

C -- Piola-Kirchhoff stress 

        S(1)=g2*green(1,1)+davg 

        S(2)=g2*green(2,2)+davg 

        S(3)=g2*green(3,3)+davg 

        S(4)=g2*green(1,2) 

        S(5)=g2*green(2,3) 

        S(6)=g2*green(1,3) 

 

The final transformation to Cauchy stress differs slightly, since the shear stress components  23, 13 

(sig(5:6)) are multiplied by capa, the reduction factor for transverse shear in shells (corresponding to 

SHRF of the *SECTION_SHELL – keyword). Also, in order to save some floating-point operations, the 

update of these stress components is moved outside the secant iterations do – loop. The final part of 

the code for shell elements follows: 

C --- push forward to get Cauchy stress 

        call push_forward_2s(S(1),S(2),S(3),S(4),S(5),S(6),hsv(1), 

     1   hsv(2),hsv(3),hsv(4),hsv(5),hsv(6),hsv(7),hsv(8),hsv(9)) 

        sig(1:4) = S(1:4)/detF 

C --- termination criteria 

        if(abs(sig(3)).lt.tol*(abs(sig(1))+abs(sig(2))+abs(sig(4)))) 

     1    exit 

      enddo 

      sig(5:6) = capa*S(5:6)/detF 
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Finally, an error message will be issued in case attempts are made to apply this user defined material 

model to other element types than solids or shells: 

      else 

        cerdat(1)=etype 

        call lsmsg(3,MSG_SOL+1151,ioall,ierdat,rerdat,cerdat,0) 

      endif 

      return 

      end 

 

which concludes the user defined material subroutine. For implicit analysis, also the tangent modulus 

must be computed. In this case, a push-forward of ℂ is (more or less) what is required. The user 

subroutine utan43 is used to implement the tangent modulus in Fortran code. The first part of the 

subroutine, which starts with the subroutine declaration according to Section 4.3.1, and some variable 

declarations follows: 

   subroutine utan43(cm,eps,sig,epsp,hsv,dt1,unsym,capa,etype,tt, 

     1 temper,es,crv,nnpcrv,failel,cma,qmat) 

c 

      include 'nlqparm' 

      dimension cm(*),eps(*),sig(*),hsv(*),crv(lq1,2,*),cma(*) 

      integer nnpcrv(*) 

      dimension es(6,*),qmat(3,3) 

      logical failel,unsym 

      character*5 etype 

      real*8 f1,f2,f3, defgrad(3,3), detF, detFinv 

      real*8 dmx(6,6) 

 

Just as for umat43, the deformation gradient F is stored in the defgrad matrix, and the determinant is 

computed: 

c 

      defgrad(1,1) = hsv(1) 

      defgrad(2,1) = hsv(2) 

      defgrad(3,1) = hsv(3) 

      defgrad(1,2) = hsv(4) 

      defgrad(2,2) = hsv(5) 

      defgrad(3,2) = hsv(6) 

      defgrad(1,3) = hsv(7) 

      defgrad(2,3) = hsv(8) 

      defgrad(3,3) = hsv(9) 

      detF = defgrad(1,1)*defgrad(2,2)*defgrad(3,3)+ 

     1   defgrad(1,2)*defgrad(2,3)*defgrad(3,1)+ 

     2   defgrad(1,3)*defgrad(2,1)*defgrad(3,2)- 

     3   defgrad(1,3)*defgrad(2,2)*defgrad(3,1)- 

     4   defgrad(1,2)*defgrad(2,1)*defgrad(3,2)- 

     5   defgrad(1,1)*defgrad(2,3)*defgrad(3,2) 

      detFinv = 1.0 / max(detF, 1.E-12) 

 

In the last line, some extra caution is taken when computing 1/det F, in order to avoid division by zero. 

The next step is to populate the dmx – matrix, which holds the stiffness tensor ℂ (in the reference 

configuration). This is achieved by the following lines of code: 

      f1 = cm(1)/(1.0+cm(2))/(1.0-2.0*cm(2)) 
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      f2 = 1.0 - cm(2)  

      f3 = 0.5 - cm(2) 

      dmx = 0 

      dmx(1,1) = f1*f2  

      dmx(2,2) = dmx(1,1) 

      dmx(3,3) = dmx(1,1) 

      dmx(1,2) = f1*cm(2) 

      dmx(1,3) = dmx(1,2) 

      dmx(2,3) = dmx(1,2) 

      dmx(2,1) = dmx(1,2) 

      dmx(3,1) = dmx(1,3) 

      dmx(3,2) = dmx(2,3) 

C ---  

      dmx(4,4) = f1*f3 

      dmx(5,5) = dmx(4,4) 

      dmx(6,6) = dmx(4,4) 

 

The transformation to the current configuration is done by   

C --- push forward 

      call push_forward_4s(dmx,hsv(1), 

     1   hsv(2),hsv(3),hsv(4),hsv(5),hsv(6),hsv(7),hsv(8),hsv(9)) 

      es(1:6, 1:6) = dmx * detFinv 

 

In addition, in order to account for the transverse shear reduction capa for shells the modification 

c --- special for shell 

      if(etype.eq.'shell')then 

        es(5,5) = capa * dmx(5,5) * detFinv 

        es(6,6) = capa * dmx(6,6) * detFinv 

      endif 

      return 

      end 

 

is made, which also concludes the tangent modulus subroutine. 

4.5.2 J2-plasticity for solids and shells 

In this Section, the implementation of a hypoelastic-plastic material model with isotropic hardening for 

solids and shells is described. For a detailed theoretical background, see for example Ref. [11] and 

especially Section 17.4.1 for details on the derivation. The yield condition is 

𝑓(𝛔, ϵ𝑝) = σ𝑣𝑀 − σ𝑦(ϵ𝑝) = 0 

where ϵ𝑝 is the accumulated effective plastic strain, and σ𝑣𝑀 is the von Mises effective stress, which is 

directly proportional to the norm of the stress deviator s given by 

𝑠𝑖𝑗 = σ𝑖𝑗 − δ𝑖𝑗
σ𝑘𝑘
3

 

The von Mises effective stress is then given by 

σ𝑣𝑀 = √
3

2
𝑠𝑖𝑗𝑠𝑖𝑗  
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The hardening function σ𝑦(ϵ𝑝) is often given as a piecewise linear curve, determined from material 

testing.  

An efficient implementation of J2 – plasticity is obtained by the radial return algorithm [4] [7] [11][21]. The 

starting point is the stress and strain at state 1, and the objective is to compute stress and increment of 

effective plastic strain at stat 2, given the strain increment Δϵ𝑖𝑗 . First, an elastic trial stress is computed 

according to 

𝛔𝑡 = 𝛔(1) + ℂ: Δ𝛜 

where ℂ is the isotropic elastic stiffness tensor. From the elastic trial stress, the von Mises effective 

stress is calculated as 

σ𝑣𝑀
𝑡 = √

3

2
𝑠𝑖𝑗
𝑡 𝑠𝑖𝑗

𝑡  

If the effective trial stress is below the yield limit, 𝑓(𝛔𝐭, ϵ𝑝)  ≤ 0, the elastic trial stress is accepted, and no 

further action is needed. In case yielding is indicated, the increment in effective plastic strain Δϵ𝑝 to 

satisfy the yield criterion must be determined. For solid elements, this can be done, following Box 17.5 

of Ref. [11], by solving 

𝑓𝑝 = σ𝑣𝑀
𝑡 − 3𝐺Δϵ𝑝 − σ𝑦 (ϵ𝑝

(1)
+ Δϵ𝑝) = 0 

using Newton’s method, that is 

1. Set Δϵ𝑝
1
= 0 

2. Compute Δϵ𝑝
𝑘+1

= Δϵ𝑝
𝑘
−

𝑓𝑝
𝑘

𝑑𝑓𝑝
𝑘

𝑑ϵ𝑝
𝑘⁄

 = Δϵ𝑝
𝑘
+

𝑓𝑝
𝑘

3𝐺+𝐻
 where 𝐻 =

𝑑σ𝑦(ϵ𝑝
𝑘
)

𝑑ϵ𝑝
𝑘  

3. Compute 𝑓𝑝𝑘+1 

4. If |𝑓𝑝𝑘+1| > 𝑡𝑜𝑙 then let 𝑘 = 𝑘 + 1 and go to 2. 

5. Update stress and accumulated effective plastic strain: 
ϵp
(2)
= ϵp

(1)
+ Δϵ𝑝 

𝑠𝑖𝑗
(2) =

σ𝑦
(2)

σ𝑣𝑀
𝑡 𝑠𝑖𝑗

𝑡  

σ𝑖𝑗
(2) = 𝑠𝑖𝑗

(2) +
1

3
σ𝑘𝑘
𝑡 δ𝑖𝑗  

In the case of linear hardening, where H = constant, this procedure will converge exactly in one 

iteration. From step 2 of the Newton scheme, it can also be noted that the slope of the hardening curve 

in practice will be limited by   

3𝐺 + 𝐻 > 0 ⇔ 𝐻 >  −3𝐺 

which means that from a mathematical viewpoint, a negative slope of the hardening curve can be 

tolerated, as long as it fulfills this condition. 

For shell elements, some additional modifications are needed to fulfill 𝜎33 = 0 and account for the 

reduction factor for transverse shear. This will be discussed in more detail in the context of the Fortran 

coding for shell elements below.  
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The keyword interface for this material model should allow for input of elastic constants (Young’s 

modulus E and Poisson’s ration ) and a hardening curve. In addition, the user is given some control 

over the Newton iterations outlined above, with respect to the required tolerance and the maximum 

allowed number of iterations. Since epsp already is a separate parameter in the interface to the user 

subroutine, see Table 2, no history variables are, strictly speaking, required in this case. Still, one history 

variable will be used to indicate if yielding takes place or not. This will be used by the tangent stiffness 

routine utan later on. In all, this means that the keyword interface for the J2 – plasticity model will be  

*MAT_USER_DEFINED_MATERIAL_MODELS_TITLE 

J2 plasticity by UMAT41 

$#1    MID        RO        MT       LMC       NHV    IORTHO     IBULK        IG 

    mat_id                 41         8                             3         4 
$#2  IVECT     IFAIL    ITHERM    IHYPER      IEOS      LMCA    UNUSED    UNUSED 

                                

$#      P1        P2        P3        P4        P5        P6        P7        P8 

   Young’s Poisson’s         K         G      LCID       tol   limiter     el.ID 

 

where blue text indicates that the user should input sensical data, and red text indicates values that 

should not be changed (since these fixed values also will be assumed by the Fortran implementation). 

The curve ID of the hardening curve (*DEFINE_CURVE) is input as P5. The tolerance for the Newton 

iterations is optionally input as P6 and the maximum number of allowed iterations is optionally input as 

P7. For additional debug output, an element ID may be specified as P8. 

It shall be mentioned that the LS-DYNA usermat package already contains the subroutines metalshl, 

metalsld and metaltan (in dyn21umats.f and dyn21utan.f) which are ready-to-use subroutines for J2 

– plasticity (but have no Newton iterations for the radial return). 

The user subroutine umat41 will be used to implement the material model in Fortran code. The first part 

of the subroutine follows: 

      subroutine umat41 (cm,eps,sig,epsp,hsv,dt1,capa,etype,tt, 

     1 temper,failel,crv,nnpcrv,cma,qmat,elsiz,idele,reject) 

c 

c****************************************************************** 

c|  Livermore Software Technology Corporation  (LSTC)             | 

c|  ------------------------------------------------------------  | 

c|  Copyright 1987-2008 Livermore Software Tech. Corp             | 

c|  All rights reserved                                           | 

c****************************************************************** 

c 

c     isotropic elastic-plastic material 

c 

c     Variables 

c 

c     cm(1)=first material constant, here young's modulus 

c     cm(2)=second material constant, here poisson's ratio 

c        . 

c        . 

c        . 

c     cm(n)=nth material constant 

c 
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Here, many lines of detailed comments of the original Fortran file are omitted. The comments of the 

files of the usermat package in general provide valuable information in connection with the respective 

subroutine.  

After this follows some variable declarations and initializations. The array sshl(6) will hold temporary 

values of the stress tensor. The arrays s(6) and s2(6) will be used for stress deviator values. The von 

Mises effective stress will be stored in the variable vonMises. The history variable hsv(1) will indicate if 

yielding takes place or not, as a way of communicating this to the utan41 subroutine. 

 

      include 'nlqparm' 

      include 'bk06.inc' 

      include 'iounits.inc' 

      dimension cm(*),eps(*),sig(*),hsv(*),crv(lq1,2,*),cma(*),qmat(3,3) 

      integer nnpcrv(*) 

      logical failel,reject 

      character*5 etype 

      integer idele 

c 

      real vonMises,h,sigy,s(6),depsp,gc,tol, ep_tr 

      real sig3e,sig3p, eps3e, eps3p, sshl(6), f1, f2 

      real s2(6),p2,f3, strainlim 

      integer iter, limiter 

 

Then tolerances (tol) and iteration limit (limiter) are initialized, with their default values, but if the 

user provides reasonable input in cm(6) and cm(7), it replaces the default values. The strainlim is a 

(presently hard-coded) limit on the increment of accumulated effective plastic strain (Δϵ𝑝 above); for 

implicit, a reject will be issued in case this limit is exceeded. After that, an initial message is written to 

the mes0* - files, to confirm that the umat41 is active. Finally, some material constants are computed, 

and the yield limit for the current value of effective plastic strains is evaluated by crvval. 

      tol=1.E-4 

      limiter=10 

      if(cm(6).gt.0.) 

     1  tol=cm(6) 

      if(cm(7).gt.0.) 

     1  limiter = int(cm(7)) 

      strainlim = 5.E-2 

c 

      if (ncycle.le.1) then 

        if(idele.eq.int(cm(8)))then 

          write(iomsg,*) 'mat41:iterative elastoplastic code. E=',cm(1), 

     1      'nu=',cm(2),'lcid=',cm(5) 

          write(iomsg,*) 'mat41:limiter =',limiter,'tol=',tol 

        endif 

      endif 

c 

c     compute shear modulus, g 

c E is cm(1), pr is cm(2) 

c 

      g2 =abs(cm(1))/(1.+cm(2)) 

      g  =.5*g2 

      gc =capa*g 



© 2025 ANSYS, Inc. Ansys LS-DYNA user-defined 40 

      hsv(1) = 0. 

C --  Yield curve val and tangent h : starting vals 

      call crvval(crv,nnpcrv,cm(5),epsp,sigy,h) 

 

Next follows the implementation for solid elements, starting with computation of the 

elastic trial stress: 

      if(etype.eq.'solid')then 

C  

C     --- For solids (iterative) ---  

C     Compute elastic trial stress 

c 

        davg=-sum(eps(1:3))/3. 

        p=-davg*abs(cm(1))/(1.-2.*cm(2)) 

        sig(1:3)=sig(1:3)+p+g2*(eps(1:3)+davg) 

        sig(4:6)=sig(4:6)+g*eps(4:6) 

C --- Effective stress, first the deviatoric 

        s(1:3) = sig(1:3)-sum(sig(1:3))/3. 

        s(4:6) = sig(4:6) 

c     compute the von Mises stress 

        vonMises = s(1)**2+s(2)**2+s(3)**2+2.*(s(4)**2+s(5)**2+s(6)**2) 

        vonMises = sqrt(1.5*vonMises)  

        if (vonMises.le.sigy) then 

          return 

        else 

          hsv(1)= 1. 

        endif 

 

At this point, the subroutine will return in case of an elastic response. In the following, the iterative 

radial return scheme outlined above is implemented. In the convergence check, the tolerance is 

multiplied by the current yield stress to obtain a relative measure. The iterations will be aborted if the 

convergence criterion is met, otherwise limiter iterations will be performed, and a message is printed. 

Also, an extra message is written for user feedback. 

