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Abstract 

 
 

Data reduction methods like principle component analysis, singular value decomposition and 

independent component analysis methods allow analyzing huge sets of data. Applied to 

simulation results they allow the characterization of major trends in the variation of these 

results.  

For the public Chevrolet Silverado example all thicknesses are initially varied independent of 

each other among a number of simulation results and its correlations are computed to the 

variation of the behavior of the firewall. The behavior of the firewall is approximated using data 

reduction methods. It turns out, that the variation of the firewall can be characterized by one 

basic deformation mode. The thickness variation of a part may show strong or weak correlation 

to the behavior of this deformation mode. In several steps now, the sensitivity analysis is 

repeated using only those parts for thickness variation, which had a strong correlation in the 

previous step.  

Finally it turns out, that the thicknesses of the longitudinal rails as well as certain bifurcation 

behavior of the longitudinal are responsible for this variation mode of the firewall.  

 

 

 

Background 

 
Since the past few years the overall awareness of variability and scatter for CAE predictions is 

steadily increasing. Giving the fact that variability is inherent in nature it is also a major task to 

master it during product- and in this case especially vehicle-development. As a matter of fact in 

car industry for many load cases there is only provision for a single performance confirmation 

test to verify the CAE model. As such a test is influenced by a series of potential variability 

sources like e.g. production tolerances and crash test parameter settings, the chance to run into 

unpredictable crash results rises. In case of unforeseen results this usually leads to expensive and 

inefficient design changes, at a late vehicle development phase. 

 

To counteract the above mentioned the CAE model should already have a robust design which is 

not sensitive to small variations and still delivers predictable results. Thus before applying design 

optimizations, the overall robustness of the model needs to be ensured. 

 

Taking a deeper look into the complex event of a car crash many reasons can be discovered why 

small variations actually lead to a big spread among the results. Just to mention a few, consider 
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parts kinking in one direction or the other or parts passing each other instead of hooking up. As a 

consequence one approach to generate a robust design is to find these events (often referenced to 

as bifurcations) and derive design suggestions that can handle the variations and still deliver a 

deterministic crash behavior. 

 

One way to achieve this is mainly based on Principle Component Analysis methods and standard 

statistics, which are both applied in the example case of the Chevrolet Silverado from the NCAC 

and described below. 

 

 

PCA Analysis for crash simulation results 

 
Given the fact that for a robustness analysis as described in this manuscript a set of 30 or more 

simulation runs is analyzed, the use of a dimensional reduction method is beneficial. In our case 

the Principal Component Analysis is used to easier extract the essence of the crash behavior for 

sets of simulations. 

 

Principal Component Analysis for crash results [1] 

 

According to [2], principle component analysis (PCA) was introduced by Pearson in the context 

of biological phenomena [3] and by Karhunen in the context of stochastic processes [4].  

 

In [5], PCA was applied to full crash simulation results. Let (𝑝,) be the displacement of 

simulation run i out of n simulation runs at node p and time t. If  (𝑝,t) is the mean of all 

simulation runs, the covariance matrix C can be defined as 

 

 and   

The eigenvectors  of C form a new basis (principle components) and the   (square roots of 

the eigenvalues of C) provide a measure for the importance of each component. 

 

If this method is applied to crash simulation results, 𝑛² scalar products between the simulations 

runs of length  have to be computed (#𝑃 number of points, #𝑇 number of time steps.)  

 

From 

 , 

follows that 

 . 

The  show the major trends of the differences between the simulation results. The 

coefficients of the eigenvectors  correspond to the contribution of  to  and can be 

used for cluster analysis and correlation with input parameters. If input parameters have been 

changed between the different simulation runs, the correlation analysis will indicate how certain 

trends can be avoided or increased by changing these inputs (e.g. thicknesses of parts) (c.f.[1], 

Chapter 2.4 ] for the properties of PCA analysis in general).  
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Principle Component Analysis is a mathematical method which determines mathematical trends 

in contrast to physical trends. To be more specific: 𝜆, the square of the maximal eigenvalue of C, 

can be determined by 

 

and therefore will be in general a mixture out of several physical effects, like buckling. 

 

 

Difference PCA [1] 

 

Instead of considering the whole simulation results, correlation matrices can also be defined for 

the simulation results at parts of the model and for specific time steps. If P is a part of the model 

and T subset of the time steps, then , can be defined as follows: 

 

 and . 

(  denotes the size of 𝑃 times the size of 𝑇.) 

 

The intrinsic dimension of the set of simulation results can be defined as the number of major 

components in its differences (for more formal definitions see [1], Chapter 3]). Buckling or any 

other local instability in the model or numerical procedures increase the intrinsic dimension of 

simulation results at parts which are affected compared to those, which are not affected. 

Therefore in the context of stability of crash simulation, those parts and time steps for which the 

intrinsic dimension increases are of particular interest. 

