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ABSTRACT: The purpose of this paper is to account for uncertainties in the manufacturing processes of 

metal forming in order to evaluate the random variations with the aid of FE-simulations. Various parameters 

of the Finite-Element model describing the investigated structural model are affected by randomness. This, 

of course, leads to a variation of the considered simulation responses such as stresses, displacements, and 

thickness reductions. On this, for the simulation engineer basic questions arise: (1) range of variation of the 

simulation responses (2) significance/contribution of the (input) parameters with respect to specific 

responses and (3) the reliability of the process design with respect to constraints (failure, damage, 

requirements ...).  

In order to find solutions to these questions several methodologies may be applied that are available in the 

commercial optimization software LS-OPT.  Some of the methodologies, such as Monte Carlo simulation, 

Meta-Model based Monte Carlo simulation, RBDO, variable screening and visualization of statistical 

resultson the FE-model are discussed in this paper and are demonstrated by means of a metal forming 

problem. For this, a non-robust design with respect to the specified constraints has been detected. By 

utilizing reliability based design optimization (RBDO) through LS-OPT, the failure probability (violation of 

constraints) could be reduced significantly. 

KEYWORDS: Robustness, Uncertainties, Meta Model based Monte Carlo Simulation, Reliability based 

Optimization, Sensitivities, Spatial Discretization of  Stochastic results 

 

 

1 INTRODUCTION  

The design of a metal forming process is focused 

on the accuracy of products and the minimization 

of forming failure such as fracture, wrinkling and 

excessive thickness reduction. Metal forming 

processes are highly non-linear applications and 

the results are strongly influenced by various 

parameters, e.g., the anisotropic material behaviour 

of the supplied steel or manufacturing process 

parameters such as friction, draw bead geometry or 

binder forces. In order to perform a realistic 

analysis of the metal forming process the 

uncertainty of those parameters must be 

appropriately considered within a FE-simulation. A 

proper consideration and treatment of uncertainty 

basically enable a reliability assessment and ensure 

the subsequent quality of the product. 

The uncertainty of the parameters is conventionally 

considered with the uncertainty model randomness 

and modelled with the aid of probability 

distribution functions. The type of the probability 

distribution function and the distribution 

parameters are assumed by engineering knowledge 

and by quality requirements specified by the 

Daimler AG for the steel suppliers. Statistics of the 

uncertainties based on measurements are not 

available for this study. The subjectively assumed 

stochastic parameters are processed with a Monte 

Carlo simulation based stochastic FE-analysis. The 

obtained simulation results are randomly 

distributed respectively. In conjunction with further 

evaluations conclusions could be drawn regarding 

(1) the dimension of the range of variation of the 

simulation responses, (2) the significance/ 

contribution of the parameters with respect to 

specific responses and (3) the reliability of the 

design with respect to constraints. 

Basic concepts of stochastic investigations are 

discussed. A brief introduction in the reliability-
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based design concept is provided. The standard 

approach to simulate stochastic variations is the 

Monte Carlo method, usually by using a structured 

sampling as Latin Hypercube. For very expensive 

simulations meta-models are applied to preserve 

the practical applicability of the stochastic analysis. 

The number of required FE-simulations is reduced 

significantly. Meta-models are established on the 

basis of interpolation points. The stochastic 

simulation with the aid of the Monte Carlo 

simulation is then performed with the meta-model 

exclusively – additional FE-simulations are not 

required. Apart from polynomials, non-linear 

approximation schemes, such as Neural Networks 

can be used (Stander et al. [5], Liebscher et al. [7]) 

to form meta-models, that might be suitable to 

replace the expensive FE-simulation within a 

stochastic simulation.  

The considered metal forming application is 

introduced and the assumed probabilistic models of 

uncertain process parameters are discussed in 

detail. Results of the stochastic analysis for a metal 

forming application are presented. Finally, a brief 

conclusion and an outlook on future investigations 

are provided. 

 

2 ABOUT STOCHASTIC 

INVESTIGATIONS 

 

2.1 GOALS 

Usually stochastic investigations are performed to 

obtain information on the 

 

(1)  Variation of the simulation output (responses) 

due to variation of input (variables, 

parameters).  