C - radial return, iterative 

      ep_tr=epsp 

      depsp = 0. 

      f1 = vonMises - sigy 

      do iter=1,limiter 

        depsp = depsp + f1/(h+3.*g) 

C     re-eval hardening curve 

        ep_tr = epsp + depsp 

        call crvval(crv,nnpcrv,cm(5),ep_tr,sigy,h) 

        f1 = vonMises - 3.*g*depsp - sigy 

        if(abs(f1).lt.tol*sigy) 

     1    exit 

      enddo 

C --- debug 

      if(iter.ge.limiter)then 

        write(iomsg,*) 'mat41:iter=',iter,'idele=',idele, 

     1     'stressdiff=',abs(sigy-vonMises) 

      endif 

      if(idele.eq.int(cm(8)))then 

        write(iomsg,*) 'mat41:iter=',iter,'idele=',idele, 

     1     'stressdiff=',abs(sigy-vonMises),'f1*sigy=',f1*sigy, 

     2     'depsp=',depsp 
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      endif 

 

Finally, the stress is updated, and this concludes the part of the subroutine for solid elements. The 

check for the increment in effective plastic strain is performed after the stress update, since the reject 

option is only active for implicit analysis. 

      epsp = ep_tr 

      s2 = sigy*s/vonMises 

      p2 = sum(sig(1:3))/3. 

      sig(1:3) = s2(1:3)+p2 

      sig(4:6) = s2(4:6) 

      if(depsp.gt.strainlim)then 

        reject = .true. 

      endif 

 

Then comes the part of the implementation for shell elements. Due to the requirement of zero normal 

stress, this becomes more involved. In addition, considering the reduction factor for transverse shear 

capa also complicates the calculations. The present approach uses a two-step scheme, where first the 

through-thickness strain 33 is estimated by linear interpolation between two extrema. Then, the stress 

state is determined using a slightly different approach for the radial return algorithm based on the 

estimate of 33. This solution approach for shells is adopted from the subroutine metalshl already 

present in the usermat package.  

First, the elastic trial stress is computed, and yielding is checked. 

      elseif(etype.eq.'shell')then 

C  

C     --- For shells (iterative) ---  

C     Compute elastic trial stress and eps3 

c 

        eps(3) = -cm(2)*(eps(1)+eps(2))/(1.-cm(2)) 

        davg=-sum(eps(1:3))/3. 

        p=-davg*abs(cm(1))/(1.-2.*cm(2)) 

        sshl(1:2)=sig(1:2)+p+g2*(eps(1:2)+davg) 

        sshl(3)=0. 

        sshl(4)=sig(4)+g*eps(4) 

        sshl(5:6)=sig(5:6)+gc*eps(5:6) 

C --- Effective stress, first the deviatoric 

        s(1:3) = sshl(1:3)-sum(sshl(1:2))/3. 

        s(4:6) = sshl(4:6) 

c     compute the von Mises stress 

        vonMises = s(1)**2+s(2)**2+s(3)**2+2.*(s(4)**2+s(5)**2+s(6)**2) 

        vonMises = sqrt(1.5*vonMises) 

C --  check yield 

        if(vonMises.le.sigy)then 

          sig(1:6) = sshl(1:6) 

          return 

        endif 

Again, if the response is elastic the subroutine returns. In the following, the required updates of 

stresses, effective plastic strain and through-thickness strain due to the plastic deformation are 

performed. The first step is to estimate the through-thickness strain. This is done from linear 

interpolation between the first elastic estimate, and a fully plastic estimate. 
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C --- secant iterations for eps(3) estimate 

C     radial return from elastic 

        f1=4.5*g*(capa-1.)*(sshl(5)**2+sshl(6)**2)/(vonMises**2) 

        depsp = (vonMises - sigy)/(h+3.*g+f1) 

        sig3e =         - 3.*g*depsp*s(3)/vonMises  

        eps3e = eps(3) 

C --- first point is (eps3e, sig3e) 

C     second point, radial return from plastic 

        eps3p =  -eps(1)-eps(2) 

        sshl(1:2)=sig(1:2)+g2*eps(1:2) 

        sshl(3) = g2*eps3p 

C --- Effective stress, first the deviatoric 

        s(1:3) = sshl(1:3)-sum(sshl(1:3))/3. 

c     compute the von Mises stress 

        vonMises = s(1)**2+s(2)**2+s(3)**2+2.*(s(4)**2+s(5)**2+s(6)**2) 

        vonMises = sqrt(1.5*vonMises) 

C --  check yield, radial return if required 

        if(vonMises.ge.sigy)then 

          f1=4.5*g*(capa-1.)*(sshl(5)**2+sshl(6)**2)/(vonMises**2) 

          depsp = (vonMises - sigy)/(h+3.*g+f1) 

          sshl(3) = sshl(3) - 3.*g*depsp*s(3)/vonMises 

        endif 

C --- second point is (eps3p, sshl(3)) 

C     linear interpolation between p.1 and p.2 

       if (abs(sig3e-sshl(3)).gt.tol* 

     1      max(abs(sig3e),abs(sig3p))) then 

         eps(3)=eps3e-sig3e*(eps3e-eps3p)/(sig3e-sshl(3)) 

       else 

         eps(3)=eps3p 

       endif 

 

In this case, the variable f1 holds extra terms of 𝑑σ𝑣𝑀
𝑑Δϵ𝑝

 due to the transverse shear reduction factor. It 

vanishes in the case capa = 1. After this, it assumed that 33 is known, and it remains to determine the 

corresponding stress state. This starts with again computing an elastic trial stress: 

c 

c     now we have estimate for eps(3): update stresses 

c 

       davg=-sum(eps(1:3))/3. 

       p=-davg*abs(cm(1))/(1.-2.*cm(2)) 

       sig(1:2)=sig(1:2)+p+g2*(eps(1:2)+davg) 

       sig(3)=0 

       sig(4)=sig(4)+g*eps(4) 

       sig(5:6)=sig(5:6)+gc*eps(5:6) 

C --- Effective stress, first the deviatoric 

       s(1:3) = sig(1:3)-sum(sig(1:3))/3. 

       s(4:6) = sig(4:6) 

c     compute the von Mises stress 

       vonMises = s(1)**2+s(2)**2+s(3)**2+2.*(s(4)**2+s(5)**2+s(6)**2) 

       vonMises = sqrt(1.5*vonMises)  

       if (vonMises.le.sigy) then 

         return 

       else 

          hsv(1)= 1. 
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       endif 

      ep_tr=epsp 

      depsp = 0. 

      f2 = 3.*g/vonMises 

      f3 = f2*capa 

Then, as the final step for shell elements, iterative radial return is performed. For shells, a different 

approach than for solids is used, where the stresses are updated in each iteration. This makes it easier 

to account also for the transverse shear reduction factor. If the limiter iterations are not enough to 

reach the specified tolerance, a message is printed. 

      do iter=1,limiter 

C --- radial return 

        f1=4.5*g*(capa-1.)*(sig(5)**2+sig(6)**2)/(vonMises**2) 

        depsp = depsp + (vonMises - sigy)/(h+3.*g+f1) 

        sshl(1:2)= sig(1:2)-f2*depsp*s(1:2) 

        sshl(3)=0 

        sshl(4)= sig(4)-f2*depsp*s(4) 

        sshl(5:6)= sig(5:6)-f3*depsp*s(5:6) 

c --  compute the von Mises stress 

        s2(1:3) = sshl(1:3)-sum(sshl(1:3))/3. 

        vonMises = sum(s2(1:3)**2)+2.*sum(sshl(4:6)**2) 

        vonMises = sqrt(1.5*vonMises)  

C     re-eval hardening curve 

        ep_tr = epsp + depsp  

        call crvval(crv,nnpcrv,cm(5),ep_tr,sigy,h) 

C --- check convergence 

        if(abs(sigy-vonMises).lt.tol*abs(sigy)) 

     1    exit 

      enddo 

C --- debug 

      if(iter.ge.limiter)then 

        write(iomsg,*) 'mat41:iter=',iter,'idele=',idele, 

     1     'stressdiff=',abs(sigy-vonMises) 

      endif 

      sig(1:6)=sshl(1:6) 

      epsp = ep_tr 

      if(depsp.gt.strainlim)then 

        reject = .true. 

      endif 

 

Most likely, the above implementation for shell element can be improved, both for increased efficiency 

and accuracy. The subroutine ends with printing an error message, in case attempts are made to apply 

the material model to other element types than solids or shells. 

C --- unsupported element formulation ==> Error termination 

      else 

        cerdat(1)=etype 

        call lsmsg(3,MSG_SOL+1151,ioall,ierdat,rerdat,cerdat,0) 

      endif 

      end 

For implicit analysis, also the tangent modulus is required. The user subroutine utan41 is used to 

implement the tangent modulus in Fortran code. The implementation for solids is based on the results 

presented in Section 12.2 of Ref. [11], that is 
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𝐶𝑖𝑗𝑘𝑙
𝑒𝑝
= 𝐶𝑖𝑗𝑘𝑙 −

9𝐺2

𝐻 + 3𝐺

𝑠𝑖𝑗𝑠𝑘𝑙

σ𝑣𝑀
2  

For shells, an approximate tangent modulus is applied: basically, the same as for solid elements is used, 

only some minor corrections for the transverse shear reduction are made. The first part of the 

subroutine, which starts with the subroutine declaration according to Section 4.3.1, and some variable 

declarations follows: 

  subroutine utan41(cm,eps,sig,epsp,hsv,dt1,unsym,capa,etype,tt, 

     1 temper,es,crv,nnpcrv,failel,cma,qmat) 

c 

c****************************************************************** 

c|  Livermore Software Technology Corporation  (LSTC)             | 

c|  ------------------------------------------------------------  | 

c|  Copyright 1987-2008 Livermore Software Tech. Corp             | 

c|  All rights reserved                                           | 

c****************************************************************** 

c 

      include 'nlqparm' 

      include 'bk06.inc' 

      include 'iounits.inc' 

      dimension cm(*),eps(*),sig(*),hsv(*),crv(lq1,2,*),cma(*) 

      integer nnpcrv(*) 

      dimension es(6,*),qmat(3,3) 

      logical failel,unsym 

      character*5 etype 

c 

      real*8 factor, g,b, bg23,bg43 

      real*8 vonMises,h,sigy,s(6),sf(6),depsp,gc,tol, ep_tr 

      real*8 sig3e, sig3p, eps3e, eps3p, sshl(6), f1 

      real*8 dpfac, A, shrf 

      integer k, l       

c 

      factor=1. 

      if (failel) factor=1.e-8 

 

This section ends with a stiffness reduction for elements that are indicated as failed. Then, some elastic 

constants are computed, element type is checked, and an attempt to make a small modification for 

shells is made: 

      g=factor*.5*abs(cm(1))/(1.+cm(2)) 

      b=factor*abs(cm(1))/3./(1.-2.*cm(2)) 

      bg23=b-2.*g/3. 

      bg43=b+4.*g/3. 

c 

      if(etype.eq.'solid')then 

        shrf=1. 

      elseif(etype.eq.'shell')then 

        shrf=capa 

      else 

        cerdat(1)=etype 

        call lsmsg(3,MSG_SOL+1151,ioall,ierdat,rerdat,cerdat,0) 

        return 

      endif 
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This means that if the routine is applied to other element types than solids or shells, LS-DYNA will stop 

with an error message. The next step is the elastic part of the tangent stiffness modulus: 

      es(1,1)=bg43 

      es(2,2)=bg43 

      es(3,3)=bg43 

      es(2,1)=bg23 

      es(3,1)=bg23 

      es(3,2)=bg23 

      es(1,2)=es(2,1) 

      es(1,3)=es(3,1) 

      es(2,3)=es(3,2) 

      es(4,4)=g 

      es(5,5)=g*shrf 

      es(6,6)=g*shrf 

 

and finally, the plastic part, which only is required in case the material routine umat41 indicated that 

yielding takes place, by setting hsv(1) = 1. 

      if(hsv(1).gt.0.)then 

        call crvval(crv,nnpcrv,cm(5),epsp,sigy,h) 

        s(1:3) = sig(1:3) - sum(sig(1:3))/3. 

        s(4:6) = sig(4:6) 

        vonMises =s(1)**2+s(2)**2+s(3)**2+2.*(s(4)**2+s(5)**2+s(6)**2) 

        vonMises = sqrt(1.5*vonMises)  

        A = h + 3.*g 

        dpfac = (9.*g**2)/A/(vonMises**2) 

        sf = dpfac*s 

        do k=1,6 

          do l=k,6 

            es(k,l) = es(k,l) - sf(k)*s(l) 

            es(l,k) = es(k,l) 

          enddo 

        enddo 

      endif    

 

In this implementation, the symmetry of the tangent stiffness matrix has been utilized in the reduced 

inner DO – loop. This concludes the subroutine utan41 for the tangent modulus. Clearly, since the 

tangent is based on the implementation for solid elements, convergence properties for shell elements 

are not as good. 

4.5.3 Non-linear spring 

This section describes the implementation of a simple material for discrete beam elements (ELFORM = 6 

on *SECTION_BEAM) representing a (optionally non-linear) spring. The material can either represent a 

linear relationship between force and beam elongation,  

𝐹𝑟 = 𝑘𝛿 

or a non-linear relationship given by a curve,  

𝐹𝑟 = 𝑓(𝛿). 
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In case the curve is only defined for positive elongation, the material model will use 

𝐹𝑟 = 𝑓(|𝛿|)𝑠𝑖𝑔𝑛(𝛿). 

This material model is similar to a mix of the built-in materials *MAT_LINEAR_ELASTIC_DISCRETE_BEAM 

(MAT_66) and *MAT_NONLINEAR_ELASTIC_DISCRETE_BEAM (MAT_67). 

The keyword interface for this material model should allow for input of either a constant stiffness k or a 

curve ID. This is done by the parameter P1: if P1 > 0, it is assumed to be a constant stiffness value, and if 

P1 < 0, it is assumed that the curve ID is |P1|. The user should also provide reasonable values for K and G, 

which are important for calculating the explicit time step. 

*MAT_USER_DEFINED_MATERIAL_MODELS_TITLE 

Spring material by UMAT44 

$#1    MID        RO        MT       LMC       NHV    IORTHO     IBULK        IG 

    mat_id                 44         8         4                   3         4 
$#2  IVECT     IFAIL    ITHERM    IHYPER      IEOS      LMCA    UNUSED    UNUSED 

                                

$#      P1        P2        P3        P4        P5        P6        P7        P8 

        p1                   K         G  

 

where blue text indicates that the user should input sensical data, and red text indicates values that 

should not be changed (since these fixed values also will be assumed by the Fortran implementation).    

The user subroutine umat44 will be used to implement the material model in Fortran code. The first part 

of the subroutine follows: 

      subroutine umat44 (cm,eps,sig,epsp,hsv,dt1,capa,etype,tt, 

     1 temper,failel,crv,nnpcrv,cma,qmat,elsiz,idele,reject) 

c 

c****************************************************************** 

c|  Livermore Software Technology Corporation  (LSTC)             | 

c|  ------------------------------------------------------------  | 

c|  Copyright 1987-2008 Livermore Software Tech. Corp             | 

c|  All rights reserved                                           | 

c****************************************************************** 

c 

      include 'nlqparm' 

      include 'bk06.inc' 

      include 'iounits.inc' 

      dimension cm(*),eps(*),sig(*),hsv(*),crv(lq1,2,*),cma(*),qmat(3,3) 

      integer nnpcrv(*) 

      character*5 etype 

      logical failel,reject 

      integer*8 idele 

c 

      real*8 stiff,lcid,yfval 

      integer*8 iid 

 

The first rows are the standard declarations for a user-defined material subroutine. After that the 

declaration of the model-specific local variables follow. The variable stiff holds the constant stiffness 

value, the variable lcid holds the curve ID and yfval is the current force at the current elongation, 

evaluated from the curve. The integer variable iid is the interval ID of the curve.  
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      if (ncycle.eq.1) then 

        write(iomsg, *) 'User defined mat44 for discrete beams' 

        if(cm(1)>0.d0)then 

          write(iomsg, *) '---discrete beam found.Constant stiffness' 

          write(iomsg, *) '   useing k factor:',cm(1) 

        else 

          write(iomsg, *) '---discrete beam found.Curve' 

          lcid=abs(cm(1)) 

          iid=lcids(nint(lcid)) 

          hsv(4)=crv(1,1,iid) 

          write(iomsg, *) '   using Curve ID:',nint(abs(cm(1))) 

          if(hsv(4).lt.0.d0)then 

            write(iomsg, *) '   curve exists also for negative x vals' 

          else 

            write(iomsg, *) '   reflected curve will be used for ', 

     1            'negative x vals' 

          endif 

        endif 

      endif 

 

Then follows some initial checks and output of messages to the user, performed at cycle 1. The main 

check is if a constant stiffness or a curve ID is to be used, and if the curve also is defined for negative 

(compressive) elongation. This latter check is done by directly inspecting the first ordinate value of the 

curve, crv(1,1,iid), and storing it to history variable #4. The internal ID of the curve is found by 

lcids(nint(lcid)). 