 

Numerically this can be evaluated by determining eigenvectors and eigenvalues of 

 

 
 

for the covariance matrices of the simulation results at two different parts  and   and two 

different sets of time steps  and  . If there are positive eigenvalues for a certain choice of 𝜏 

(which separates noise from real signals), the simulation results at  show additional 

effects compared to those at . If  is the corresponding eigenvector,  shows 

the effect on  and also the impact on the other parts of the model. Similar methods can be 

used to remove those effects from this result, which do not affect  directly. 

 

A Patent has been granted to Fraunhofer Gesellschaft, Munich (DPMA number 10 2009 057 

295.3) for this approach. 

 

Firewall example 

 
As mentioned in the Background chapter a robust model should be able to handle small 

variations within the model and still produce predictable results. Taking production tolerances 

into account is a common approach also in other areas of product development and shall be the 

point to start for us. The variability induced into a vehicle due to the uncertainty/variation during 

the production phase can have several different origins. Just to mention a few this can be due to 
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material tolerances, uncertainty within production processes like e.g. stamping processes and 

others. This results in a slight variation of all parts with respect to their specification. While this 

is inherent in the vehicle production it is not part of the simulation model itself. So introducing 

the production based variability of parts into the robust analysis is a more detailed representation 

of the real world and allows us to improve model robustness as well as it helps understanding 

more about the crash behavior of the model. The risk of running into unforeseen results in the 

vehicle confirmation test will also be decreased. 

 

Especially for the analysis of front crash results the intrusion of the firewall is an important 

safety parameter. Thus having a predictable behavior at the firewall is important to fulfill safety 

requirements so our focus for this analysis lies on the scatter at the firewall. The model 

investigated here is the Chevrolet Silverado available from the NCAC ("The model has been 

developed by The National Crash Analysis Center (NCAC) of The George Washington 

University under a contract with the FHWA and NHTSA of the US DOT"). 

 

Following the prescribed approach a set of 30 simulation runs was generated based on a random 

variation of part thicknesses within the range of ±3%. Within a first statistical analysis the 

maximal variation among all the simulation runs is computed and visualized on the contour of 

the geometry in Figure 1. 

 

 
Figure 1: Scatter of 30 simulation runs on the firewall for initial design in mm 

 

As can be seen the 30 simulation runs vary with a maximum of almost 90mm at the firewall 

although only a small overall variation has been applied. The effect of production tolerances 

therefore can have a heavy impact on the simulation results. Having the intention to improve 

robustness of the model the next task is to find out where this result dispersion comes from. 

What are the key events within the model causing the strong scatter occurrence at the firewall? 

Using PCA now for the firewall delivers the important scatter modes, rather than having to 

analyze the complete set of 30 simulation runs. In Figure 2 and Figure 3 the dominating scatter 

mode of the firewall is seen in his characteristics for other parts of the model. As can be seen, the 

shape deformation information contained in this mode reveals a different crash behavior for the 

shock absorber (Figure 2) on the one hand, and for the longitudinal rail on the other (Figure 3) 

hand. 
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Figure 2: Scatter mode deformation shapes for shock absorber – brake unit interaction 

 

 

 
Figure 3: Scatter mode deformation shapes for left longitudinal rail 

 

 

 

The shock absorber hooks up to the power brake unit for some runs, while for others they pass 

each other. The former pushes the power brake unit towards firewall and leads to a higher 

intrusion of the firewall.  

 

At the longitudinal rail the kink is not triggered as intended for all runs, so that for some runs the 

area around the kink stays stiff (no kink). As a consequence the longitudinal rail pushes further 

towards the rear and also works as a lever elevating the wheel case. Further investigations have 

shown that latter event does not solely trigger the shock absorber hooking up to the power brake 

unit, even though it supports it. To counteract the bifurcation points a deterministic behavior is 

intended with two design adaptations. Exemplary the shock absorber was smoothened and cut so 

that it is way more difficult to have an interaction with the brake unit. On the other hand the 

notch at the longitudinal rail was slightly moved and adapted to allow a more consistent kinking 

behavior. 

 

To verify the design adaptations and test whether the adapted model is more robust it is 

necessary to rerun a set of 30 simulation runs including production tolerances to be able to make 

a comparison before and after the design changes. The outcome can be seen in Figure 4. The 

adaptations made lead to a significant reduction of our target part the firewall. While there was 

scatter occurrence of up to 90mm for the unchanged model the improved design delivers way 

more robust results with only a variation of around 20mm at the firewall. 
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Figure 4: Scatter of 30 simulation runs on the firewall for revised design in mm 

 

 

Robust Optimization I 

 
In trying to reduce the weight of the car without sacrificing certain limits regarding its crash 

behavior the common procedure is to generate a meta model e.g. for the fire wall intrusion and 

optimize the fire wall intrusion and weight by using optimization strategies on this meta model. 

This strategy is supported by varies tools like LS-OPT
®
. There are, however, two issues:  

 

1. How to measure the target objective of fire wall intrusion? 

2. Which thicknesses should be taken into account?  

 

The measurement of the firewall intrusion in this case is performed based on the contribution of 

the first deformation mode of the fire wall to each of the simulation results. The robustness 

analysis described in the previous chapter has shown that there is only one major deformation 

mode of the fire wall, which describes the difference among the simulation runs. Instead of 

selecting distances between points, this target has a smoother behavior and takes the whole area 

of interest into account instead of just a few single points.  