(2) Significance/Contribution of the parameters 

with respect to specific responses. 

(3) Reliability with respect to constraints (failure, 

damage, requirements,...). 

(4) Visualization of simulation response variations 

by fringing statistical results on the FE-Model 

 

2.2 SIMULATION OF STOCHASTIC 

VARIATIONS 

 

2.2.1 Direct Monte Carlo Analysis 

 

The Monte Carlo method is widely used because it 

is robust and easy to implement. The method may 

be understood as a numerical experiment that 

produces a sequence of numerical results (pseudo-

outcomes) similar to the results (outcomes) 

expected in the actual use of the product. These 

numerical obtained results (pseudo-outcomes) are 

then examined using statistical techniques to 

predict the future properties of the product. For 

computing the mean and variance of the process 

variation only, it is probably the best known 

method. Given that the results from the Monte 

Carlo analysis are unbiased, we compute the 

confidence bounds similar as for any other statistic. 

These confidence intervals are tabulated in the 

standard books [4]. The number of simulations 

required depends on the statistical properties being 

computed. The properties are the mean and 

standard deviation of the processes as well as the 

probability of rare events (outliers). If the mean or 

the standard deviation is required, then the number 

of simulations can be computed considering the 

desired accuracy and by manipulating the formulas 

for computing the confidence bounds. For this, 

prerequisite is to guess the expected variance. 

Usually a structured Monte Carlo sampling as the 

Latin Hypercube method is used in order to 

improve the accuracy for a given number of 

simulations. 

 

 
 

Figure 1: Scheme of stochastic analysis 

2.2.2 Meta Model based methods 

 

The finite element evaluations of metal forming 

problems can be extremely expensive (100+ CPU 

hours). Meta-models ― approximations to the 

structural performance, built using FEA 

evaluations of a selected set of designs ― are 

commonly used to reduce costs. 

Consider a scalar response y dependent on the 

variable vector x  through the relationship ( )y x . 

We have 

 

( )=y y x , (1) 
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where we want to approximate the relationship y  

using a polynomial response surface (Myers & 

Montgomery [6]). Utilizing the approximation 

function ( )f x , inexpensive Monte Carlo analysis 

evaluations can be performed. 

As afore mentioned the methodology is not 

restricted to polynomial response surfaces, but any 

non-linear approximation scheme, such as Neural 

Networks or Radial Basis Functions can be used 

(Stander et al. [5], Liebscher et al. [7], Simpson et 

al. [9]). 

 

2.3 RELIABILITY-BASED DESIGN 

The reliability of a given design may by assessed 

by comparing a numerically determined failure 

probability  with a given target probability . 

Reliability of a specific design is achieved if  

 

  (2) 

 

is satisfied. The selection of the target probability 

 is problem dependent and often orientated to the 

desired product quality vs. production costs. On the 

basis of this definition of reliability a safety 

distance  

 

 (3) 

 

is defined. Positive values  indicate a permissible 

design, whereby higher positive values stand for a 

more reliable design.  

The objective  of the reliability based design 

optimization (RBDO, Jensen [10]) may be 

formulated regarding two different aspects. In 

order to achieve a maximum reliability of an 

investigated subject with respect to a set  of 

problem dependent constraints, the objective  is 

given by 

 

 (4) 

 

where  indicates that the set of constraints 

 is satisfied. The safety level  is maximized 

under the condition that all constraints are met. 

Conventional objectives  concern with e. g. the 

reduction of cost due to minimization of the mass. 

In order to combine these optimization goals with 

the idea of a reliable design, the objective  of the 

reliability based design may also be reformulated 

as 

 

  (5) 

 

The safety distance  is additionally considered as 

constraint of an actual optimization problem. In 

most cases the objective Eq. (5) is suitable for 

practical relevant questions. Sometimes the term 

reliability-based optimization (RBO) is used 

instead of RBDO with the same meaning. 

The optimization problem given with Eq. (4) or (5) 

may be solved by any appropriate optimization 

scheme. A First Order Second Moment (FOSM) 

approach is implemented in LS-OPT (Stander et al. 