Then follows the force calculations, for discrete beams only: 

      if (etype.eq.'dbeam') then 

 

In case a constant stiffness is used, the force update is uncomplicated. 

        if(cm(1).ge.0.d0)then 

          stiff=cm(1) 

          sig(1)=sig(1)+eps(1)*stiff 

        else 

 

If a curve is used, different actions must be taken in case the elongation is negative or compressive. In 

case of a positive elongation, the curve can be evaluated directly:  

          lcid=abs(cm(1)) 

          hsv(1)=hsv(3)+eps(1) 

          if(hsv(1).gt.0.d0)then 

            call crvval(crv,nnpcrv,lcid,hsv(1),yfval,stiff) 

          else 

 

The current elongation of the beam is stored in history variable #1, based on the previous elongation 

which is stored in history variable #3. Using history variables for storage of the elongation is also useful 

if a continuation of analysis using a dynain – file is to be performed. 

If the elongation is compressive, we must check if the curve also exists for compression. If so, the curve 

can be evaluated directly: 

            if(hsv(4).lt.0.d0)then 
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              call crvval(crv,nnpcrv,lcid,hsv(1),yfval,stiff) 

            else 

 

Otherwise, the absolute value of the elongation is passed to crvval, and the sign of the obtained force 

is reversed. 

              call crvval(crv,nnpcrv,lcid,abs(hsv(1)),yfval,stiff) 

              yfval=-1.d0*yfval 

            endif 

          endif 

          sig(1)=yfval 

        endif 

 

The remaining force components are set to zero. The spring only gives a force in the r – direction, 

between n1 and n2, see Figure 4. 

        sig(2)=0.0  

        sig(3)=0.0  

        sig(4)=0.0  

        sig(5)=0.0  

        sig(6)=0.0  

 

The accumulated elongation is stored in history variable #3, based on the current time tt and the time 

from the previous call to the routine stored in history variable #2. 

        if(tt.ne.hsv(2))then 

           hsv(3)=hsv(1) 

        endif 

        hsv(2)=tt 

 

In case the user tries to apply the material model to other elements than discrete beams, an error 

message is issued. 

      else 

        cerdat(1)=etype 

        call lsmsg(3,MSG_SOL+1150,ioall,ierdat,rerdat,cerdat,0) 

      endif 

      return 

      end 

 

Since user-defined material models cannot be used for discrete beam elements in implicit, the 

computation of a corresponding tangent modulus is not required. 

4.6 Ansys LS-DYNA simulation examples 

In this Section, some simulation examples to demonstrate and verify the user defined material models 

of Sections 4.5.1 - 4.5.3 are presented. Comparisons to results obtained using the pre-defined material 

models of LS-DNYA are made. All LS-DYNA keyword files are supplied as attachments to this guide. 

4.6.1 Examples of the Saint-Venant Kirchhoff material model 

The first example applies the hyperelastic material model of umat45 to an explicit analysis using solid 

elements. Material parameters typical for steel were used, that is a Young’s modulus of 200 GPa and a 
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Poisson’s ratio of 0.5. A ¼ - model of a bar (20x20x100 mm) is subjected to alternating prescribed 

displacement, see Figure 5. The stress vs. strain in response in one element is shown in Figure 6, 

compared to results using LS-DYNA’s built-in hypoelastic material *MAT_ELASTIC and to the 

hyperelastic material *MAT_ORTHOTROPIC_ELASTIC. For stresses above 1 %, the response from umat45 

differ noticeable from *MAT_ELASTIC, which also is expected [2], while the agreement to the 

hyperelastic material *MAT_ORTHOTROPIC_ELASTIC (red dots in Figure 6) is very good throughout the 

whole strain range. 

 

Figure 5. A ¼ model of a solid bar. The model consists of 40 solid elements. The blue symbols indicate symmetry 

boundary conditions applied at the nodes. One short end is fixed, while the other short end is subjected to a 

pulsating prescribed displacement. 

 

 

Figure 6. Stress vs. strain response for the hyperelastic Saint-Venant Kirchhoff model compared to the hypoelastic 

material *MAT_ELASTIC and the hyperelastic *MAT_ORTHOTROPIC_ELASTIC, in an explicit analysis. 
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In the second example, shell elements are used to model a cantilever beam, see Figure 7. Elastic 

material properties typical for aluminum (E = 70 GPa,  = 0.31) are used. A prescribed displacement of 

140 mm is applied at the bolt holes of the end bracket. Contact is considered between the square beam 

and the cylindrical rigid support, using *CONTACT_AUTOMATIC_SINGLE_SURFACE_MORTAR. Results from 

implicit analyses using umat45 and *MAT_ELASTIC are compared in Figure 8 and Figure 9. Similar results 

are obtained. Differences are expected due to the differences in material model formulations. Also, 

similar performance with respect to iteration count and solution time is obtained for umat45 and 

*MAT_ELASTIC for the implicit case. 

 

Figure 7. A square (100 × 100 mm, t = 5 mm) cantilever beam is subjected to prescribed displacement at the end 

bracket (green in the image) and contact with a rigid cylindrical support. 
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Figure 8. Fringe plot of von Mises effective at 140 mm displacement. The top image shows results using 

*MAT_ELASTIC, and the bottom image shows results using umat45. 

 

 

Figure 9. Comparison of global force vs. displacement response using *MAT_ELASTIC (blue curve) and umat45 

(red curve). 

*MAT_ELASTIC 

umat45 
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4.6.2 Examples of the J2 – plasticity model 

The first example is analysis of a tensile specimen, using shell elements, see Figure 10. Analyses were 

performed both using the explicit and implicit solver of Ansys LS-DYNA. Force vs. displacement results 

are compared in Figure 11. The peak forces for MAT_24 and umat41 are very similar, both for implicit and 

explicit, while after necking some differences are found. Since necking is a local instability, small 

differences will be magnified after this point. The results for the explicit analyses are quite close up to 

about 20 mm of displacement, while the implicit umat41 results differ more. This may be due to the 

approximate nature of the implemented tangential stiffness matrix for shells, or insufficient accuracy in 

the through-thickness strain calculation. These analyses were performed with the update of shell 

thickness active (by ISTUPD = 4 on *CONTROL_SHELL). 

 
Figure 10. A tensile test specimen with gauge length ~ 70 mm, and width 14 mm. Thickness is 1.5 mm. 

 

Figure 11. Force vs. displacement results for the tensile test specimen using different material models and the 

implicit (blue and red curves) or explicit (green and black curves) solver of LS-DYNA. 

 

The second example is axial crushing of a crash box, see  Figure 12. The thickness of the profiles is 1.5 

mm, and a hardening curve corresponding to steel HX420LAD is applied. For umat41, it was necessary 

to disable the shell thickness update (by ISTUPD = 0 on *CONTROL_SHELL) in order to obtain useful 

results. Instabilities caused premature termination when the shell thickness update flag was active, 

most likely due to too low accuracy when solving the through-thickness strain. The crushing force 
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using MAT_24 and umat41 are compared in Figure 13. Due to the indeterminate nature of this load case, 

it is far from ideal for a benchmark, and exact agreement is hardly to be expected. However, the large 

deformations and high plastic strain values pose a great challenge to the material model, and with 

some modification of the control card settings, also the umat41 manages to handle this load case. With 

respect to the crushing force, reasonable agreement is obtained, while the final deformed 

configuration differs quite substantially, see Figure 14. The solution time using mpp/LS-DYNA with 8 

processes7 is 1 h 42 min using MAT_24 and 2 h 25 min using the umat41, corresponding to an increase of 

about 42 % in this example. This should be seen as a rough indication of the effect of using a user 

defined material model on the solution time for an explicit analysis; probably the implementation of J2-

plasticity presented here as umat41 is not optimal, while MAT_24 is one of the most efficient material 

models in LS-DYNA. 

 

Figure 12. The crash box model. The profiles are made out of 1.5 mm thick HX420LAD steel, and the end plate 

(blue in the image) is made out of 2.7 mm HX340LAD. The open end of the profile is fully constrained. 

 

 
 

7 Intel Xeon E5-2687W v4 CPU (from 2017). 

 

1
5
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480 mm 
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Figure 13. Comparison of the crushing force of the crash box using MAT_24 and umat41. 

 

 

Figure 14. The final deformation of the crash box. The fringe colors show the accumulated effective plastic strain 

using umat41 (left image) and MAT_24 (right image). 

 

The final example of J2 – plasticity consists of two pipes (  90 mm, t = 10 mm) connected by a flange 

joint with five bolts (M10, strength class10.9), see Figure 15. The geometry is meshed using solid 

elements, and the example involves bolt pre-tensioning and contacts. Pipe 2 is fully constrained at the 

free end (black dots to the left in Figure 15). After the bolt pre-tensioning is completed, a prescribed 
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displacement is applied to the CNRB (blue, to the right Figure 15) of Pipe 1. This load case is solved using 

the implicit solver in LS-DYNA. 

 

Figure 15. Two pipes are connected by five bolts in a flange joint. 

 

Analyses were performed using umat41 and MAT_24 for reference. The global force vs. displacement 

results are compared in Figure 16. The results are in general agreement, with a slightly smoother 

response for the umat41. This is probably because more time steps are taken at critical stages (which is 

most likely triggered by the choice of strainlim = 5.E-2 in the user subroutine, see Section 4.5.2). The 

final configurations are compared in Figure 17. The peak accumulated effective plastic strain occurs in 

one of the bolts, and it is 1.73 using MAT_24 and 1.71 using umat41. The solution time using mpp/LS-

DYNA with 4 processes8 is approximately the same, 10 minutes, for both MAT_24 and umat41. 

 

 

 
 

8 Intel Xeon SP 6148 CPU (from 2018). 


x  



© 2025 ANSYS, Inc. Ansys LS-DYNA user-defined 56 

Figure 16. Force vs. displacement for the pipe joint model. 

 

 

Figure 17. Final configuration of the pipe joint model. The fringe colors show accumulated effective plastic strain. 

The top image shows results using MAT_24, and the bottom image shows results using umat41. 

4.6.3 Example of the non-linear spring material model 

This basic example applies the non-linear spring material model of Section n4.5.3 to a seesaw-like 

model, see Figure 18. Five non-linear springs (discrete beams) are attached to one end of the solid 

beam (brown in Figure 18,  1350 hexas) via constrained nodal rigid bodies. The input force-displacement 

curve for the non-linear springs is shown in Figure 19. A linearly increasing loading is applied to a 

constrained nodal rigid body at the other end of the beam during 100 ms. The peak applied loading is 1 

kN. The solid beam is constrained at 2/3 between the ends. 

The force vs. displacement response in one of the springs is shown in Figure 20, compared to the 

response from LS-DYNA’s built-in non-linear spring material model MAT_67. The two models show 

good agreement. 

MAT_24 

umat41 
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Figure 18. A simple FE-model for demonstrating the user-defined material model for discrete beams. 

 

 

Figure 19. Non-linear force-displacement curve, input to the discrete beam material model. 
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Figure 20. Comparison of the force-displacement response from the user-defined material model and the built-

in material model MAT_67. 

5 Friction models interface 

Ansys LS-DYNA offers a variety of different ways to handle contact between model entities, see for 

example Ref. [8] [9]. The related keywords start with *CONTACT_, see Ref. [1]. A crucial component in any 

sliding contact is the definition of friction. The standard friction models in LS-DYNA for 3D contacts 

include: 

• Static and dynamic friction coefficients 

• Viscous damping 

• A cap shear stress, typically related to the yield stress of the materials involved, limiting the peak 
tangential force in a contact 

• Friction coefficients depending on contact pressure and/or temperature 

• Orthotropic friction (for some contacts only) 

The offering for 2D contacts is limited to static and dynamic friction coefficients with a cap shear stress. 

Friction coefficients can be defined per contact interface, per part using *PART_CONTACT, or via 

interaction tables (*DEFINE_FRICTION). 

The user defined friction interface makes it possible to develop customized and general friction models 

for some of the different 3D contacts in LS-DYNA. Due to the internal architecture of the LS-DYNA code, 

different subroutines are required for the smp9, mpp and Mortar contact formulations. User defined 

friction does not apply to the non-Mortar segment-based contacts (SOFT = 2) and also not for the non-

 
 

9 Since the subroutine for smp/LS-DYNA is more complex than the other options, it is left out 
of the current presentation. It will be included in coming revisions of this document. 
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Mortar single surface contacts (but *CONTACT_AUTOMATIC_SINGLE_SURFACE_MORTAR is supported). 

Customized friction models are also provided by some third-party companies, for example Triboform 

[28]. 

It is currently not possible to define a user friction law for 2D contacts (*CONTACT_2D_). 

Note that the user subroutines for user defined friction are called in each explicit time step or implicit 

iteration, but only for the segments in contact at that particular time. 

See also Appendix G of the LS-DYNA Keyword manual [1]. 

5.1 Keyword interface to the user defined friction models 

To activate a user defined friction model from a keyword file, three steps are required: 

1. On Card 2 of *CONTROL_CONTACT, set USRFRC to the number of parameters passed to the user 
defined friction model, plus the number of history variables that are stored.  

2. To make the user defined friction model active for a specific contact ID, the keyword 
*USER_INTERFACE_FRICTION is used. 

a. This also implies that the option *CONTACT_..._ID must be used, in order to assign an ID 
to a specific contact definition. 

b. Set the variable IFID (interface number) to the Contact ID of the *CONTACT definition   

c. The extent of material history variables passed to the user friction routines is determined 
by the NEHIS variable. By setting NEHIS = 0 (which is the default), the plastic strain, yield 
stress and material directions will be passed. By setting NEHIS > 0, the plastic strain and 
the element history variables up to NEHIS -1 (in original order) will be passed. 

3. For the user defined friction to have effect on a specific contact interface, a non-zero static 
friction (FS) must be defined for that contact interface. Also, for the non-automatic contacts, the 
shell thickness offset must be activated. This is done by setting SHLTHK = 1 or 2 on 
*CONTROL_CONTACT, or on Optional Card B of the *CONTACT_... keyword. 

To specify different friction models  for different contact interfaces  in a  subroutine (usrfrc or 

mortar_usrfrc), it might be convenient to let the first user defined input parameter denote a 

reference number to a specific friction model. 

A keyword example follows: 

*USER_INTERFACE_FRICTION 

$#    IFID       NOC      NOCI      NHSV     NEHIS      MHSV     

        35         2         2         1         0         0 

$#     UC1       UC2       UC3       UC4       UC5       UC6       UC7       UC8 

        1.    3501.0  

*CONTACT_AUTOMATIC_SURFACE_TO_SURFACE_MORTAR_ID 

$#     cid                                                                 title 

        35Block to base 

$#1  SURFA     SURFB  SURFATYP SURFBSTYP                          SAPR      SBPR 

         2         5         3         3                             1         1 

$#      fs        fd        dc        vc       vdc    penchk        bt        dt 

      0.15    

$#    sfsa       sfsb ... 

  

The variables of the *USER_INTERFACE_FRICTION keyword are: 
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• IFID: The ID of the *CONTACT to be affected. In this case, the user defined friction shall apply to 
Contact ID 35 (Block to base).  

o If a Mortar contact is referred by the ID, the subroutine mortar_usrfrc will be called, 
otherwise the subroutine usrfc will be called. 

• NOC: The number of variables to be stored for the interface. 

• NOCI: The number of variables to be initialized by the user (variables UC1, UC2 … etc.). NOCI must 
be smaller or equal to NOC. 

• NHSV: The number of history variables per interface node. For Mortar contact it is the number of 
history variables per tracked10 segment. 

• NEHIS: The number of material history variables to be passed to the subroutine usrfrc. 

• MHSV: The number of history variables per reference11 segment for Mortar contact (ignored by 
*CONTACT_AUTOMATIC_SINGLE_SURFACE_MORTAR_ID). 

• UC1, UC2 etc. : Parameters to be passed to the user subroutine. 

