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Abstract 
Topology optimization allows for the design of structures with an optimum distribution of material for a given set of load cases that may 
have conflicting requirements. Though the methods used in topology optimization help to generate better and novel designs, they are 
generally limited to a single material only. In contrast, modern vehicle structures are composed of parts made of multiple materials, 
exhibiting usually superior performance compared to single-material designs. In order to support the design process of such structures, 
this problem requires the ability to use multi-material optimization methods within commercially available software like LS-TaSC, to 
optimally distribute multiple materials within a single design domain. In this paper, a method for integration of the ordered SIMP in 
LS-TaSC to realize multi-material TO is proposed and evaluated using a solid beam that is subject to static and crash load cases. The 
optimization uses the updated material distribution, based on ordered SIMP, to assign material/density values to elements in the design 
domain. To demonstrate the potential of the multi-material TO and validate the results, the obtained topologies are compared to single 
material designs as well as to the structures optimized using the state-of-the-art gradient-based approach based on ordered SIMP. The 
results show that LS-TaSC can be successfully used for deriving multi-material structures superior to the single-material designs. 
Finally, due to the low computational costs, the method seems to be suitable for the optimization of large-scale industrial models. 

 

1. Introduction 
The use of Topology Optimization (TO) in the automotive industry has proven to be an effective tool for 
developing conceptual designs capable of meeting conflicting requirements like stiffness, safety, and light 
weighting. During the last years, the design process in the automotive industry has been changing very 
dynamically thanks to the utilization of TO [1][2][3][4] and related post-processing techniques [5].  TO is a 
mathematical method used to optimize the material layout within a defined design space, for a given set of 
boundary conditions like loads or supports. The complexity of the automotive structures is increasing with every 
generation update. Thus, the updated designs are required to satisfy quickly changing, and sometimes conflicting, 
requirements from various disciplines in the development cycle. 
To meet challenging requirements like weight and cost for modern vehicles, structures composed of parts made 
of different materials became a standard in the automotive industry. As a consequence, multi-material TO 
approaches which are able to determine not only the distribution of material within the design space, but also the 
splitting into different material types, are gaining more and more attention recently. In particular, density-based 
multi-material TO methods, which are interesting from the perspective of this work, can be divided into the 
following four groups: SIMP-based methods using multiple variables for encoding each material type [6], phase-
field methods [7], alternating active phase approaches [8], and ordered-SIMP-based methods [9][10]. The main 
disadvantage of the three first groups of methods is the fact that the computational costs rise considerably when 
the number of materials increases, which might be a severe limitation in case of application of these methods in 
the industrial setting, where usually a high number of material types is taken into consideration. The phase field 
methods are very complex, exhibit problems with numerical instabilities [9], and usually require a high number 
of iterations to converge (over 104 iterations are frequently necessary to find a suitable solution [11]).  
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What is more, the first three groups of methods involve significant modifications of the underlying TO approach, 
which makes their implementation in a black-box TO software, like LS-TaSC, difficult. In contrast, the ordered 
SIMP approach relies on the modification of the material interpolation scheme, and therefore, can be more easily 
integrated into commercial TO software. Since a single design variable is used to encode both, the material density 
as well as the material type for each finite element, the computational costs do not increase compared to standard 
TO methods even for a large number of different materials. Finally, initial studies [10][12] showed that ordered 
SIMP can be integrated into non-gradient TO approaches such as Hybrid Cellular Automata (HCA) [13] and can 
be successfully used in optimization of structures under crash loads. As a result, in this paper, we propose to use 
ordered SIMP to enhance the capabilities of LS-TaSC in order realize multi-material TO of large-scale industrial 
cases under static and crash load cases.  
The paper is organized as follows: Section 2 provides more details about the ordered SIMP method. Section 3 
explains the integration of this method with LS-TaSC. Section 4 details the test case used to demonstrate the 
process. Section 5 and 6 discuss the results obtained from the simulations. The paper is concluded in Section 7 
along with potential future research directions. 

2. Topology Optimization using Ordered SIMP 
 
Ordered SIMP approach was first proposed by Zuo and Saitou [9] as an interpolation scheme for multi-material, 
gradient-based TO of linear elastic structures under static loads. At first, for 𝑚𝑚 material types of mass density 
ρ𝑖𝑖𝑇𝑇 , 𝑖𝑖 = 1,2,3, … ,𝑚𝑚, the method requires the definition of the corresponding normalized densities according to the 
following formula: 
  