[5]). In the FOSM method, the reliability of a 

structure is assessed by evaluating the standard 

deviation of a response, which is similar to the 

determination safety distance. The standard 

deviation is computed using the meta model 

gradients and the variable standard deviations; no 

additional computational cost is therefore incurred 

to compute the reliability information. The 

application of FOSM is reasonable for moderately 

small values of . 

In the general case the failure probability  has to 

be computed by numerical evaluation of the 

integral 

 

 (6) 

 

in order to determine the safety distance  within 

the optimization procedure Eq. (4) or (5). In Eq. (6) 

 is the vector of random parameters,  

denotes the joint probability density function of the 

random quantities , and  represents the limit 

state function. The limit state function is usually 

highly non-linear and given only in a non closed 

form. The design space is divided in the safety 

region  and the failure region  . 

Generally, Eq. (6) is reformulated with the aid of 

the indicator function 

 

 (7) 

 

Specifically, 

 

  (8) 

 

This enables the point estimation of the failure 

probability based on the sampling results of a 

Monte Carlo simulation according to 

 

 (9) 

 

with N as sample size. This estimator is unbiased 

and efficient. A minimum sample size is estimated 

by 

 

 (10) 

 

in dependence on a reasonable level of precision 

prescribed via the coefficient of variation  of  

. It becomes obvious that the computational effort 



Numisheet 2008                                                      September 1 - 5, 2008 – Interlaken, Switzerland 

becomes tremendous for small values of the failure 

probability . On this account it is advisable to 

apply meta-model based stochastic simulation 

techniques that preserve the practical applicability 

of the reliability based design. 

 

2.4 Visualization of Statistical Results on the 

FE-MODEL 

Variation of node and element results due to 

changes/uncertainties in the input parameters, can 

be displayed on the FE-model by colours. This can 

give an indication where big scatter of the results 

occur. It can also show mean values of specific 

responses or minimum and maximum values of all 

applied simulations.  For more information it is 

referred to [1]. 

 

 

3 Example – Metal Forming 

Application 

 

The influence of the random variation of material 

and manufacturing parameters on the forming 

process of an automotive deck lid outer panel is 

investigated in this study. The geometry of the 

forming die is shown in Figure 2. The material 

used for the part is the steel grade DCO6 (1.0873), 

a typical mild steel used for complex outer panels.  

 

 

Figure 2: Die geometry of the deck lid forming tool 
(Courtesy of Daimler AG) 

 

3.1 CONSIDERED UNCERTAINTIES 

3.1.1 Material Properties 

 
The base material parameters for the study are 

given by DaimlerChrysler. The ranges and lower 

bounds for typical material parameters of the used 

steel grade are listed in Table 1. These are quality 

requirements specified by Daimler for the steel 

suppliers. 

 

 

 

 

 

 

 

Rp 120…160 MPa Yield strength 

Rm > 270 MPa Ultimate tensile strength  

(engineering stress) 

n > 0.23 Hardening exponent 

Ag > 24% Uniform elongation  

(engineering strain) 

rm > 2.20 Mean anisotropy coefficient 

 
Table 1: Quality requirements for steel grade DC06 

In real sheet metal forming processes the material 

properties of the blank material may vary within a 

specific range depending on the used steel grade. 

According to Table 2 the yield strength vary 

between a minimum and a maximum tolerance 

limit. The uniform elongation and the ultimate 

tensile strength must be above a minimum value. 

Within this ranges the mechanical properties of the 

blank material are afflicted with an uncertainty, 

which can partially cause failures in a real forming 

process. In almost the same manner the anisotropy 

coefficients r0, r45 and r90 may underlie variation 

within a certain range and thus probably also 

impact the forming results. 

 

Yield Strength / Elasto-Plastic Hardening 

 

The first variation taken into account is the use of 

different hardening curves. In the used LS-DYNA 

material model *MAT_3-PARAMETER 

_BARLAT the hardening curves are described in 

analytical form with the Swift law 

 

( )0
= ⋅ +

n
Kσ ε ε  (11) 

 

with the strength coefficient K, the strain 

parameter
0

ε ,  the true strain ε  and the hardening 

exponent n. The parameters for the base simulation 

are listed in Table 2. 