5.2 Post processing user defined friction models  

The history variables of the user defined friction models can be post-processed from the intfor12 – file 

using LS-PrePost 4.8 (or later). To be able to fringe plot the history variables, it is required to set SPR = 1 

on the *CONTACT_ - card in question (setting also MPR = 1 is recommended). On the keyword 

*DATABASE_EXTENT_INTFOR, specify the number of friction history variables to be written to the intfor 

file using the NHUF parameter. Finally, the keyword *DATABASE_BINARY_INTFOR_FILE is required to 

specify the filename (intfor is recommended) and output frequency of the contact data. See Figure 25 

for an example of a fringe plot of a user defined friction history variable.  

5.3 Interfaces to the user defined friction subroutines  

Depending on the type of *CONTACT_ (non-Mortar or Mortar) that gets a user defined friction model 

associated with it, either the subroutine usrfrc or mortar_usrfrc is called. They are both found in the 

Fortran file dyn21cnt.f. In both cases, curve data as defined by the keyword input is passed via the 

parameters crv and nnpcrv, in a similar way as for the user defined material routines.In order to 

evaluate curves, the subroutine crvval as described in Section 4.4 may be used. The smp and mpp 

versions of the subroutine usrfric differ quite substantially. Currently, only the mpp version will be 

discussed in this presentation. 

The subroutine usrfrc is called for defining the friction coefficients in non-Mortar contacts (SOFT = 0 or 

1). The subroutine definition was extended with additional arguments, adding input of more detailed 

temperature information, starting with R14 of LS-DYNA. For versions R11 to R13, the subroutine 

definition for implementing a user defined friction model for non-Mortar contacts in mpp/LS-DYNA is 

      subroutine usrfrc(fstt,fdyn,uc,nc,prs,temp,v,vx,vy,vz,uh,nh, 

     . crv,nnpcrv,nosl, 

     . ictype,side,time,ncycle,dt2,fric1,fric2,fric3,fric4,lsv,idele8, 

 
 

10 Previously denoted as ”slave”. 
11 Previously denoted as ”master”. 
12 This is a file for 3D visualization of contact results, for example contact pressure. 
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     . sfac1,sfac2,insv,fni,areas,stfk,ix1,ix2,ix3,ix4,aream, 

     . rn1,rn2,rn3,ue,ne,uhnew) 

 

For R14 and R15, the subroutine definition instead is 

    subroutine usrfrc(fstt,fdyn,uc,nc,prs,temp,v,vx,vy,vz,uh,nh, 

     . crv,nnpcrv,nosl, 

     . ictype,side,time,ncycle,dt2,fric1,fric2,fric3,fric4,lsv,idele8, 

     . sfac1,sfac2,intr,fni,areat,stfk,ix1,ix2,ix3,ix4,arear, 

     . rn1,rn2,rn3,ue,ne,uhnew,ttrs,trfs,flxrfs) 

 

and an overview of the parameters to the subroutine is shown in Table 8. 

The main objective of the subroutine is to compute user defined frictional coefficients, that shall be 

output in the variables fstt (static) and fdyn (dynamic). 
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Table 8. Overview of the arguments for the usrfrc subroutine 

Argument Description Input / Output 
fstt  static frictional coefficient  Output 
fdyn  dynamic frictional coefficient  Output 

uc(nc)  user defined friction parameters Input 
nc  number of user defined friction parameters  Input 
prs  interface pressure on reference side Input 
temp  temperature(1) Input 
v  magnitude of relative tangential velocity  Input 

vx,vy,vz  components of relative tangential velocity  Input 
uh(nh)  user defined friction history variables   Input/Output 

uhnew(nh)  user defined friction history variables   Input/Output 
nh  number of user defined friction history variables  Input 
crv  curve array  Input 

nnpcrv  # of discretization points per crv Input 
nosl  number of the sliding interface  Input 

ictype  contact type  Input 
side  Info on which side of the contact is being processed Input 
time  current solution time  Input 

ncycle  number of current cycle  Input 
dt2  time step size at n+1/2  Input 

fric1  static friction coefficient FS from keyword  Input 
fric2  dynamic friction coefficient FD from keyword  Input 
fric3  decay constant DC from keyword  Input 
fric4  viscous friction coefficient VC from keyword  Input 
lsv  reference segment number  Input 

idele8  external user element number of reference segment  Input 
sfac1  Coulomb friction scale factor FSF from keyword  Input 
sfac2  Viscous friction scale factor VSF from keyword  Input 
insv  SURFA(5) node user id  Input 
fni  normal force  Input 

areas  SURFA node area(2) Input 
stfk  penalty stiffness  Input 

ix1, ix2, 

ix3, ix4 

 SURFB(6) segment nodes - internal node numbers(3) Input 

aream  SURFB segment area Input 
rn1,rn2,rn3 x, y, z components of SURFB segment normal Input 

ue Element history data(4) Input 
ne  number of element history variables  Input 

ttrs(7) temperature of the tracked node Input, from R14 
trfs(7) averaged temperature on the reference segment Input, from R14 

flxrfs(7) averaged nodal flux vector on reference segment Input, from R14 

Notes: (1) Available for coupled analysis, as the average value between SURFA and SURFB. Not yet 

supported for SOFT = 4 contact. (2) The SURFB node pressure is obtained from fni / areas. (3) To go from 

internal to external (user) node numbers, use ix1ext=lqfinv8(ix1,1). (4) The extent of the element history 

data, ue, is determined by the parameter NEHIS on the keyword *USER_INTERFACE_FRICTION, see 

Section 5.1. (5) Previously denoted “slave”. (6) Previously denoted “master”. (7) Additional thermal input, 

available from R14 of LS-DYNA. 
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From these arguments, it is possible to define a friction coefficient for non-Mortar contacts dependent 

on, for example, 

• the effective plastic strain, or other history variables, of the involved materials (Note that this 
functionality is available from rev. 144575 of LS-DYNA), 

• also, history variables associated with the contact segments,  

• time, temperature, contact pressure and sliding velocity. 

Note that in order to include the segment history variables in the infor file, the parameters uhnew 

should be used. The parameters uh will not be output in the intfor file. 

Since only one subroutine usrfric is defined, accommodating for several friction models can be 

achieved by letting one of the user-defined parameters, for example uc(1), denote the ID of a friction 

model.  

The subroutine mortar_userfrc is called for defining the friction coefficient in Mortar contacts. The 

subroutine definition for implementing a user defined friction model for Mortar contacts, up until R13 

of LS-DYNA is: 

      subroutine mortar_usrfrc(init,mfrc,nprm,cprm,shst,mhst,icnt, 

     1     selm,sprt,styp,stmp,seps,shis, 

     2     melm,mprt,mtyp,mtmp,meps,mhis, 

     3     cprs,vtan,crv,nnpcrv,dt) 

 

For R14 and later versions of LS-DYNA, names of some of the parameters have changed: 

      subroutine mortar_usrfrc(init,mfrc,nprm,cprm,thst,rhst,icnt, 

     1     telm,tprt,ttyp,ttmp,teps,this, 

     2     relm,rprt,rtyp,rtmp,reps,rhis, 

     3     cprs,vtan,crv,nnpcrv,dt) 

 

But the number of parameters is the same. 

An overview of the parameters to the subroutine is shown in Table 9. The main objective of the 

subroutine is to compute a user defined frictional coefficient, that shall be output in the variables mfrc. 
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Table 9. The arguments to the subroutine mortar_usrfric 

Argument, R13 R14 → Description Input/Output 

init Initialization phase (.true. or .false.) (currently not active) Input 

mfrc User defined friction coefficient  Output 

nprm number of user friction parameters Input 

cprm list of user friction parameters Input 

shst  thst SURFA friction history variables  input/output 

mhst  rhst rference friction history variables  input/output 

icnt contact interface id Input 

selm telm element id for SURFA segment Input 

sprt tprt part id for SURFA segment Input 

styp ttyp element type for SURFA segment ('beam ','solid','shell' or 'tshel') Input 

stmp ttmp temperature of SURFA segment (n/a during initialization) Input 

seps teps effective plastic strain on SURFA side Input 

shis this material history variables for the SURFA segment Input 

melm relm element id for SURFB segment (n/a during initialization) Input 

mprt rprt part id for SURFB segment (n/a during initialization) Input 

mtyp rtyp element type for SURFB segment ('beam ','solid','shell' or 'tshel', 

n/a during initialization) 

Input 

mtmp rtmp temperature of SURFB segment (n/a during initialization) Input 

meps reps effective plastic strain on SURFB side Input 

mhis rhis material history variables for the SURFB segment Input 

cprs contact interface pressure (n/a during initialization) Input 

vtan tangential relative sliding velocity (n/a during initialization) Input 

crv curve object (to be used in evaluating curve/table, n/a during 

initialization) 

Input 

nnpcrv curve parameters (to be used in evaluating curve/table, n/a during 

initialization) 

Input 

dt time step Input 

 

From these arguments, it is possible to define a friction coefficient for Mortar contacts dependent on, 

for example, 

• the effective plastic strain, or other history variables, of the involved materials,  

• history variables associated to the contact segments,  

• temperature, contact pressure and sliding velocity. 

 

The current solution time is not passed to the mortar_usrfric subroutine. The time in contact can be 

obtained by using a history variable for summing up the time steps dt. 
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5.4 Subroutine examples 

In this Section, examples of user defined friction models for mpp13/LS-DYNA are presented, for both 

Mortar and non-Mortar contacts. The related subroutines are found in the Fortran file dyn21cont.f. 

Both Fortran code and keyword input are presented, while the complete examples, see also Section 5.5, 

can be found as attachments to this document. It shall be stressed that these examples are not 

intended for use in any kind of production analysis, and there may very well contain errors or flaws. 

5.4.1 Time dependent friction coefficient for Mortar contact 

For Mortar contact, the implementation of a time dependent friction coefficient is described. Two 

methods for computing the time in contact will be implemented, either by 

• friction model 1: dt is summed up and stored in a history variable for the tracked segment, or 

• friction model 2: dt is summed up and stored in history variables for both tracked and reference 
segment, and the time is taken as the maximum value of these. 

 

The user will have to select a friction model and give a curve ID specifying the coefficient of friction as a 

function of time. Also, a default friction coefficient can be given, to be use in case the curve evaluation 

should result in a negative value. The coefficient of friction will be stored as the second tracked side 

history variable. The keyword interface will be 

*USER_INTERFACE_FRICTION 

$#    IFID       NOC      NOCI      NHSV     NEHIS      MHSV     

contact ID         3         3         2                   1 

$#     UC1       UC2       UC3       UC4       UC5       UC6       UC7       UC8 

    1 or 2      LCID default µ 

 

where blue text indicates that the user should input sensical data, and red text indicates text that 

should not be changed. 

The fist part of the subroutine mortar_usrfrc, involving subroutine and variable declarations, follows: 

      subroutine mortar_usrfrc(init,mfrc,nprm,cprm,shst,mhst,icnt, 

     1     selm,sprt,styp,stmp,seps,shis, 

     2     melm,mprt,mtyp,mtmp,meps,mhis, 

     3     cprs,vtan,crv,nnpcrv,dt) 

      implicit none 

      include 'nlqparm' 

      include 'iounits.inc' 

      logical init 

      real mfrc,cprm(*),shst(*),mhst(*),cprs,vtan,stmp,mtmp,crv(lq1,2,*) 

      real shis(*),mhis(*),seps,meps,dt 

      integer selm,sprt,melm,mprt,nprm,icnt,nnpcrv(*) 

      character*5 styp,mtyp 

C 

      real dmdp,dmdv 

 
 

13 An example for user defined friction in smp/LS-DYNA will be provided in coming versions of 
this Guideline. 
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      real epsfac,prsfac,tdum, maxeps,cfrc 

 

Here, the implicit none statement will require all variables to be declared explicitly, reducing the risk 

for programming errors. 

In the original dyn21cnt.f Fortran file of the usermat package, the comments after the subroutine 

declaration provide some documentation regarding the parameters of the user friction subroutine. 

These comments are omitted here.  

The coding for the friction model 1 follows: 

C --- Law 1: use curve to define friction coefficient, time is time in 

C            contact for the tracked segment 

c ----       cprm(1) = Law id, cprm(2)=lcid, cprm(3)=default friction 

      if (cprm(1).eq.1.) then 

         if(shst(1).eq.0)then 

           write(iomsg,*) ' --- mortar usrfric law ',cprm(1),' using ', 

     1      'lcid',cprm(2),' default friction is ',cprm(3) 

         endif 

         shst(1)=shst(1)+dt 

         call crvval(crv,nnpcrv,cprm(2),shst(1),mfrc,dmdp) 

         if(mfrc.ge.0)then 

            shst(2)=mfrc 

         else 

            mfrc=cprm(3) 

            shst(2)=mfrc 

         endif             

      endif 

 

It starts by writing a debug output message, in case the tracked side history variable is zero. Then the 

time in contact is updated and stored in the tracked side history variable shst(1). The subroutine 

crvval is then called to evaluate the curve and obtain the coefficient of friction in the mfrc variable. 

Finally, checking is done and in case a negative value was returned, it is replaced by the default 

coefficient of friction given as UC3 from *USER_INTERFACE_FRICTION in the variable cprm(3). The 

applied coefficient of friction is stored in the 2nd history variable for visualization purposes. 

The second friction model is similar: 

C --- Law 2: use curve to define friction coefficient, time is max 

C            time in contact for the tracked or reference segment 

c ----       cprm(1) = Law id, cprm(2)=lcid, cprm(3)=default friction 

      if (cprm(1).eq.2.) then 

         if(shst(1).eq.0)then 

           write(iomsg,*) ' --- mortar usrfric law ',cprm(1),' using ', 

     1      'lcid',cprm(2),' default friction is ',cprm(3) 

         endif 

         shst(1)=shst(1)+dt 

         mhst(1)=mhst(1)+dt 

         dmdv=max(shst(1), mhst(1)) 

         shst(1)=dmdv 

         call crvval(crv,nnpcrv,cprm(2),dmdv,mfrc,dmdp) 

         if(mfrc.ge.0)then 

            shst(2)=mfrc 
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         else 

            mfrc=cprm(3) 

            shst(2)=mfrc 

         endif             

      endif 

 

The difference to the friction model 1 is that also the reference side history variable mhst(1) is used for 

storing the time in contact. Then the maximum value of the time of the tracked and reference side is 

taken as the time in contact, and this value is then also stored in the 1st reference side history variable 

mhst(1).  Again, in case a negative coefficient of friction should be obtained from the curve, it is 

replaced by the default value input as UC3 from *USER_INTERFACE_FRICTION. 

An example of a simulation using this mortar_usrfrc subroutine is provided in Section 5.5.1. 

5.4.2 Friction depending on contact pressure and plastic strain   

To illustrate the implementation of a user defined friction model for non-Mortar contacts, a model 

using curves to scale the friction as a function of contact pressure and accumulated effective plastic 

strain is described in this section. The user interface will involve two curve ID:s, and a max and min 

value to limit the coefficient of friction. The coefficient of friction will be stored as the 1st history variable, 

the scale factor related to plastic strain as the 2nd, and the scale factor related to contact pressure as the 

3rd. The keyword interface will be 

*USER_INTERFACE_FRICTION 

$#    IFID       NOC      NOCI      NHSV     NEHIS      MHSV     

contact ID        11         5         3                   3 

$#     UC1       UC2       UC3       UC4       UC5       UC6       UC7       UC8 

         1     LCID1     LCID2 min.frict max.frict 

 

where blue text indicates that the user should input sensical data, and red text indicates text that 

should not be changed. In this case, UC1 is reserved for (future) use as a friction model ID, but since only 

one model will be implemented, the only sensical input is 1. The LCID1 should correspond to a curve ID 

scaling the coefficient of friction by a factor depending on the accumulated effective plastic strain, and 

LCID2 should correspond to a curve ID scaling the coefficient of friction as a function of the contact 

pressure. The lower and upper bounds should be input as UC4 and UC5 respectively, in order to keep the 

applied coefficient within reasonable limits (making it possible to avoid unrealistic extrapolations in 

curves, which may be caused by for example very high values of plastic strain locally). 