𝜌𝜌𝑖𝑖 =
ρ𝑖𝑖𝑇𝑇

ρ𝑚𝑚𝑚𝑚𝑚𝑚𝑇𝑇  (𝑖𝑖 = 1,2,3, … ,𝑚𝑚), (1) 

 
where ρ𝑚𝑚𝑚𝑚𝑚𝑚𝑇𝑇  is the highest mass density out of the all considered materials. The densities are sorted in ascending 
order, i.e. 𝜌𝜌1 < 𝜌𝜌2 < ⋯ < 𝜌𝜌𝑚𝑚−1 < 𝜌𝜌𝑚𝑚. Subsequently, the classical single-material SIMP scheme [6] is modified 
as follows: 

𝐸𝐸𝑒𝑒(𝜌𝜌𝑒𝑒) = AE𝜌𝜌𝑒𝑒
𝑝𝑝 + 𝐵𝐵𝐸𝐸 , (2) 

 
where 𝜌𝜌𝑒𝑒

𝑝𝑝 is a (penalized) normalized density of the finite element 𝑒𝑒, with a penalization exponent 𝑝𝑝. The element 
densities 𝜌𝜌𝑒𝑒 , 𝑒𝑒 = 1,2, … ,𝑛𝑛, with 𝑛𝑛 being the total number of finite elements, are the design variables for the 
optimization problem. 𝐸𝐸𝑒𝑒 is the resulting Young’s modulus and the coefficients 𝐴𝐴𝐸𝐸  and 𝐵𝐵𝐸𝐸 for 𝜌𝜌𝑒𝑒 ∈ [𝜌𝜌𝑖𝑖 ,𝜌𝜌𝑖𝑖+1] are 
given as: 
 

𝐴𝐴𝐸𝐸 =
𝐸𝐸𝑖𝑖 − 𝐸𝐸𝑖𝑖+1
𝜌𝜌𝑖𝑖
𝑝𝑝 − 𝜌𝜌𝑖𝑖+1

𝑝𝑝 , (3) 

and: 
𝐵𝐵𝐸𝐸 = 𝐸𝐸𝑖𝑖 − 𝐴𝐴𝐸𝐸𝜌𝜌𝑖𝑖

𝑝𝑝, (4) 
 
where 𝐸𝐸𝑖𝑖 is the Young’s modulus of the 𝑖𝑖th material. Figure 1 shows the ordered SIMP interpolation according to 
Equation (2), with 𝑝𝑝 = 3, for three material types: void (𝜌𝜌1 = 0, 𝐸𝐸1 = 0), aluminum (𝜌𝜌2 = 0.36, 𝐸𝐸2 = 0.367), 
and steel (𝜌𝜌2 = 1.0, 𝐸𝐸2 = 1.0). For simplicity, we considered normalized density and Young’s moduli values 
only. Please note that the design variable 𝜌𝜌𝑒𝑒 does not only determine the Young’s modulus values, but also 
encodes the material type. As a result, no additional parameters are needed to realize multi-material TO. 
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Figure 1: Relationship between normalized Young’s modulus and normalized density according to the ordered 
SIMP scheme, for an optimization problem with three material types: void, aluminum, and steel. The elements of 
densities in range [0, 0.18] are interpreted as void (blue area), in (0.18, 0.68] range as aluminum (red area), and 
in (0.68, 1.0] range as steel (green area). The density ranges are determined based on Equation (5). 
One can easily see in Figure 1 that the Young’s modulus values are penalized in the intermediate density ranges. 
More precisely, only for the normalized densities of 𝜌𝜌1, 𝜌𝜌2, and  𝜌𝜌3 the Young’s modulus takes true values and 
everywhere else it is more than proportionally reduced. As a result, the optimizer, targeting efficient utilization 
of material for a fixed mass fraction, will tend to distribute the material around the densities corresponding to the 
three different material types. However, since the intermediate densities can still appear in the optimized 
structures, we propose to post-process the resulting densities according to the following rule: 
 

𝜌𝜌𝑒𝑒𝐹𝐹 =

⎩
⎪
⎨

⎪
⎧

   

 𝜌𝜌1,                     𝑖𝑖𝑖𝑖 𝜌𝜌𝑒𝑒 ∈ �𝜌𝜌1,
𝜌𝜌1 + 𝜌𝜌2

2
� 

𝜌𝜌2, 𝑖𝑖𝑖𝑖 𝜌𝜌𝑒𝑒 ∈ �
𝜌𝜌1 + 𝜌𝜌2

2
,
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𝜌𝜌2 + 𝜌𝜌3

2
,𝜌𝜌3�

(5) 

 
where 𝜌𝜌𝑒𝑒𝐹𝐹  is the final, post-processed density of the finite element 𝑒𝑒. The density thresholds 𝜌𝜌1+𝜌𝜌2