 

K ε0 n 

550 6.90e-03 0.275 

Table 2: Base Parameters of Swift Law 

 

 

As an example, the variation of the hardening 

exponent n between 0.25 and 0.30 leads 

approximately to a variation of Rp between 120 

and 160 MPa for constant values of 
0

ε and K. The 

corresponding hardening curves are shown in 

Figure 3. 
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Figure 3: True Strain vs. true stress; Hardening 
curves for varying hardening exponent n (Swift 
Law) 

The values for the lower and upper hardening 

exponent let the corresponding hardening curves 

start at the minimum and the maximum allowed 

yield strength (see Table 1) respectively. In Figure 

3 the point Rm,min corresponds to the minimum 

tensile strength reached at the minimum uniform 

elongation Ag, whereby the engineering strain Ag 

is converted to true (logarithmic) strain and the 

tensile strength Rm,min is displayed as true stress.  

Finally for the robustness study, in consideration of 

not violating the quality requirements in Table 1, 

the variation of the parameters of the swift law is 

applied by a uniform distribution within the ranges 

displayed in Table 3. 

 

Rp [MPa] K [MPa] n  [-] 

120-160 440-660 0.23-0.3 

Table 3: Lower and upper bounds for the Swift Law 
parameters 
 

Anisotropy Coefficients 

 

For metal stamping simulations it is common 

practice to consider anisotropic effects of the sheet 

metal blank. These effects originate from the 

rolling process in manufacturing the metal coils. 

To account for the anisotropic properties, the 

material model *MAT_3-PARAMETER_BARLAT 

for the LS-DYNA simulations is used (Hallquist 

[8]). The initial values for the anisotropy 

coefficients are listed in Table 4. 

 

 r0 r45 r90 rm ∆r 

Base values 2.1 1.8 2.7 2.1 0.6 

Table 4: Base values of anisotropy coefficients for  
*MAT_3-PARAMETER_BARLAT 
 

Beside the uncertainty of the hardening behaviour 

the uncertainty of varying anisotropy coefficients 

r0, r45 and r90 is investigated. For this, uniform 

distributions are applied as well with the ranges 

listed in Table 5. 

 

 r0 r45 r90 

Range 2.0-2.5 1.4-2.0 2.5-3.2 

Table 5: Lower/Upper limits of uniform distributions 
for anisotropy coefficients 
 

3.1.2 Manufacturing Process Parameters 

 

Variation of Friction Coefficient 

 

The friction between punch and blank and in the 

draw beads depend on the applied lubrication 

(usually oil) and on the surface properties. To 

account for this a uniform distribution of the static 

friction coefficient within 0.05 and 0.10 is 

assumed. 

 

Binder Force 

 

 A possible variation of the binder force in the 

manufacturing process is considered by a uniform 

distribution with a lower bound of 1720 kN and an 

upper bound of 2100 kN. 

 

Draw Bead Forces  

 

In the FE-simulation the resistance of the blank 

while passing through the draw bead is 

approximated by a corresponding load (draw bead 

force). The draw bead properties may vary during 

manufacturing due to variation in lubrication and 

possibly due to mechanical wear. For this study a 

normal distribution with a standard deviation of 

10% with respect to the mean value is assume  

 

Blank Sheet Thickness 

 

Blanks for sheet metal forming are commonly 

manufactured by cold rolling. In this process the 

mills are charged by high forces and rolling speed 

can be fairly high. Many times this leads to an 

effect, called mill chatter, which causes a variation 

in the sheet thickness in longitudinal (rolling) 

direction with a specific frequency. A reason for 

“mill chatter” can be slight eccentric suspension of 

the mill or slight deviation of the desired circular 

shape of the mill, see Figure 4. 

 

 

 
Figure 4: Example of an Eccentric mill (Source: 
Rolling Automation, Gerhard Rath, © 2003) 
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In addition, in lateral direction thickness variations 

may occur due to non-uniform down forces of the 

mill. The most likely case is displayed in Figure 5. 