The fist part of the subroutine usrfrc, involving subroutine and variable declarations, follows: 

      subroutine usrfrc(fstt,fdyn,uc,nc,prs,temp,v,vx,vy,vz,uh,nh, 

     . crv,nnpcrv,nosl, 

     . ictype,side,time,ncycle,dt2,fric1,fric2,fric3,fric4,lsv,idele8, 

     . sfac1,sfac2,insv,fni,areas,stfk,ix1,ix2,ix3,ix4,aream, 

     . rn1,rn2,rn3,ue,ne,uhnew) 

c 

      implicit none 

      include 'nlqparm' 

      include 'iounits.inc' 

      real fstt,fdyn 

      integer nc,nh,nosl,ictype,ncycle,lsv,insv,ix1,ix2,ix3,ix4 

      integer ne 
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      real uc(nc),uh(nh),uhnew(nh),ue(ne) 

      real prs,temp,v,time,dt2,fric1,fric2,fric3,fric4,sfac1,sfac2, 

     .     fni,areas,stfk,aream,rn1,rn2,rn3,vx,vy,vz 

      real crv(lq1,2,*) 

      integer nnpcrv(*) 

      character*(*) side 

      integer*8 idele8 

C 

      real cfrc, epsfac, prsfac, tdum 

 

Here, the implicit none statement will require all variables to be declared explicitly, reducing the risk 

for programming errors. 

In the original dyn21cnt.f Fortran file of the usermat package, the comments after the subroutine 

declaration provide some documentation regarding the parameters of the user friction subroutine. 

These comments are omitted here.  

In the next section of the subroutine, the output variables fstt and fdyn are initialized to the values 

input on the *CONTACT_ … keyword card, and a debug message is written in the mes0* - files. 

c 

c     set coefficients to keyword values 

c 

      fstt=fric1 

      fdyn=fric2 

C --- Law 1: use curves to scale fric1 as a function of plastic strain 

C     and contact pressure 

c ----       uc(1) = Law id, uc(2)=lcid for plascit strain, uc(3)=lcid 

C            for pressure, uc(4) = min friction, uc(5) = max friction 

      if (uc(1).eq.1.) then 

         if(time.le.1E-3)then 

           write(iomsg,*) ' --- forming usrfrc law ',uc(1),' using ', 

     1      'lcid for plastic strain:',uc(2), 

     2      'lcid for contact pressure:',uc(3), 

     3      'min friction is ',uc(4),'max friction is ',uc(5) 

         endif 

 

In the final part of the subroutine, the curves are evaluated to extract the scale factors for plastic strain 

and contact pressure respectively, and a candidate friction coefficient crfc is computed by scaling the 

input static friction coefficient FS of the *CONTACT_ … card, which is passed in the variable fric1. 

Finally, this candidate coefficient is checked against the min and max allowed values. The history 

variables uhnew are updated, for post-processing purposes, with the coefficient of friction as the 1st 

history variable, the scale factor for plastic strain as the 2nd history variable and the scale factor for 

contact pressure as the 3rd. 

 

         call crvval(crv,nnpcrv,uc(2),ue(1),epsfac,tdum) 

         call crvval(crv,nnpcrv,uc(3),prs,prsfac,tdum) 

         cfrc = fric1*epsfac*prsfac 

         fstt = cfrc 

         if(cfrc.lt.uc(4))then 

            fstt = uc(4) 

         else if(cfrc.gt.uc(5))then 
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            fstt = uc(5) 

         endif             

         uhnew(1) = fstt 

         uhnew(2) = epsfac  

         uhnew(3) = prsfac  

      endif 

 

An example of a simulation using this usrfrc subroutine is provided in Section 5.5.2. This friction model 

is also implemented for Mortar contact, as friction model 3 (UC1 = 3) in the mortar_usrfc subroutine 

provided as an attachment to this Guideline. 

5.5 LS-DYNA simulation examples  

In this section, two LS-DYNA simulation examples of user defined friction are presented. 

5.5.1 Mortar contact: a cube on a tilting plane 

This is an implicit simulation of a classical set-up for determining the coefficient of friction between two 

bodies, see Figure 21. A cube (50×50×50 mm) is placed on a plane, and during the first second, gravity is 

ramped up. Then, the plane is tilted to an angle of 8.3 from t = 2 to t = 7 seconds, see Figure 23. The 

coefficient of friction is ramped down according to Figure 22, causing the cube to start sliding. The final 

configurations, using friction model 1 and 2 respectively, are compared in Figure 24. Using friction 

model 1, the time in contact is defined only on the tracked segment side. This means that once the 

cube starts sliding as the coefficient of friction is reduced by the time in contact (following the curve of 

Figure 22), contact will be made with “new” segments with (initially) zero time in contact, causing a 

high coefficient of friction again, which in turn reduces the sliding velocity and, as the cube falls of the 

plane, causing it to rotate. Using the friction model 2, this phenomenon is reduced. This is also 

illustrated by the comparison of the final coefficient of friction (output as contact history variable #2) in 

Figure 25. Note that the contact history variables are found in the intfor file for fringe plotting. 
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Figure 21. A cube (gray) is resting on a plane (light gray). 

 

 

Figure 22. Time-dependent coefficient of friction used in the Mortar contact example. 
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Figure 23. The plane is tilted to an angle of 8.3, and then the coefficient of friction is decreased. 

  

Figure 24. The left image shows the configuration at t = 10 s using friction model 1. The right image shows the 

configuration at t = 10 s using friction model 2. 
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Figure 25. The fringe colors show the final coefficient of friction from 0 (blue) to 0.15 (red) using friction model 1 (left 

image) compared to the friction model 2 (right image). 

5.5.2 Forming analysis using pressure and plastic strain dependent friction 

In this example, the forming of a so-called S-rail [25] is studied, see  

Figure 26. The S-rail forming simulation case. 

 

. The analysis is performed using the explicit solver in LS-DYNA, with adaptive mesh refinement and 

three forming contacts (*CONTACT_FORMING_ONE_WAY_SURFACE_TO_SURFACE_ID). The assumed curves 

used for scaling the friction coefficient as a function of plastic strain and contact pressure are shown in 

Figure 27. In the reference simulation, a constant coefficient of friction (µ = 0.125) was used. The shell 

thickness results are compared in Figure 28, where some minor differences in shell thickness due to 

the different friction models can be found. The distribution of the coefficient of friction at an 

intermediate state is shown in Figure 29. 
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Figure 26. The S-rail forming simulation case. 

 

 

Figure 27. The left image shows the curve for scaling the friction coefficient as a function of contact pressure. The 

right image shows the curve for scaling the friction as a function of plastic strain. 
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Figure 28. The resulting shell thickness distribution using constant friction (left image) and the user defined 

friction model. 

 

Figure 29. The friction history variable #1 for the contact between the bank and the punch, which is the current 

static friction coefficient, for the S-rail example. 

6 Tied contact using Mortar weld tie 

The original purpose of the tied weld options (*CONTACT_AUTOMATIC_SURFACE_TO_SURFACE_... 

_TIED_WELD) is for simulating a welding process: a sliding contact is irreversibly transformed to a 

(penalty based) tied contact when the temperature exceeds a user-specified value. This behavior is 

useful for simulating for example two materials that are joined by partial melting of the surfaces by an 

external heat source (weld torch) and when the melted metal cools down, the parts remain joined.  

The user defined tie condition is only available for the Mortar formulation of this contact. It also requires 

that a coupled thermomechanical analysis (SOLN = 2 on *CONTROL_SOLUTION) is performed. The user 

defined tied condition is available from revision 143414 of LS-DYNA. 

Another possibility for tying surfaces which are originally separated together is to use the OPTION = 1 of 

*CONTACT_AUTOMATIC_SURFACE_TO_SURFACE_TIEBREAK. By this, the surfaces will be permanently tied 

together as soon as they make contact, independent of the temperature. 
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6.1 Keyword interface to the user defined weld tie condition  

The keyword interface to the user defined tie weld condition is activated by specifying a negative value 

of TEMP on the contact defined via *CONTACT_AUTOMATIC_SURFACE_TO_SURFACE_MORTAR_THERMAL_TIED_ 

WELD_ID. A keyword example follows: 

*CONTACT_AUTOMATIC_SURFACE_TO_SURFACE_MORTAR_TIED_WELD_THERMAL_ID 

        32Base to film 

$#1  SURFA     SURFB  SURFATYP SURFBSTYP                          SAPR      SBPR 

         3         2         3         3                             1         1 

$#2     FS 

      0.15 

$#3 

 

$#4   TEMP     CLOSE    HCLOSE     NTPRM     NMHIS     NSTWH     NMTWH 

       -1.               1.E+3         3                   2 

$#   TPRM1     TPRM2     TPRM3     TPRM4     TPRM5     TPRM6     TPRM3     TPRM4 

       0.5      102.        5. 

$# Thermal properties 

     0.000     0.000     1.E+3 1.0000E-3 5.0000E-3       0.5         1 

 

The variables related to the user defined tie condition are: 

• TEMP: Set -1000 < TEMP < 0 to activate a user defined tie condition. The absolute value of TEMP 
will be passed to the user subroutine mortar_usrtie as the tied weld ID, which then can be 
used for specifying different user defined conditions. 

• CLOSE: Segments within this distance are considered for tying. The default is 1 % of the 
characteristic mesh length scale. 

• HCLOSE: The thermal contact conductivity when tied. 

• NTPRM: Number of user defined weld tie parameters (TPRM1, TPRM2 etc.) 

• NMHIS: Number of material history variables (in addition to plastic strain) to be accessible in the 
subroutine mortar_usrtie 

• NSTWH: Number of tracked side tied weld history variables. 

• NMTWH: Number of reference side tied weld history variables. 

• TPRM1, TPRM2, etc: User parameters. 

Note that the accumulated effective plastic strain for reference and tracked side is accessible even if 

NMHIS = 0.  

6.2 Post processing user weld tie condition  

The history variables of the user defined weld tied condition subroutine can be post-processed from 

the intfor file using LS-PrePost 4.8 (or later). To be able to fringe plot the history variables, it is 

required to set SPR = 1 on the *CONTACT_...TIED_WELD_ID – card (setting also MPR = 1 is recommended). 

On the keyword *DATABASE_EXTENT_INTFOR, specify the number of SURFA and SURFB weld tie history 

variables to be written to the intfor file using the 7th and 8th positions on Card 2, respectively. It is also 

recommended to activate the output of a tie indicator by setting NTIED =1 on Card 2. The keyword 

*DATABASE_BINARY_INTFOR_FILE is required to specify the filename (intfor is recommended) and 

output frequency of the contact data. See Figure 32 for examples of fringe plots of user defined tied 

weld history variables. 
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6.3 Interface to the user defined tie condition in the subroutine 

mortar_usrtie   

The condition for switching from sliding to tied contact is defined in the subroutine mortar_usrtie, 

which is found in the dyn21cnt.f Fortran file. The subroutine definition for implementing a user 

defined tie condition, up until R13 of LS-DYNA, is: 

      subroutine mortar_usrtie(tid,init,tie,nprm,cprm, 

     .     shst,mhst,icnt, 

     1     selm,sprt,styp,stmp,seps,shis, 

     2     melm,mprt,mtyp,mtmp,meps,mhis, 

     3     cprs,cshr,crv,nnpcrv,time,dt) 

 

 For R14 and later versions of LS-DYNA, names of some of the parameters have changed: 

      subroutine mortar_usrtie(tid,init,tie,nprm,cprm, 

     .     thst,rhst,icnt, 

     1     telm,tprt,ttyp,ttmp,teps,this, 

     2     relm,rprt,rtyp,rtmp,reps,rhis, 

     3     cprs,cshr,crv,nnpcrv,time,dt) 

 

The subroutine is called for each pair of reference-tracked contact segments. Note that the user 

subroutine is only called for the segments in consideration for contact, which is also related to the 

CLOSE parameter value. For those segments further away than the CLOSE value, the contact is not 

considered as active, and the subroutine is not called. The objective of the subroutine is to indicate if 

the segments are to be tied together or not, by the logical parameter tie. Note that tie must be 

initialized to .false. in the subroutine in order to make sure that undesired tying is avoided. An 

overview of the parameters to the subroutine is shown in Table 10. Curve data as defined by the 

keyword input is passed via the parameters crv and nnpcrv, in a similar way as for the user defined 

material routines, and in order to evaluate curves, the subroutine crvval as described in Section 4.4 

may be used. 
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Table 10. Overview of the arguments for the mortar_usrtie subroutine 

Argument From R14 →  Description Input / Output 
tid  tie interface id Input 
tie  set to .true. if tie condition is met, otherwise .false. Output 
init  initialization phase (.true. or .false.) (currently not active) (Input) 
nprm  number of user tie parameters Input 
cprm  list of user tie parameters, use only nprm Input 

 shst  Thst  tie history variables SURFA side Input/output 
 mhst  Rhst  tie history variables SURFB side  Input/output 
 icnt   contact interface id Input 
 selm   selm   element id for SURFA segment Input 
 sprt   sprt   part id for SURFA segment Input 
 styp   styp   element type for SURFA segment ('beam ','solid','shell' or 

'tshel') 

Input 

 stmp   stmp   temperature of SURFA segment (n/a during initialization) Input 
 seps   seps   effective plastic strain on SURFA side Input 
 shis   shis   material history variables for the SURFA segment Input 
 melm   melm   element id for SURFB segment (n/a during initialization) Input 
 mprt   mprt   part id for SURFB segment (n/a during initialization) Input 
 mtyp   mtyp   element type for SURFB segment ('beam ','solid','shell' or 

'tshel') 

Input 

 mtmp   mtmp   temperature of SURFB segment (n/a during initialization) Input 
 meps   meps   effective plastic strain on SURFB side Input 
 mhis   mhis   material history variables for the SURFB segment Input 

cprs  contact interface pressure (n/a during initialization) Input 
cshr  contact interface shear stress (n/a during initialization) Input 
crv  curve object (to be used in evaluating curve/table) Input 

npcrv  curve parameters (to be used in evaluating curve/table) Input 
time  simulation time Input 
dt  time step size Input 

 

From these arguments, it is possible to define a tie condition depending on, for example, 

• the effective plastic strain, or other history variables, of the involved materials, 

• also history variables associated with the contact segments on the tracked (SURFA) and 
reference (SURFB) side,  

• time, temperature, and contact pressure. 

Once the tied condition is met, and tie is set to .true., the segment pair is removed from the 

checking loop, and will not be passed to the subroutine again. This means that the segment history 

variables cannot be updated once the tied condition is met. 

6.4 Subroutine example   

In this section, a basic tie condition depending on the time in contact, contact pressure and 

temperature will be implemented. It shall be stressed that this example is not intended for use in any 

kind of production analysis, and it may very well contain errors or flaws. 

This may have some similarity with hot glue that cures (or solidifies) below a certain temperature, 

which in combination with a certain contact pressure being applied for a specified amount of time 

creates a glued bond. For this, three parameters would be required: a critical minimum contact 
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pressure p0, a critical transition temperature tthresh, and the time ctime required to create the bond. 

One history variable for storing the time in contact, during which these requirements are fulfilled, is a 

minimum, but in addition a second history variable for storing the first time of contact will be created 

for post-processing and visualization. 

The keyword interface will be: 

*CONTACT_AUTOMATIC_SURFACE_TO_SURFACE_MORTAR_TIED_WELD_THERMAL_ID 

CID       Title 

$#1  SURFA     SURFB  SURFATYP SURFBSTYP                          SAPR      SBPR 

Specify what should be in contact 

$#2     FS 

Specify friction 

$#3 

 

$#4   TEMP     CLOSE    HCLOSE     NTPRM     NMHIS     NSTWH     NMTWH 

       -1.          therm.cond         3                   2 

$#   TPRM1     TPRM2     TPRM3     TPRM4     TPRM5     TPRM6     TPRM3     TPRM4 

   tthresh        p0    ctime 

$# Thermal properties 

Specify thermal properties 

 

where blue text indicates that the user should input sensical data, and red text indicates values that 

should not be changed. 

The first part of the subroutine mortar_usrtie involving subroutine and variable declarations, follows: 

      subroutine mortar_usrtie(tid,init,tie,nprm,cprm, 

     .     shst,mhst,icnt, 

     1     selm,sprt,styp,stmp,seps,shis, 

     2     melm,mprt,mtyp,mtmp,meps,mhis, 

     3     cprs,cshr,crv,nnpcrv,time,dt) 

      implicit none 

      include 'nlqparm' 

      include 'iounits.inc' 

      real dt 

      logical init,tie 

      real cprm(*),shst(*),mhst(*),cprs,cshr,stmp,mtmp,crv(lq1,2,*) 

      real shis(*),mhis(*),seps,meps,time 

      integer tid,selm,sprt,melm,mprt,nprm,icnt,nnpcrv(*) 

      character*5 styp,mtyp 

 

In the original dyn21cnt.f Fortran file of the usermat package, the comments after the subroutine 

declaration provide some documentation of the user tie subroutine, regarding for example parameters. 