 

All thicknesses of the car model, resulting from the robustness modification, are now varied by 

+/- 20% in order to determine the dependency of the firewall intrusion mode from the thick 

variation. For the initial setup of the metamodel the analysis software DESPARO was used [6]. 

Due to the fact, that there are 682 different parts, the number of simulation runs required for a 

rigorous analysis is about 500.000 runs. For an engineering process, however, it is important to 

avoid the special selection of parts, which might be interesting. Therefore we applied a 

hierarchical approach, which was validated on an artificial test function in [7]. For the initial step 

we randomly varied all thicknesses for 30 simulation runs and calculated the correlation to the 

target. Those parts, for which the material variation has real strong correlation with the target, are 

also identified as parts with strong correlation based on these 30 experiments. However, there are 

a huge number of parts with a false-true evaluation, because the variation of the thicknesses 

correlates to the variation of the thickness of a part with real strong correlation. For the second 

step, the thicknesses are fixed for all those parts, which have a correlation factor below 0.19. 

Figure 5 shows the correlation factors of all parts after the first and fifth step. In the fifth step the 

thickness of only 12 parts was varied. Here clearly 2 parts are identified, the thickness variation 

of which shows a strong impact on the firewall intrusion mode. These parts are the thickness of 

the right and left longitudinal. Although this result is not surprising, it’s a result of an automatic 

reasonable expensive procedure.  
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Figure 5: Correlation factor of thickness variation to objective for each part sorted by importance after the 

first and the fifths iteration.  

 

Therefore now it is possible to build a meta model for thickness optimization based on the 

thickness of the 2 most important parts.  

 

Robust Optimisation II 

 
In the previous chapter the approach for a model was shown, for which already a robustness 

analysis was performed and the model itself was stabilized. A second approach allows deriving a 

stable meta model even starting from the original car model without the modification for 

robustness.  

For this again the thickness of the 12 remaining parts were varied by +/- 20%. 77 simulations out 

of 100 terminated successfully.  

 

 
Figure 6: Scatter plot with 1 dot per simulation. X-axis: Thickness of left longitudinal rail, Y-axis: fire wall 

deformation mode contribution to the simulation result.  

 

Figure 6 shows, that the deformation variation mode at the fire wall depends almost linearly on 

the thickness variation for small values of the thickness. For larger values, there is a substantial 

scatter. This observation is true, when building a meta model (linear interpolation between 

neighbors) on a subset of 35 simulation results using 42 results for cross validation. The 

thicknesses of the two longitudinals are used as design parameters and the contribution of the fire 

wall variation mode is the target. Figure 7 shows, that if the sum of the thicknesses of the two 

longitudinals is above a certain threshold, the failure of the meta model becomes larger.  
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Figure 6: Validation of the meta model: Scatter plot with 1 dot per simulation. X-axis: Thickness of left 
longitudinal rail, Y-axis: Thickness of right longitudinal rail, colour: red: difference of prediction and 
simulation of the objective is above 10%: contribution of the fire wall intrusion variation mode to the 

simulation result    

 

From the robust analysis it is known, that the initial movement of the break unit has a significant 

influence on the result. If the contribution of the variation mode of the initial movement of the 

break unit to each simulation result is taken as additional design parameter, the meta model for 

the fire wall behavior is substantially improved.  

 
Figure 7: Validation of the extended meta model: Scatter plot with 1 dot per simulation. X-axis: Thickness 
of left longitudinal rail, Y-axis: Thickness of right longitudinal rail, colour: red: difference of prediction and 

simulation of the objective is above 10%: contribution of the fire wall intrusion variation mode to the 
simulation result    

 

Figure 7 shows the result of the enhanced meta model. Only a small corridor shows inaccurate 

results of the meta model. The corridor, in which both thicknesses are almost the same, shows a 

good prediction performance of the meta model. This implies, that by an engineering change of 
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the car model itself, which guaranties a certain initial movement of the break unit, it is possible 

to derive a stable meta model.  

 

By evaluation of this meta model the desired behavior of the break unit can be determined. 

Fixing the design parameter such that the desired behavior is guaranteed should then still allow 

using this meta model for optimization purposes.   

 

Conclusion 

 
Thickness optimization using car models, which are robust, allows building accurate meta 

models and therefore substantially improve the quality of the optimization results. This was 

shown in a process, which also identifies the most important parts for thickness optimization in a 

hierarchical process.  

 

This paper also shows, that robustness evaluation can be part of the optimization process itself, 

and by including the internal parameters describing the uncertainty as design parameters into the 

meta model. This allows during the optimization process to either select a parameter 

combination, which works independent of the uncertainty or to assume that the issue causing the 

uncertainty gets fixed.  

 

DIFFCRASH allows to extract the relevant information from the set of simulations results and 

provide this information for processing in optimization tools like LS-OPT or DESPARO.  
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