 

 
Figure 5: Non-uniform contact forces (Source: 
Rolling Automation, Gerhard Rath, © 2003) 

 

Due to these effects for the numerical stochastic 

investigations a harmonic perturbation is applied in 

longitudinal as well as in lateral direction. The 

variation of the amplitude in both directions is 

assumed to be normal distributed with a mean of 

0mm and a standard deviation of 0.005mm. The 

total target thickness is 0.8mm. 

Figure 6 shows a plot of a possible total shell 

thickness perturbation (superposition in both 

directions) displayed on the FE-model of the blank. 

This is realized by the LS-DYNA Keyword 
*PERTURBATION. 
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Figure 6: Random field capturing thickness 
perturbation due to the manufacturing process of 
rolling 
 
 

3.2 RESULTS OF RANDOM VARIATION 

(MONTE CARLO ANALYSIS) 

For this, in total only 21 simulations are performed. 

The wall clock simulation time on 2 CPUs is about 

10h per run. It turned out, that although the 

baseline run is a feasible design (Figure 7a and 7b), 

the perturbations due to the considered 

uncertainties leads in 15 runs to an infeasible 

design. The main criteria for the feasibility of the 

design are the minimum shell thickness after the 

forming process and the performance with respect 

to the FLC-diagram. In 15 runs localization occurs 

and the minimum sheet thickness becomes very 

low.  

 
Figure 7a: Final shell thickness distribution of the 
baseline run (minimum shell thickness ~0.51mm)  
 

 

 
Figure 7b: FLC-Diagram for the baseline run, no 
points above the FLC-Curve 

 

A similar behavior is observed for the distance of 

the strain-ratios to the FLC-Curve. A positive value 

indicates the maximal perpendicular distance of a 

point above the FLC-Curve (infeasible), a negative 

value indicates the minimum distance below the 

FLC-Curve (feasible). Most simulation responses 

show a positive maximal value (infeasible). 

 

Conclusions after Random Latin Hypercube 

Simulations 

 

Considering the chosen baseline design, the FE-

simulation is very sensitive regarding the assumed 

variations of the uncertain process parameters. The 

failure probability is very high and the baseline 

configuration must be declared as non-robust. 

Consequently, the next step has to be the 

improvement and optimization of the robustness of 

the model. Therefore, reliability based design 

optimization is investigated. Approach and results 

are discussed in the next section 
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3.3 RELIABILITY BASED DESIGN 

OPTIMIZATION 

 

The methodology of the applied RBDO study is 

FOSM (First Order Second Moment) in 

combination with the successive response surface 

scheme. FOSM is based on the assumption of 

normal distributed probability density function. 

The representation of the distribution function is 

just by the mean and the standard deviation. For 

the meta-model, which is adapted sequentially 

through the successive scheme iterations, a neural 

network approach is used, see Fig. 11. Details 

regarding the RBDO approach and the successive 

response surface scheme with neural networks are 

discussed in the LS-OPT Users Manual [5]. 

 

 

 
Figure 8: FLC-Diagram for the baseline run, no 
points above the FLC-Curve 

 

3.3.1 Definition of the Optimization Problem 

 

Here, the objective of the RBDO is to minimize the 

failure probability under consideration of the 

uncertainties described in Section 3.1. Failure is 

defined by exceeding a threshold for the minimum 

shell thickness and for the violation of the FLC-

Line. 

For the RBDO in total 17 variables are considered. 

Thereof, 10 variables are pure “noise variables” 

which take into account the uncertainties. To drive 

the optimization process 7 “control variables” are 

introduced (see Table 6), simultaneously these 

variables operate as noise variables with specific 

probability distributions.  