2
 and 𝜌𝜌2+𝜌𝜌3

2
 are 

marked using dashed and dotted lines in Figure 1, respectively. After the post-processing stage, only the three 
predefined material types are present in the design used for the final evaluation of performance. 
The gradient-based ordered SIMP [1] involves rigorous derivation of sensitivities for the interpolation scheme (2) 
and modifications of the Optimality Criteria (OC) method, used to solve the optimization problem. These steps 
are not necessary for the implementation of the method in non-gradient approaches (e.g. HCA) or LS-TaSC, and 
therefore are not discussed in this paper. Nevertheless, in this work, an in-house Python implementation of the 
ordered SIMP as proposed by Zuo and Saitou [9] is used to validate the results obtained with the method proposed 
in the next section. 
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3. Integrating Ordered SIMP with LS-TaSC 
The TO set up, in terms of load cases, is similar to a regular set up for a single material optimization using SIMP 
in LS-TaSC. The material card that stores the distribution for two materials is created using a separate script file 
that penalizes the material densities and, in this case, Young’s modulus. This is done using the method based on 
Equation (2) from the previous section and illustrated in Figure 1. 
During runtime, LS-TaSC creates the material card for a TO which holds the density values for the material to be 
used in optimization. The name of the file storing the material data is lst_mat.k and is saved in the project folder. 
In the case of multi-material optimization using Ordered SIMP, the material card generated by the script is used 
to replace the original material card written out by LS-TaSC within the project folder. The replacement of material 
card/file is automated at runtime using a shell script. 
An important thing to note is that LS-TaSC by default (when using projected sub-gradient method) tries to get rid 
of intermediate density elements and pushes the elements to either 0 (no material) or 1 (full density). However, 
for the ordered SIMP method to work, LS-TaSC is required to retain intermediate density elements due to the 
unique nature of the material model, which in this case corresponds to different material types of a full density. 
This can be achieved by switching the optimization algorithm to Optimality Criteria in LS-TaSC and changing 
the toggle in settings to retain intermediate density elements. In the case of using LS-TaSC to solve for multiple 
load cases involving static and crash loads, the weighting is done using the scaled energy weighting method 
(SEW-LS-TaSC) [14] inspired by the SEW-HCA approach [15]. 
 

4. Case Study on a Beam Model 
In this paper, the method described to integrate the Ordered SIMP approach with LS-TaSC is demonstrated using 
a beam model [14]. The beam model is optimized for two different objectives (minimum compliance and 
maximum energy absorption) in two load cases, as discussed in detail below. The finite element model is 
developed in LS-DYNA® keyword format. The static load case is analyzed using the implicit solver while the 
load case for energy absorption is solved using the explicit solver in LS-DYNA. The material model for the static 
case is linear elastic and for the crash case is piecewise linear elastic-plastic. The elastic and plastic properties for 
two materials, aluminum and steel, are defined to be used in the simulations. For the elastic region, density, 
Young’s modulus and Poisson’s ratio are defined, whereas, the plastic regions are defined by a bilinear curve, 
using the tangent modulus. 
The beam model is setup as a simply supported beam problem with two load cases. Figure 2 shows the constraints 
utilized for setting up the model used in the paper. The design space of the beam model contains 12,000 voxel 
elements as shown in Figure 3. 
 

 
Figure 2: Simply Supported Beam 
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Figure 3: Voxelized Beam Model 

The first load case is a dynamic crash scenario shown in Figure 4, in which the optimization objective is to 
maximize the energy absorption from the indenter. The cylindrical indenter is forced into the beam, along the z-
direction, to create significant deformation. The motion of the indenter is defined as a linear motion with a 
constant velocity of 100 mm/s, until a displacement of 100 mm is reached. This is applied within LS-DYNA using 
the BOUNDARY_PRESCRIBED_MOTION card. In the second load case, a point static load of 1000 N is applied 
in the y-direction (Figure 5). The optimization objective for this case is to minimize compliance. 

 
Figure 4: Dynamic Load Case Setup 

 
Figure 5: Static Load Case Setup 
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5. Comparison of LS-TaSC and gradient-based Ordered SIMP 
In order to validate the proposed multi-material TO approach based on LS-TaSC, we consider first the static test 
case described in Section 4. The structure is optimized for minimal compliance under 60% mass constraint. For 
comparison, the same optimization problem is solved using the in-house implementation of the gradient-based 
ordered SIMP approach [9] as well as the classical, single-material SIMP method [6]. After the optimization, all 
of the designs are post-processed, to eliminate intermediate densities and obtain clear definitions of aluminum 
and steel regions. Additionally, to demonstrate the usefulness of the ordered SIMP interpolation scheme, we 
interpret the elements with intermediate densities from the single-material SIMP optimization as steel and 
aluminum parts, using the same post-processing approach. The structures after post-processing have to meet the 
60% mass constraint. Subsequently, the performance of the structures is evaluated again and used for the 
comparison of the methods. The compliance values, normalized w.r.t. the LS-TaSC Ordered SIMP result, as well 
as distributions of materials, are given in Table 1. 
Table 1: Comparison of compliance values and distributions of materials for designs optimized using the novel 
LS-TaSC Ordered SIMP approach, gradient-based Ordered SIMP [9], and the standard, single-material SIMP [6]. 
Additionally, in the last row, the intermediate densities from the standard SIMP have been interpreted as 
aluminum and steel by following the post-processing approach used in Ordered SIMP. All of the structures have 
the same mass (difference less than 0.3%). 