These comments are omitted here.  

The main part of the subroutine starts by initializing the tie indicator to .false. and writing a message 

to the mes0* files, to confirm what subroutine is active.  

      tie = .false. 

      if (tid.eq.1) then 

         if(time.lt.0.1) then 

           write (iomsg,*) "Using Test Mortar usertie Law:1" 

           write (iomsg,*) "   tie will be active if temperature < ", 

     1                        cprm(1)," and contact pressure is > ", 
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     2                        cprm(2)," and time in contact is > ", 

     3                        cprm(3) 

         endif 

 

Then the history variables are updated. The first time in contact, with a contact pressure above the 

critical value p0, is stored in the first history variable shst(1). If the contact pressure is above p0 and 

temperature is below tthresh, then the time in contact, stored in the 2nd history variable shst(2), is 

incremented by the current time step size dt. 

         if((stmp.le.cprm(1)).and.(cprs.ge.cprm(2))) then 

           shst(2) = shst(2) + dt 

         endif 

         if((shst(1).lt.time).and.(cprs.lt.cprm(2)))then 

            shst(1) = 0. 

         endif 

         if((shst(1).eq.0.).and.(cprs.ge.cprm(2)))then 

            shst(1) = time 

         endif 

 

Finally, the tie condition is checked: if the contact pressure is above the critical value p0 and the 

temperature is below tthresh and the time in contact, stored in the 2nd history variable shst(2),  

exceeds the required ctime, the tie flag is set to true, and a message is printed to confirm which 

element that got tied. 

 

c     tie when tracked temperature is below cprm(1) and contact 

c     pressure is above cprm(2)  and time in contact is greater than  

C     cprm(3) 

         if((stmp.le.cprm(1)).and.(cprs.ge.cprm(2))) then 

           if(shst(2).gt.cprm(3)) then 

             tie=.true. 

             write (iomsg,*) '--- Test Mortar usertie 1:elem ', 

     1       selm,' now tied at temp ',stmp, ' cpress ', 

     2       cprs,' time in contact ',shst(2) 

           endif 

         endif 

      endif 

 

This is a rather basic example. Much more involved criteria are possible based on the accessible model 

quantities, and the history variables of the contact segments can of course have more intricate 

evolution laws. An example of a simulation using this mortar_usrtie subroutine is provided in Section 

6.5. 

6.5 LS-DYNA simulation example   

In this example, a rubber sheet is pressed against an aluminum plate by a steel cube, see Figure 30 for 

geometries and initial temperatures. The test case is analyzed using the implicit solver of LS-DYNA, as a 

coupled thermomechanical simulation.  
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Figure 30. The geometry and initial temperatures for the test case. 

 

A user defined weld tie condition is applied between the rubber sheet and the aluminum plate, using 

the subroutine as described in Section 6.4, with a critical pressure p0 = 0.5 MPa, a critical transition 

temperature tthresh, = 102C and a required time ctime = 5 seconds.   

Mechanical loading is applied to the set-up in two steps: 

1. A distributed loading is applied to the topside of the steel cube: ramped up for 1 second, kept 
constant for 9 seconds, and then ramped down. 

2. A distributed loading is applied to the topside of the rubber sheet, in order to illustrate which 
segments that got bonded with the aluminum plate. 

The loading history is also illustrated in Figure 31. The tie indicator and contact history variable #2 (time 

in contact) is shown in Figure 32. The final deformed configuration is shown in Figure 33, from which it 

is concluded that the tied condition between the rubber sheet and the aluminum plate is enforced 

correctly. 
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Figure 31. Load case description. First the cube is pushed down (left image) then the sheet is lifted (right image). 

 

Figure 32. The left image shows a fringe plot of the tied indicator from the intfor file. The right image shows the 

2nd history variable, time in contact. 



© 2025 ANSYS, Inc. Ansys LS-DYNA user-defined 82 

 

Figure 33. Deformed configuration during load step 2, application of the distributed loading to the rubber sheet. 

7 Mortar tiebreak contact 

The main purpose of a tiebreak contact is to model surfaces that are initially connected (bonded, glued, 

welded etc.) but due to high loading or other effects may separate during the analysis. An initially tied 

contact is irreversibly transformed into a sliding contact. Alternatively, cohesive material models, for 

example *MAT_COHESIVE_MIXED_MODE or *MAT_COHESIVE_GENERAL may be applied in an interface layer 

with cohesive elements between parts that may separate.  

In this section only the Mortar formulation of the tiebreak contacts is described. The relevant keyword 

for the tiebreak functionality is *CONTACT_AUTOMATIC_SURFACE_TO_SURFACE_TIEBREAK_USER_MORTAR. 

The tiebreak contacts have many predefined criteria for damage and failure of the tied interface, see 

Ref. [1], based on stress, energy release rate or cohesive models, see for example Figure 34.  
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Figure 34. Cohesive mixed-mode law (according to *MAT_COHESIVE_MIXED_MODE) for traction-separation, 

invoked by option = 9 in the tiebreak contacts. 

In a sense, the tiebreak contact is the inverse of the Mortar weld tie contact (see Section 6). It is possible 

to inherit history variables from a joining simulation where a *CONTACT_AUTOMATIC_SURFACE_TO_ 

SURFACE_MORTAR_THERMAL_TIED_WELD_ID was used and formulate a separation criterion based on the 

adhesion process results.  

The user defined mortar tiebreak condition is fully supported from revision R13-1674-g3b7bda8165 of 

LS-DYNA, but with exception of the access to material history variables and plastic strain is available 

already in R13.0.0. 

For the contact segments where the tied contact is released, a “normal” Mortar sliding contact remains, 

keeping the segments from penetrating each other. 

7.1 Keyword interface to the user defined tiebreak condition  

The keyword interface to the user defined tiebreak condition is activated by the keyword 

*CONTACT_AUTOMATIC_SURFACE_TO_SURFACE_TIEBREAK_USER_MORTAR_ID. A keyword example follows: 

*CONTACT_AUTOMATIC_SURFACE_TO_SURFACE_TIEBREAK_USER_MORTAR_ID 

        32Base to film 

$#1  SURFA     SURFB  SURFATYP SURFBSTYP                          SAPR      SBPR 
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         3         2         3         3                             1         1 

$#2     FS 

      0.15 

$#3     

 

$#4 OPTION       NHV     CT2CN        CN    OFFSET     NHMAT     NHWLD  

       103         3        1.                             3         2 

$#     UP1       UP2       UP3       UP4       UP5       UP6       UP7       UP8 

       0.5      102.        5. 

$#     UP9      UP10      UP11      UP12      UP13      UP14      UP15      UP16 

 

$#    SOFT    SOFSCL    LCIDAB    MAXPAR     SBOPT     DEPTH     BSORT    FRCFRQ 

 

$#  PENMAX    THKOPT    SHLTHK     SNLOG      ISYM     I2D3D    SLDTHK    SLDSTF 

       1.0  

 

The variables related to the user defined tiebreak condition are: 

• OPTION: User tiebreak type. 101 ≤ OPTION  ≤ 105. 

• NHV:  Number of history variables 

• CT2CN:  Ratio of tangential stiffness to normal stiffness. 

• CN:  Normal stiffness. If left blank, the penalty stiffness divided by the segment area is used 
(default). 

• OFFSET:  Not applicable to Mortar contact. 

• NHMAT: Number of material history variables (in addition to plastic strain) to be accessible in the 
subroutine mortar_usrtbrk 

• NHWLD: Number of tied weld history variables to be read in the user tiebreak routine, assuming 
they have been carried over from a previous simulation. 

• UP1..UP16: User parameters. 

Note that the accumulated effective plastic strain for reference and tracked side is accessible even if 

NHMAT = 0.  

Surfaces that are initially close enough will be tied. The tolerance distance for tying can be set by the 

PENMAX parameter (1.0 on the last row of the keyword example above). 

7.2 Post processing user tiebreak condition  

The tied status, as an indicator from 1 (meaning perfectly tied) to 0 (meaning completely released) can 

be output by setting NTIED =1 on Card 2 of *DATABASE_EXTENT_INTFOR, and visualized in LS-PrePost, see 

Figure 38 for an example.  The keyword *DATABASE_BINARY_INTFOR_FILE is required to specify the 

filename (intfor is recommended) and output frequency of the contact data.   
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7.3 Interface to the user defined tiebreak condition in the subroutine 

mortar_usrtbrk 

The condition for releasing the tied contact is defined in the subroutine mortar_usrtbrk, which is 

found in the dyn21cnt.f Fortran file. The subroutine definition for implementing a user defined 

tiebreak condition is14: 

      subroutine mortar_usrtbrk(tid,dmg,pn,ps,iconv,dpndn,dpnds,dpsdn, 

     1     dpsds,istif,prm,hst,whst,selm,melm,sprt,mprt,styp,mtyp, 

     2     dn,ds,en,es,ts,tm,seps,meps,shis,mhis,time,dt)  

 

For R14 and later versions of LS-DYNA, names of some of the parameters have changed: 

subroutine mortar_usrtbrk(tid,dmg,pn,ps,iconv,dpndn,dpnds,dpsdn, 

     1     dpsds,istif,prm,hst,whst,telm,relm,tprt,rprt,ttyp,rtyp, 

     2     dn,ds,en,es,tt,tr,teps,reps,this,rhis,time,dt)  

 

The subroutine is called for each pair of reference-tracked contact segments. Note that the user 

subroutine is only called for the segments in consideration for tied contact, which is also related to the 

PENMAX parameter value. For those segments that are not tied, the subroutine is not called. The 

objective of the subroutine is to update the damage parameter dmg, where 0 indicates no damage (a 

complete tied contact) and 1 indicates a complete release of the tied contact. If required for implicit 

calculations (indicated by istif.ne.0), also the tangent stiffness matrix should be calculated.  

An overview of the parameters to the subroutine is shown in Table 11.   

 
 

14 Re-formatted from the original in dyn21cnt.f (where 12 continuation lines are used). 



© 2025 ANSYS, Inc. Ansys LS-DYNA user-defined 86 

Table 11. Overview of the arguments for the mortar_usrtbrk subroutine 

Argument From R14→ Description Input / Output 
tid tiebreak interface id, integer between 101 and 105 Input 
dmg damage. should be increased between 0 (completely tied) and 

dmg = 1. indicates complete release  

and 1 (completely released) 

Input/Output 

pn normal traction (unit: pressure) Output 
ps tangential traction (unit: pressure) Output 

iconv flag for converged step in implicit (check iconv.eq.0) Input 
dpndn tangent of normal traction wrt normal separation  

(unit: pressure / length) needed when istiff.ne.0 

Output 

dpnds tangent of normal traction wrt to tangential separation  

(unit: pressure / length) needed when istif.ne.0 

NOTE: dpnds = dpsdn is required 

Output 

dpsdn tangent of tangential traction wrt to normal separation 

(unit: pressure / length) needed when istif.ne.0 

NOTE: dpsdn = dpnds is required 

Output 

dpsds tangent of tangential traction wrt to tangential separation 

(unit: pressure / length) needed when istif.ne.0 

Output 

istif flag if stiffness is needed for implicit, check istif.ne.0 Input 
prm input parameters Input 
hst history variables  Input/Output 
whst Weld tie history variables from previous tied weld analysis Input 

 selm   telm   element id for SURFA segment Input 
 melm   relm   element id for SURFB segment  Input 
 sprt   tprt   part id for SURFA segment Input 
 mprt   rprt   part id for SURFB segment Input 
 styp   ttyp  Element type for SURFA segment ('beam ','solid','shell' or 'tshel') Input 
 mtyp   rtyp  Element type for SURFB segment ('beam ','solid','shell' or 'tshel') Input 

dn Normal separation (unit: length, positive means tensile) Input 
ds Tangential separation (unit: lengt, always positive) Input 
en Normal stiffness (unit: pressure / length) Input 
es Tangential stiffness (unit: pressure / length) Input 

ts tt Temperature of SURFA segment  Input 
tm tr Temperature of SURFB segment  Input 

 seps   teps  Effective plastic strain on SURFA side Input 
 meps   reps  Effective plastic strain on SURFB side Input 
 shis   this   material history variables for the SURFA segment Input 
 mhis   rhis   material history variables for the SURFB segment Input 

time  simulation time Input 
dt  time step size Input 

 

From these arguments, it is possible to define a tiebreak condition depending on, for example, 

• the effective plastic strain, or other history variables, of the involved materials, 

• also, history variables associated with the contact segments on tracked and reference side, 
which can be inherited from a previous analysis using MORTAR_TIED_WELD. 

• time, temperature, and contact pressure. 
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Note that it is required that the tangent stiffness matrix (stored in variables dpndn, dpnds, dpsdn, 

dpsds) 

𝑫 =   

(

 
 

∂𝑝𝑛
∂𝑑𝑛

∂𝑝𝑛
∂𝑑𝑠

∂𝑝𝑠
∂𝑑𝑛

∂𝑝𝑠
∂𝑑𝑠)

 
 

 

be symmetrical, 𝑫 = 𝑫T, which in turn implies ∂𝑝𝑛
∂𝑑𝑠
 =  

∂𝑝𝑠

∂𝑑𝑛
 . If a model with an unsymmetrical stiffness 

matrix is used, it must be symmetrized internally in the mortar_usrtbrk routine. 

In the intfor file, 1 – dmg (see Table 11) is output as the “tied at top face” / “tied at bottom face” tie 

indicator, which can be visualized in LS-PrePost, see Figure 38. 

7.4 Subroutine example   

In this section, a basic tiebreak condition depending on a history variable of the materials in contacts 

will be implemented. This example requires revision R13-1674-g3b7bda8165 or later of LS-DYNA. It shall 

be stressed that this example is not intended for use in any kind of production analysis, and it may very 

well contain errors or flaws. 

The damage will be mapped linearly from 0 to 1 when the material history goes from a lower threshold 

value thresh to an upper limit maxlim. For this, three parameters would be required: in addition to the 

limits also an identifier for the (tracked side) history variable to scale the damage. 

The keyword interface will be: 

*CONTACT_AUTOMATIC_SURFACE_TO_SURFACE_TIEBREAK_USER_MORTAR_ID 

CID       Title 

$#1  SURFA     SURFB  SURFATYP SURFBSTYP                          SAPR      SBPR 

Specify what should be in contact 

$#2     FS 

Specify friction 

$#3 

 

$#  OPTION       NHV     CT2CN        CN    OFFSET     NHMAT     NHWLD      

       103         1                              hisvarid                                                 

$#     UP1       UP2       UP3       UP4       UP5       UP6       UP7       UP8 

thresh    maxlim    hisvarid                                               

$#     UP9      UP10      UP11      UP12      UP13      UP14      UP15      UP16 

                                                                                 

$#    SOFT    SOFSCL    LCIDAB    MAXPAR     SBOPT     DEPTH     BSORT    FRCFRQ 

                                                                                 

$#  PENMAX    THKOPT    SHLTHK     SNLOG      ISYM     I2D3D    SLDTHK    SLDSTF 

Optional distance for tying 

  

where blue text indicates that the user should input sensical data, and red text indicates values that 

should not be changed. By setting hisvarid = 0, the maximum plastic strain from either tracked or 

reference side material will scale the damage. 

The first part of the subroutine mortar_usrtbrk involving subroutine and variable declarations, follows: 

      subroutine mortar_usrtbrk(tid,dmg,pn,ps,iconv,dpndn,dpnds,dpsdn, 
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     1     dpsds,istif,prm,hst,whst,selm,melm,sprt,mprt,styp,mtyp, 

     2     dn,ds,en,es,ts,tm,seps,meps,shis,mhis,time,dt)  

      implicit none 

      include 'nlqparm' 

      include 'iounits.inc' 

      integer tid 

      real dmg 

      real pn,ps 

      integer iconv 

      real dpndn,dpnds,dpsdn,dpsds 

      integer istif 

      real prm(*),hst(*),whst(*) 

      integer selm,melm 

      integer sprt,mprt 

      character*5 styp,mtyp 

      real dn,ds 

      real en,es 

      real ts,tm 

      real seps,meps 

      real shis(*),mhis(*) 

      real time,dt 

c      

      real pd,prmdiff,seval 

      integer ihvar 

 

In the original dyn21cnt.f Fortran file of the usermat package, the comments after the subroutine 

declaration provide some documentation of the user tiebreak subroutine, regarding for example 

parameters. These comments are omitted here. The variable pd will be used to store the previous 

damage value (dmg) when the subroutine is called. The variable prmdiff will hold the difference 

between maxlim and thresh, and seval is the quantity to compare with (plastic strain or history 

variable value). The variable ihvar simply is the number of the history variable. 