 

Variable  Description 
Distribution 

”noise variable” 

    Type mean std 

DBF1 Draw Bead Force #1 normal 70kN 5 kN 

DBF2 Draw Bead Force #2 normal 20kN 5 kN 

DBF3 Draw Bead Force #3 normal 80kN 5 kN 

DBF4 Draw Bead Force #4 normal 90kN 5 kN 

DBF5 Draw Bead Force #5 normal 100kN 5 kN 

DBF6 Draw Bead Force #6 normal 140kN 5 kN 

FORCFN Binder Force normal 1910kN 50 kN 

 

Variable  Description 
Range 

“control variable” 

    min max 

DBF1 Draw Bead Force #1 20 kN 200 kN 

DBF2 Draw Bead Force #2 20 kN 200 kN 

DBF3 Draw Bead Force #3 50 kN 120 kN 

DBF4 Draw Bead Force #4 60 kN 120 kN 

DBF5 Draw Bead Force #5 70 kN 130 kN 

DBF6 Draw Bead Force #6 20 kN 200 kN 

FORCFN Binder Force 1400 kN 2400 kN 

 
Table 6: Seven variables are defined 
simultaneously as control and noise variables. 
Control variables drive the optimization process, 
noise variables are to consider uncertainties.  

 

 

3.3.2 Meta-Model Based RBDO 

 

For the successive surface scheme, 26 runs are 

performed per iteration. The density of the 

sampling points increases towards the optimum. 

The neural network is updated with additional 

training points after each iteration (see Figure 9). 

 

 

 
Figure 9: Successive Response Surface Scheme 
with Neural Network Meta-Models after 10 
iterations 

 

Fig. 10 displays a global approximation of the 

entire design space after the 10
th

 iteration for the 

variables DBFORC4, FORCFN and the response 

THICK_MIN. It shows a D-SPEX window where 

the Meta-Model can be explored by rotating, 

zooming, visualization of analysis results, 

residuals, etc. Especially useful is the fact that the 

visualized constraints do not only consist of 

constraints of the displayed response, but of the 

other response describing the violation of the FLC-

line.  

For the 15 not displayed remaining variables, D-

SPEX offers the possibility to vary these variables 

through sliders in an additional control panel 

( ) 0g x ≤

( )f x

failure  
region F 

probability  
density function 
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window. For more information regarding D-SPEX 

it is referred to [11]. 

 

 

 
 
Figure 10: Global approximation of the Design 
Space with a Neural Network Meta-Mode. Green 
means feasible region for design variables. 
 

3.3.3 Optimization History for the Responses 

THICK_MIN and FLD 
 

Figure 11 shows the optimization history of 

exceeding the lower bound for the minimum sheet 

thickness THICK_MIN. The probability of failure 

drops down from about 55% for the base line 

design to 3.3515e-4 after 10 iterations. The 

“computed” value at the optimum is fairly close to 

the “predicted” value. “Computed” means the 

simulation value for the optimum parameter 

combination and “predicted” means the 

approximated value of the meta-model for this 

parameter combination. 

 

Optimum of Meta-Model (Neural Network) after
10 Iterations (260 Points)

3.3515e-40.58250.5776THICK_MIN

PfPredictedComputed

Optimum of Meta-Model (Neural Network) after
10 Iterations (260 Points)

3.3515e-40.58250.5776THICK_MIN

PfPredictedComputed

 
 
Figure 11: Optimization history of the probability of 
exceeding the lower bound for THICK_MIN=0,5mm. 
Abscissa: Probability of exceeding bound, e.g. 0.2 
means 20% exceeding probability; Ordinate: 
Number of optimization iteration of Successive 
Response Surface Method. 
 

Fig. 12 shows the optimization history of 

exceeding the upper bound for the FLD criterion. 

Finally the probability of failure could be reduced 

to 0.01191. This means, approximately 1 of 100 

designs will exceed the FLC-line. 

Optimum of Meta-Model (Neural Network) 

after 10 Iterations (260 Points)

0.01191-0.05774-0.04979FLD

PfPredictedComputed

Optimum of Meta-Model (Neural Network) 

after 10 Iterations (260 Points)

0.01191-0.05774-0.04979FLD

PfPredictedComputed

 
 
Figure 12: Optimization history of the probability of 
exceeding the bound for the FLD-criterion. 
Abscissa: Probability of exceeding bound, e.g. 0.2 
means 20% exceeding probability; Ordinate: 
Number of optimization iteration of Successive 
Response Surface Method. 
 

3.3.4 Verification of Optimum with Direct 

Monte Carlo Simulations 

 

The failure probabilities displayed in Figures 13 

and 14 are estimated by the use of a Meta-Model. 

This means, the Monte Carlo evaluations are 

performed by the functional analysis of the meta-

model. The number of Monte Carlo evaluations on 

the meta-model is in LS-OPT by default 100000, 

but of course there is an unknown approximation 

error of the meta-model. In order to verify the 

failure probability determined on the meta-model, 

160 additional direct Monte Carlo simulations are 

applied. The mean values for the parameters are 

taken from the optimal design and the variance is 

applied according to the distribution functions 

described in Section 3.1.  

 

Table 7 shows that the failure probabilities 

estimated by the use of Meta-Models are in the 

same order of magnitude as for the direct Monte 

Carlo simulation. Within the 160 Monte Carlo 

simulations no constraint violation could be 

observed. The estimated failure probability in 

Table 7 is evaluated by the assumption of normal 

distributed responses THICK_MIN and FLD. 

 
 
 

 
Table 7: Comparison of failure probability Pf 
determined by the use of Meta-Models and by the 
conventional Monte Carlo approach. 
 
 
 
 

 

Failure Probability  

Meta-Model vs. direct Monte Carlo  

(normal distribution assumed) 

  Pf – Meta Model Pf  - Direct MC 

THICK_MIN 3.35e-4 0.59e-4 

FLD 0.0119 0.0103 

DBFORC4 

THICK_MIN 

FORCEFN 
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3.3.5 Visualization of Statistical Results on the 

FE-Model 

 

The latest version of LS-OPT V3.3 provides the 

capability of fringing statistical results also on the 

basis of mesh adaptive simulations. For this, 

mapping of element and node results of several 

runs onto a reference mesh is performed. In Figure 

12 the standard deviation of the percentage 

thickness reduction is plotted. The maximum 

standard deviation in this plot is 18.9%. This 

means, at this point there is a variation with a 

standard deviation of 18.9% considering all applied 

simulation runs with different parameter 

combinations. 

 

 
 
Figure 12: Standard deviation of sheet thickness 
reduction. Red spots indicate high variation of 
percentage thickness reduction. 
 

4 SUMMARY / CONCLUSIONS / 

OUTLOOK 

For the metal forming study considering the chosen 

baseline design, the FE-simulation is very sensitive 

regarding the assumed variations of the uncertain 

process parameters. Frequently violation of the 

FLC requirements and under-run of the minimum 

sheet thickness appear. This represents a high 

probability of failure . The design is thus 

referred as non reliable. Furthermore, it is 

considered as non robust due to assumed random 

variation of the input parameters (material 

properties, manufacturing process parameters) and 

their strong effects on the results.  

 

In order to establish a feasible design the problem 

is reformulated in view of the reliability-based 

design concept. The objective of the RBDO is to 

minimize the probability of failure  and thus to 

maximize the reliability of the design. The limit 

state function  is formulated with respect to 

the failure criteria minimum shell thickness and 

distance of the strain-ratios to the FLC-Curve.  

 

The reliability-based design optimization is 

investigated using LS-OPT. Due to the fact that the 

computational cost of the metal forming simulation 

is quite high, a meta-model based approach is 

applied. Utilizing RBDO leads to a design, which 

has a significantly improved failure probability. 

The verification of the optimum design by 

conventional Monte Carlo simulations justify the 

use of meta-models for reliability investigations for 

metal forming applications, at least for  values 

not less than 0.01.  

Presumably future work will be investigated in 

• evaluation and usage of  plots, which 

visualize statistical results on the FE-

model. It will be examined if and how 

such plots can be beneficial for metal 

forming simulation engineers. 

• correlation of input variables. Uncertainty 

and variation of some material and 

manufacturing parameters are clearly 

correlated, e.g. yield strength and ultimate 

tensile strength, see [12]. In the present 

study correlation is not considered. 

• restrictions/constraints between random 

variables, e.g. noise variable r0 varies 

randomly from 2.0 to 2.5 and noise 

variable r45  from 1.7 to 2.2,  but  r0 has 

always to be greater than r45 

• variable screening using linear correlation 

analysis and possibly non-linear indicators 

such as Sobol Indices.  
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