The main part of the subroutine starts by writing a message to the mes0* files, to confirm what 

subroutine is active.  

      if (tid.eq.103) then 

C --- add some initial diagnose print out 

        if(time.le.1.E-3)then 

          write(iomsg, *) ' ---  mortar tiebreak 103' 

          if(int(prm(3)).gt.0)then 

            write(iomsg, *) '   using material history variable ', 

     1                          int(prm(3)) 

          else 

            write(iomsg, *) '   using plastic strain' 

          endif 

          write(iomsg, *) '   damage scaled from ',prm(1),' to ',prm(2) 

          write(iomsg, *) ' ---  ' 

        endif 

  

Then the linear, undamaged surface tractions are computed, and the reference quantity seval is 

evaluated: 

        pn=en*dn 

        ps=es*ds 
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        pd = dmg   

        ihvar=int(prm(3)) 

        if(ihvar.eq.0)then 

          seval=max(seps, meps) 

        else 

          seval=shis(ihvar) 

        endif 

 

Then follows the damage calculation, where it is ensured that the damage cannot decrease, nor exceed 

unity. 

        prmdiff = max(1.E-5,abs(prm(2) - prm(1))) 

        if(seval.gt.prm(2)) then 

           dmg = 1.0 

        elseif(seval.gt.prm(1)) then 

           dmg = (seval-prm(1))/prmdiff 

        endif 

        dmg=max(pd, dmg) 

        dmg=min(dmg,1.) 

 

The damage value is stored in the 1st history variable, and the damaged surface tractions are computed.  

        if(dmg.gt.0.)then 

          hst(1)=dmg 

          pn=(1.-dmg)*pn 

          ps=(1.-dmg)*ps 

        endif 

 

A message is output if the tied contact is fully released. 

        if (dmg.eq.1.and.pd.lt.1..and.iconv.eq.0) then 

           write (iomsg,1) styp,selm,sprt,mtyp,melm,mprt,time 

        endif 

 

Finally, the tangential stiffness is computed. Since there are no couplings between the normal and 

tangential components, we get ∂𝑝𝑛
∂𝑑𝑠
 =  

∂𝑝𝑠

∂𝑑𝑛
= 0. 

        if (istif.ne.0) then 

c     compute normal stiffness, accounting for damage 

            dpndn=en*(1.-dmg) 

c     compute tanegntial stiffness, accounting for damage 

            dpsds=es*(1.-dmg) 

c     no couplings 

            dpnds=0. 

            dpsdn=0. 

        endif 

 

which concludes this subroutine example. A simulation example using this subroutine is presented in 

Section 7.5. 

7.5 LS-DYNA simulation example   

In this example, a cantilever beam (similar to the example of Section 4.6.1, 4.6.2) with a weld-on 

reinforcement plate, purple in Figure 35, is subjected to severe overloading. In the first stage, a 
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prescribed vertical displacement of -140 mm and then +140 mm is applied at the bolt holes of the end 

bracket. In the second stage, longitudinal compression of 500 mm is applied to the deformed beam. 

Elastic-plastic material properties typical for aluminum (E = 70 GPa,  = 0.31, Y = 140 MPa) are used. 

Contact is considered between the square beam and the cylindrical rigid support, using 

*CONTACT_AUTOMATIC_SURFACE_TO_SURFACE_MORTAR, as well as self-contact within the C-section beam 

(red in Figure 35). The side-plate reinforcement is attached to the C-section using a tiebreak contact 

(*CONTACT_AUTOMATIC_SURFACE_TO_SURFACE_TIEBREAK_USER_MORTAR) with user-defined release 

condition based on plastic strain in the materials involved, according to the subroutine of Section 7.4. 

Deformation results from implicit analysis are shown in Figure 36 - Figure 37.  The tied indicator is 

shown in a fringe plot in Figure 38 and as a history plot in Figure 39. Some of the nodes release already 

during the initial vertical loading (t < 1) while most damage to the tied contact occur during the final 

axial compression (t > 4). 

 

Figure 35. A C-profile (100 × 100 mm, t = 5 mm) cantilever beam with a weld-on reinforcement is subjected to 

prescribed displacement at the end bracket (green in the image) and contact with a rigid cylindrical support. 
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Figure 36. The left image shows the initial vertical displacement of -140 mm (t=1), and the right image shows the 

deformed configuration after the vertical displacement of +140 mm (t=3).  

 

Figure 37. The left image shows an initial phase of the axial compression. The right image shows the final 

configuration.  
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Figure 38. The fringe plot shows the tied indicator at the beginning of the axial compression stage from 0 (blue) 

to 1 (red). 

 

Figure 39. The evolution of the tied indicator in some of the nodes closes to the cylindrical support (marked by 

black dots in Figure 38).  

8 Loads interface 

There are many ways of defining customized loading using the built-in LS-DYNA keywords. For 

example, the *LOAD_{OPTION} keywords for applying loads to nodes or segments also accept definition 

of the loading scale factor not only via curves (*DEFINE_CURVE) but also via functions of time, initial 

coordinate and current coordinate using *DEFINE_FUNCTION, via a C-like programming language (see 

Example 2 under *DEFINE_FUNCTION in Ref. [1], where the definition of a hydrostatic pressure is 
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demonstrated). By the *LOAD_SEGMENT_{OPTION}_NONUNIFORM keyword, pressure loading acting at a 

specified direction to the surface (not necessarily the normal direction) can be applied. 

In addition to the built-in keywords for loading definitions, it is possible to provide user defined 

loadings by the keywords *USER_LOADING and *USER_LOADING_SET and the corresponding Fortran 

subroutines loadud and loadsetud of the file dyn21.f in the usermat package. These subroutines also 

give access to nodal accelerations, velocities, and masses etc. These user defined loadings are 

supported by both the implicit and explicit mechanical solver of LS-DYNA. Under certain conditions, the 

user defined loading subroutines can also involve element deletion. 

An overview (including both keyword and Fortran code examples) of the user defined loading options 

has previously been presented in Ref. [19]. A very brief description of the loadsetud subroutine can be 

found in Ref. [1] under the *USER_LOADING_SET keyword. 

8.1 Keyword interface to the user defined loadings  

The keyword interface to the user defined loadings is given by  

• *USER_LOADING, mainly for applying nodal loads and 

• *USER_LOADING_SET, for applying more general loadings, including temperatures.  

 

The keyword input for the *USER_LOADING option is quite straight-forward: 

*USER_LOADING 

$    PARM1     PARM2     PARM3     PARM4     PARM5     PARM6     PARM7 

        1.     2041.        2.      100.        5. 

 

The variables of this keyword (PARM1, PARM2 etc.) are simply parameter values to be read by the user 

subroutine loadud. The documentation of the subroutine should preferably describe what each 

parameter corresponds to. This is discussed further in Sections 8.3 and 8.4. 

An example of keyword input for the *USER_LOADING_SET option follows: 

*USER_LOADING_SET 

$      SID     LTYPE      LCID       CID       SF1       SF2       SF3     IDULS 

         2    PRESSS       100         0       0.0       0.0       0.0         1 

 

where the variables are: 

• SID: The ID of the set that the loading should be applied to. The set type is determined by the 
loading type (LTYPE). 

• LTYPE: Loading type, for example PRESSS for pressure on segments. 

• LCID: Curve ID for scaling the loading. 

• CID: Coordinate system ID. Default is the global coordinate system. 

• SF1, SF2, SF3: Scale factors with different meanings depending on the loading type. 

• IDULS: An ID number that is passed to the subroutine loadsetud. 
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These keywords can also be combined. By this, additional parameters for *USER_LOADING_SET can be 

specified by the *USER_LOADING keyword input (see Section 8.5.3 for an example of this). 

8.2 Post processing user defined loadings 

Currently, there are no options to output data or results from the user defined loading subroutines, 

other than writing text in the mes0* and d3hsp – files. While for example forces applied using 

*LOAD_NODE_{OPTION} are output for post-processing in the bndout – file, the forces from the user 

defined loadings are not. 

8.3 Interfaces to the user-defined loading subroutines 

There are two different subroutines for defining the loading: 

• loadud, corresponding to the *USER_LOADING keyword, for applying nodal loadings by direct 
modification of the global load vector. This is a scalar subroutine. 

• loadsetud, corresponding to the *USER_LOADING_SET keyword, for providing a user defined load 
scale factor. This is a vectorized subroutine.  

 

They are both found in the dyn21.f file. The parameter list for the user defined loading subroutine is:  

      subroutine loadud(fnod,dt1,time,ires,x,d,v,a,ixs, 

     . numels,ixb,numelb,idrflg,tfail,isf,p,npc,fval,iob,iadd64,numelh, 

     . ixh,nhex_del,nbeam_del,nshell_del,hexarray,hextim,bemarray, 

     . bemtim,shlarray,shltim,parm,numnp,fnodr,dr,vr,ndof,xmst,xmsr) 

 

From R13 of LS-DYNA, some additional parameters related to thick shell elements were added: 

      subroutine loadud(fnod,dt1,time,ires,x,d,v,a,ixs, 

     . numels,ixb,numelb,idrflg,tfail,isf,p,npc,fval,iob,iadd64,numelh, 

     . ixh,nhex_del,nbeam_del,nshell_del,hexarray,hextim,bemarray, 

     . bemtim,shlarray,shltim,parm,numnp,fnodr,dr,vr,ndof,xmst,xmsr, 

     . numelt,ixt,ntsh_del,tsharray,tshtim) 

 

See also the attached Fortran file example for details. The objective of the loadud subroutine is to 

modify the force array fnod and/or the moment array fnodr, based on the input parameters of the 

array parm and other model data. An overview and brief description of the parameters to the 

subroutine is shown in  

Table 12.  

If the ires parameter has a negative value, it means that |ires| input parameters should be read in and 

stored in the parm array. NOTE! This must be done by explicit coding inside the loadud subroutine. A 

template for this is provided in the example code of the usermat package. See further Section 8.4.1 for 

an example. 

In addition to allowing access to (almost) all nodal data of the current model (coordinates, velocities, 

accelerations, masses, etc.) the loadud subroutine may also trigger element deletion. This requires that 

the keyword *DEFINE_ELEMENT_DEATH is present in the main keyword deck, for one or more elements 
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of the type to be deleted. The deletion time (variable TIME of the *DEFINE_ELEMENT_DEATH keyword) can 

be set to a value that greatly exceeds the termination time for the run.  

Table 12. The arguments to the subroutine loadud 

Argument Description Input / Output 

fnod Global nodal forces Input / Output 

dt1 Current time step size Input 

time Current problem time Input 

ires Restart flag(1) Input / Output 

x Original nodal coordinates Input / Output 

d Nodal displacements Input 

v Nodal velocities Input 

a Nodal accelerations Input 

ixs Shell element connectivities Input 

numels Number of shell elements Input 

ixb Beam element connectivities(2) Input 

numelb Number of beam elements Input 

idrflg Nonzero if dynamic relaxation phase Input 

tfail Shell element failure time Input / Output 

isf Shell element failure flag ( =1 → On) Input 

p Load curve data pairs (abscissa, ordinate) Input 

npc Pointer into p Input 

fval fval(lc) is the value of load curve ID lc at the current time Input 

iob i/o buffer  

iadd64   

numelh Number of solid elements Input 

ixh Solid element connectivities  Input 

nhex_del if >0, element deletion option is active for solids Input 

nbeam_del if >0, element deletion option is active for beam Input 

nshell_del if >0, element deletion option is active for shells Input 

hexarray Time to delete solid elements, the value should be > time Output 

hextim Solid element deletion is checked when time is  ≥ hextim Input 

beamarray Time to delete beam elements, the value should be > time Output 

bemtim Beam element deletion is checked when time is  ≥ bemtim Input 

shlarray Time to delete shell elements, the value should be > time Output 

shltim Shell element deletion is checked when time is  ≥ shltim Input 

parm Array for storing input parameters Input/Output(3) 

numnp Number of nodal points Input 

fnodr Global nodal moments Input / Output 

dr Nodal rotational displacements Input 

vr Nodal rotational velocities Input 

ndof Number of degrees of freedom per node in the solution phase ( = 0 

in the initialization phase) 

Input 

xmst Reciprocal of nodal translational masses in solution phase Input 
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xmsr Reciprocal of nodal rotational masses in solution phase Input 

numelt Number of thick shell elements Input, from R13 

ixt Thick shell element connectivities  Input, from R13 

ntsh_del if >0, element deletion option is active for thick shells Input, from R13 

tsharray Time to delete thick shell elements, the value should be > time Input, from R13 

tshtim Thick shell element deletion is checked when time is  ≥ tshltim Input, from R13 

Notes: (1) The ires parameter has special meanings, for example ires < 0 means that |ires| input 

parameters should be read. (2) To get also the third node defining beam orientation, set NREFUP = 1 on 

*CONTROL_OUTPUT. (3) The subroutine should populate the array during the initialization phase, no data 

passed by LS-DYNA. 

 The parameter list for the user subroutine loadsetud is: 

      subroutine loadsetud(time,lft,llt,crv,iduls,parm,nod,nnm1) 

 

The parameter list for this subroutine is quite short, see Table 13 for an overview, since an approach 

involving extensive use of common declarations is used. The objective of the loadsetud subroutine is to 

provide a scale factor for the loading, to be stored in the udl array, based on the accessible data and the 

parameters of the array parm (which is read by the loadud subroutine). Note that the loading type 

defined by the ltype variable of the keyword *USER_LOADING_SET is not passed to the subroutine 

loadsetud, but the value of the variable iduls can be passed as a load model ID for providing different 

user-defined loading models for different sets.  

Table 13. The arguments to the subroutine loadsetud 

Argument Description Input / Output 

time Current problem time Input 

lft, llt Start, stop indices of arrays for vectorized input/output Input 

crv Value of LCURV(1) at the current problem time Input  

iduls ID of user loading set (1) Input 

parm Array for storing input parameters(2) Input 

   nod    internal node numbers Input 

   nnm1   offset for node block Input 

Notes: (1) From the *USER_LOADING_SET – keyword. (2) from the *USER_LOADING keyword. 

In the subroutine loadsetud access to nodal coordinates, displacements, temperatures etc. is provided 

via a common block, see Table 14 for a brief overview. 
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Table 14. Some of the arrays accessible via common block declarations in the subroutine loadsetud. Note that the 

dimension of all arrays is nlq 

Argument Description Input / Output 

x1,x2,x3 Current coordinate of node or element center Input 

d1,d2,d3 Displacement of node or element center Input 

v1,v2,v3 Velocity of node or element center Input  

temp  temperature of node or element center Input 

udl(nlq) Array for storing user defined load scale factor Output 

  

8.4 Subroutine examples   

In this Section, some basic examples of user defined loadings via the subroutines loadud and 

loadsetud are given. It shall be stressed that these examples are not intended for use in any kind of 

production analysis, and there may very well be errors or flaws in them. 

8.4.1 Example of subroutine loadud 

In order to illustrate the definition of a user loading subroutine loadud, three different cases are 

considered: 

1. Application of a nodal force controlled by a curve as a function of time. This is similar to the built-
in *LOAD_NODE keyword. 

2. Application of a nodal force in a fixed direction in space, proportional to the magnitude of the 
nodal displacement and scaled by a load curve as a function of time. 

3. Application of nodal force, counteracting the displacement and scaled by a load curve as a 
function of time. This is similar to the built-in functionality of an *ELEMENT_DISCRETE spring. 

4. Read in parameters for *USER_LOADING_SET. 

The user will have to select which load model to use, to which node the loading should be applied, a 

scale factor and a curve ID for scaling the loading as a function of time. From the *USER_LOADING 

keyword, the following variables will be used for models 1 - 3: 

• P1: load model   

• P2: node ID 

• P3: Translational degree of freedom (1 – 3) 

• P4: curve ID 

• P5: scale factor. 

The first part of the (pre R13) subroutine loadud follows, with subroutine and variable declarations: 

     subroutine loadud(fnod,dt1,time,ires,x,d,v,a,ixs, 

     . numels,ixb,numelb,idrflg,tfail,isf,p,npc,fval,iob,iadd64,numelh, 

     . ixh,nhex_del,nbeam_del,nshell_del,hexarray,hextim,bemarray, 

     . bemtim,shlarray,shltim,parm,numnp,fnodr,dr,vr,ndof,xmst,xmsr) 

c 

      include 'iounits.inc' 

      include 'bigprb.inc' 

      include 'txtline.inc' 

      include 'nlqparm' 



© 2025 ANSYS, Inc. Ansys LS-DYNA user-defined 98 

c 

      parameter (NPARM=1000) 

c     common/usrldv/parm(NPARM) 

c 

      integer*8 iadd64 

      real*8 x 

      real*8 d,dr 

      dimension a(3,*),v(3,*),d(3,*),fnod(3,*),ixs(5,*),ixb(4,*), 

     . x(3,*),tfail(*),p(*),npc(*),fval(*),iob(*),ixh(9,*), 

     . hexarray(*),bemarray(*),shlarray(*),parm(*),fnodr(3,*), 

     . vr(3,*),dr(3,*),xmst(*),xmsr(*) 

c      

      integer nid, idcrv, nidof, kk, nodext 

      real sclfac, dist, f1,f2,f3, dfv(3) 

 

In the original dyn21.f Fortran file of the usermat package, the comments after the subroutine 

declaration provide some documentation of the user loading subroutine, regarding for example 

parameters and some details on element deletion. These comments are omitted here.  

The next part of the subroutine is active in the initialization phase. It reads in the parameter values (P1, 

P2, etc.) of the *USER_LOADING keyword and stores them in the array parm. Also, some messages are 

written in the mes0* files to confirm what parameter values are read. This part was taken (more or less) 

from the original example subroutine provided in the usermat package. 

      if (ires.lt.0) then 

        n=abs(ires) 

        write(iomsg,1030) 

        call prludparm(0,parm,0,0) 

        mssg='reading user loading subroutine' 

        if (longs) then 

          do 11 i=1,n,8 

          call gttxsg (txts,lcount) 

          read (txts,'(8e20.0)',err=400) (parm(j),j=i,min(i+3,n)) 

          write(iomsg,1040) (j,parm(j),j=i,min(i+3,n)) 

          call prludparm(1,parm,i,min(i+3,n)) 

   11     continue 

        else 

          do 10 i=1,n,8 

          call gttxsg (txts,lcount) 

          read (txts,1020,err=400) (parm(j),j=i,min(i+7,n)) 

          write(iomsg,1040) (j,parm(j),j=i,min(i+7,n)) 

          call prludparm(1,parm,i,min(i+7,n)) 

   10     continue 

        endif 

        write(iohsp,1050) 

        call prludparm(2,parm,0,0) 

        return 

      endif 

C 

      if (ndof.eq.0) return 

      if(parm(1).eq.4.) return 

 

The last two rows of this part will return from the subroutine in case LS-DYNA is in the initialization 

phase (indicated by ndof = 0) or the load model 4 is chosen, in which case only the parameter reading 
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should be active. The final part of the subroutine applies the nodal forces, depending on what load 

model is selected. First, the internal15 node ID to which the force should be applied, must be obtained. 

      nodext = int(parm(2)) 

      nid =lqfe(nodext,1) 

 

For going from the user-defined node ID given by the variable P2 of the *USER_LOADING keyword to the 

node ID used by LS-DYNA internally, the lqfe function must be used in an mpp implementation. In 

case the particular node ID is not accessible by the current mpi thread, lqfe will return a value ≤ 0 

(while use of lqf or lqf8 will cause Error termination. However, lqf8 is required for use with 

smp/LS-DYNA). Then follows some conversion of the entries of the parm array to more useful variables. 

 

      if (nid.gt.0) then 

        nidof = int(parm(3)) 

        idcrv = lcids(int(parm(4))) 

        sclfac = parm(5) 

        if(sclfac.eq.0.0) sclfac = 1. 

 

By the last row, a similar behavior to the built-in *LOAD_ … keywords is obtained, since the load scale 

factor is reset to a default value of 1 in case zero or no value is input by the user. Then follows the actual 

modifications of the force vector, corresponding to the different loading models: 

        if(parm(1).eq.1.)then 

          fnod(nidof, nid) = fnod(nidof, nid) + fval(idcrv)*sclfac 

        elseif(parm(1).eq.2.)then 

          dist = sqrt(sum(d(1:3,nid)**2)) 

          fnod(nidof, nid) = fnod(nidof, nid) -  

     1         fval(idcrv)*abs(sclfac)*dist 

        elseif(parm(1).eq.3.)then 

          dfv(1:3)= -d(1:3,nid)*abs(sclfac)*fval(idcrv) 

          fnod(1:3, nid) = fnod(1:3, nid) + dfv(1:3) 

        else 

          cerdat(1)='Unsuported user loading model' 

          call lsmsg(3,MSG_SOL+1447,ioall,ierdat,rerdat,cerdat,0) 

        endif 

      endif 

c 

      return 

 

In case another load model than 1, 2, 3 or 4 is requested, the subroutine will trigger an error 

termination. Some examples of simulations using this loadud subroutine are provided in Section 8.5.1 

and 8.5.2. 

 
 

15 In Table 7 some other useful functions for converting between internal and keyword-input 
numbering are listed. 
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8.4.2 Example of subroutine loadsetud 

As an example of the subroutine loadsetud, the application of a hydrostatic16 (buoyancy) loading was 

implemented. This will require the user to input, via the *USER_LOADING_SET, 

• SID: a segment set ID, 

• LTYPE: PRESSS to specify pressure on a segment set, 

• LCID: a curve ID for scaling the loading, 

and via the *USER_LOADING keyword the parameters 

• P1: 4. 

• P2: the direction of the gravity, in the global coordinate system, (1 for X-direction, 2 for Y and 3 for 
Z which also is the default) 

• P3: density of the fluid, 

• P4: the gravitational acceleration,  

• P5: the reference level for zero pressure. 

The coding for the loadud subroutine, required for reading in the parameters P1 – P5 to the parm array, 

was already presented in Section 8.4.1. The first part of the subroutine loasetdud follows, with 

subroutine, common block and variable declarations: 

      subroutine loadsetud(time,lft,llt,crv,iduls,parm,nod,nnm1) 

c 

c****************************************************************** 

c|  Livermore Software Technology Corporation  (LSTC)             | 

c|  ------------------------------------------------------------  | 

c|  Copyright 1987-2008 Livermore Software Tech. Corp             | 

c|  All rights reserved                                           | 

c****************************************************************** 

c 

c     Input (not modifiable) 

c       time : analysis time 

c       x    : coordinate of node or element center 

c       d    : displacement of node or lement center 

c       v    : velocity of node or lement center 

c       temp : temperature of node or element center 

c       crv  : value of LCURV at time=time 

c       iduls: id of user_loading_set 

c       parm : parameters from user_loading 

c       nod  : internal node numbers 

c       nnm1 : offset for node block 

c     Output (defined by user) 

c       udl : user-defined load curve value 

      include 'nlqparm' 

      include 'iounits.inc' 

c 

      common/aux8loc/ 

     & x1(nlq),x2(nlq),x3(nlq),v1(nlq), 

 
 

16 Hydrostatic loading in LS-DYNA in general does not require the coding of a user subroutine 
but can be achieved by the *DEFINE_FUNCTION keyword (see the example of Ref. [1]). 
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     & v2(nlq),v3(nlq),d1(nlq),d2(nlq), 

     & d3(nlq),temp(nlq),udl(nlq), 

     & xx11(nlq),xx21(nlq),xx31(nlq), 

     & xx12(nlq),xx22(nlq),xx32(nlq), 

     & xx13(nlq),xx23(nlq),xx33(nlq), 

     & xx14(nlq),xx24(nlq),xx34(nlq), 

     & xctr(nlq),yctr(nlq),zctr(nlq), 

     & f(nlq), tr1(nlq), tr2(nlq), tr3(nlq) 

c 

      dimension parm(*),nod(*) 

C 

      integer dof, kk 

      real grav, rho, refl, fact, cord(nlq) 

 

In this case, the original comments of the dyn21.f file are kept. Then follows a translation of the values 

of the parm array to explicit variables: 

      dof = int(parm(2)) 

      rho = parm(3) 

      grav = parm(4)  

      refl = parm(5) 

 

In order to simplify the final calculations, an array cord is assigned the current coordinate 

corresponding to the direction of the gravity: 

C --- z is the default direction 

      cord(1:nlq) = x3(1:nlq) 

      if(dof.eq.1)then 

        cord(1:nlq) = x1(1:nlq) 

      elseif(dof.eq.2)then 

        cord(1:nlq) = x2(1:nlq) 

      endif 

 

And then the final calculation of the hydrostatic force and the corresponding load factor udl follows 

     do kk=lft,llt 

       fact = max(0., (refl-cord(kk))*grav*rho) 

       udl(kk)= crv*fact 

      enddo 

 

which concludes the user subroutine. 

8.5 LS-DYNA simulation examples 

In this Section, some LS-DYNA simulation examples of the user defined loading options are presented. 

8.5.1 Nodal force by load curve 

An L-shaped beam, see Figure 40, is fully constrained at its base and subjected to transverse loading (5 

kN). The tip deflection when the loading is applied by the built-in keyword *LOAD_NODE and the user 

defined loading is compared in Figure 41. For the explicit analyses, the Y-displacement of the tip of the 

beam is identical for the two different load application methods. The differences between the implicit 

static analysis and the explicit analyses are explained by the dynamic effects induced by the ramp-up 
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time of 20 ms. It is concluded that the coding of Section 8.4.1 and the related interfaces of the usermat 

package gives an equivalent result as the built-in load application functionality. 

 

Figure 40. An L-shaped beam is fully constrained at its base and subjected to transverse loading at the center 

node of a *CONSTRAINED_NODAL_RIGID_BODY. 

 

 

Figure 41. Results of LS-DYNA explicit and implicit simulations where the load is applied using *LOAD_NODE or 

*USER_LOADING.  

Fully constrained boundary 
conditions 

Transverse transient 
loading  
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8.5.2 Nodal force proportional to nodal displacement 

In the second set of example analyses, the load model 3 as described in Section 8.4.1 is compared to a 

model version where a discrete spring element is used to apply a force counteracting the nodal 

displacement. The geometry of Figure 40 is used also in this case, and the loading (spring element) is 

applied at the center node of the constrained nodal rigid body at the end of the horizontal beam part. A 

transverse displacement of 40 mm is ramped-up during using *BOUNDARY_PRESCRIBED_MOTION with a 

death time of 20 ms, and the vibration motion of the L-beam is studied. If a constant curve is used, the 

user defined loading version gives the same tip deflection as the version using the built-in feature 

*ELEMENT_DISCRETE, see Figure 42. It is again concluded that the coding of Section 8.4.1 and the related 

interfaces of the usermat package gives an equivalent result as the built-in load functionality. 

 

Figure 42. Comparison of tip displacement from the *USER_LOADING version (solid red curve) and the discrete 

element version (dashed blue curve). 

 

By defining a non-constant curve for scaling the force, see for example the left image of Figure 43, 

corresponding to a discrete spring with time-varying stiffness, functionality that is not present by the 

built-in keywords is obtained. Clearly, the vibrational results are influenced by this time-varying 

stiffness, see the right image of Figure 43. 
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Figure 43. The left image: Curve for scaling the force as a function of time, corresponding to a varying spring 

stiffness. The right image: results comparison. 

8.5.3 Hydrostatic pressure loading 

In this example, the user defined hydrostatic loading as described in Section 8.4.2 is compared to the 

built-in keywords *LOAD_SEGMENT_SET and *DEFINE_FUNCION in an implicit, transient dynamic, analysis. 

The geometry of this example is shown in Figure 44, where the reference level is outlined as a semi-

transparent plane. The Z-displacement of node ID 5375 is compared in Figure 45. It is concluded that 

the results of the different load application techniques are very close. 

 

 

Figure 44. Geometry for the hydrostatic loading example. The left image shows the initial (guessed) 

configuration, and the right image shows the (equilibrium) position after 20 seconds. The reference level is 

indicated by a semi-transparent plane. 
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e   

Figure 45. Comparison of the Z-displacement of the node ID 5375 from the simulation with user defined loading 

(solid red curve) and the simulation using built-in load application functionality (dashed blue curve). 

9 Other user interfaces 

In this section some other possibilities for user defined interaction with LS-DYNA are listed. Some of 

them will be described in more detail in coming revisions of this document. 

• For wear analysis (*CONTACT_ADD_WEAR) a customized wear law can be defined by setting WTYPE 
< 0 and using the subroutine usrwear in dyn21cnt.f. 

• For non-Mortar tiebreak contacts (*CONTACT_AUTOMATIC_SURFACE_TO_SURFACE_TIEBREAK_USER), 
custom tie failure conditions can be defined using the subroutines utb101, …, utb105 in 
dyn21cnt.f. 

• User defined thermal conductance for the 3D thermal contacts can be defined by the 
subroutine usrhcon in dyn21.f. It is invoked by the keyword *USER_INTERFACE_CONDUCTIVITY. 

• Shell and solid elements can be defined by the user, either via the keywords  
*DEFINE_ELEMENT_GENERALIZED_{SHELL/SOLID} or via the user-defined interfaces of 
subroutines ushl_bYYY in dyn21ushl.f and usld_bZZZ in dyn21usld.f, see Appendix C of Ref. 
[1], and Ref. [18]  

• User defined damage / failure criteria can be defined for some materials by the subroutine 
matusr_24 in dyn21.f. The user define failure criteria is then invoked by setting FAIL < 0 for 
the material types: 24, 36, 114, 123, 124, 133, 155, 182, 225, 238, 243, 251, 255. Also for MAT103, by the 
subroutine matusr_103. 

• For interacting with other solvers in coupled analysis, the keyword *COUPLE_TO_OTHER_CODES 
can be used, which requires the family of user subroutines in the Fortran file 
couple2other_user.f. 

• For implicit analysis, it is possible (from R11) to provide a user-defined linear equation solver by 
setting LSOLVR = 90 on *CONTROL_IMPLICIT_SOLVER.   
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10 Executing user-compiled LS-DYNA binaries under Windows 

In some cases, the execution of a user-compiled LS-DYNA executable may be prevented by the 

different security measures of Windows 10. The text of this Appendix is based on Ref. [27], and describes 

the background and possible resolution to such situation. 

To defend Windows 10 computers against unsafe or malicious software being executed or installed 

typically several approaches are used, including: 

• Microsoft Defender SmartScreen (MDS) 

• Microsoft anti-virus software (AV) 

• Third party anti-virus software (AV) 

 

MDS and AV will typically prevent execution of any executable that is not white-listed and/or code 

signed traceable back to a trusted root authority. 

An independent software vendor will typically white-list and code sign all their executables and 

software installers with Microsoft and major third-party AV-software products to avoid issues when the 

end user is to install or execute the software from the ISV. 

However, developing user-defined features in LS-DYNA in a Windows environment will result in a new, 

customized LS-DYNA binary (.exe – file) and therefore AV and/or MDS may prevent execution. In turn, 

this makes it impossible to make use of the user-defined features with LS-DYNA. A solution to this 

needs to be sought by cooperation between the engineers developing user-defined features and the 

department responsible for Windows IT security and management at each specific company (or 

university). Some of the following approaches are typically applied: 

1. Trusted users are allowed to locally white-list the custom LS-DYNA executables at the company 
or on specified computers. 

• This method works well, though it can have some IT-security implications. 

2. The policy to require white-listed/signed code is disabled on selected computers and/or for 
trusted users. 

• This method works well, though it can have some IT-security implications that are larger 
than method 1.  

3. Allow trusted users to override warnings or blockings from the AV software or MDS for each 
execution.  

• This is rarely used with LS-DYNA because it prevents the use of queuing systems with LS-
DYNA and that reduces work productivity – sometimes considerably. 

4. The custom LS-DYNA executable is white-listed at the relevant AV software companies and with 
MDS (code signing).  

• This is usually not doable as the during development of user-defined features as these 
are rebuilt many times per day and the white-listing process is lengthy. 
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