 

Method Normalized 
compliance Aluminum part Steel part 

 
 
 

LS-TaSC 
Ordered 
SIMP 

 
 
 
 

1.0 

  
 
 
 

Gradient-
based 

Ordered 
SIMP 

 
 
 
 

1.01 
 

  
 
 
 

Standard 
SIMP 

 
 
 

1.05 
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Standard 
SIMP for 

multi-
material 

TO 

 
 

 
1.19 

  
 
The compliance values obtained with the LS-TaSC Ordered SIMP method and the gradient-based Ordered SIMP 
are very close, differing by ca. 1%. Surprisingly, the structure obtained with our LS-TaSC Ordered SIMP 
approach is slightly stiffer. The distributions of aluminum and steel are qualitatively similar for both methods, 
but not identical. One can also easily see more checkerboard-like patterns on the boundaries between different 
material phases for the design obtained with the LS-TaSC Ordered SIMP approach, which is a known problem 
of the methods based on ordered SIMP interpolation [9]. These effects are stronger for the LS-TaSC Ordered 
SIMP implementation probably due to the lack of tuning of the optimization method itself to the new interpolation 
scheme. Please note that our approach is based on a simple replacement of a file with material cards, while Zuo 
and Saitou [9] propose specific modifications both to the OC algorithm as well as the hyperparameters of the 
method. 
Compared to the single-material design obtained with the standard SIMP approach [6], which is shown in the 
third row of Table 1, both multi-material structures are significantly stiffer, with LS-TaSC Ordered SIMP design 
reaching a 5% lower compliance value. This shows the potential of multi-material designs in improving the 
structural performance and demonstrates the validity of the proposed method. One should also note that by a 
simple interpretation of intermediate densities obtained with the standard SIMP as different materials, inferior 
designs would be usually obtained, and the use of the modified interpolation scheme (2) is absolutely necessary. 
This is also the case for the structure presented in the last row of Table 1, which was generated with use of the 
multi-material post-processing technique based on the single-material structure obtained with SIMP. The post-
processed structure has almost 20% higher compliance than the LS-TaSC Ordered SIMP design, which 
demonstrates the usefulness of the ordered SIMP interpolation. 
 

6. Multi-objective multi-material TO for crash and statics with LS-TaSC 
In this section, the results for MMTO on the beam model is presented based on the ordered SIMP approach in 
LS-TaSC. The TO is done with varying preference values [15][16] for the load cases and different materials. This 
includes two LS-TaSC setups for single material topology optimization (SMTO) with steel and aluminum, and 
one setup for multi-material topology optimization (MMTO) with an aluminum-steel combination. A target mass 
fraction of 30% is set along with a move limit of 0.1. The results obtained from the optimization run can be used 
as a starting point for the further design development process. The material card for SMTO is obtained using the 
traditional SIMP formulation while the material card for MMTO is produced using the Ordered SIMP approach 
given by (2) as described in the previous section. The TO runs are performed using the LS-OPT® workflow [14].  
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Figure 6, 7, and 8 show the Pareto front obtained for the two load cases considered in the case study. On the y-
axis is the internal energy (IE) for the static case and on the x-axis is the IE for the crash case. For the static load 
case the IE is proportional to compliance and hence the objective is to minimize the IE while for crash, the 
objective is to maximize IE. Each square in the Pareto front corresponds to a particular set of preference values 
for each load case, generated using the Design of Experiments (DOE) method (space filling) in LS-OPT. Selecting 
the data point within an acceptable range of internal energies, would give the desired conceptual design. The 
bottom most and topmost points in the Pareto fronts represent the designs with static dominant and crash dominant 
preferences respectively. The one in the middle is the design obtained for equal preferences to both the load cases. 
The optimization algorithm fills the inside with a softer material, making it less stiff and more energy absorbent, 
as the preference moves from static towards crash, and steel is present on the outside to provide for stiffness of 
the beam. Figure 8 (Pareto front for MMTO) shows the distribution of aluminum and steel in the beam model 
after MMTO. 
 

 
Figure 6: Pareto Front obtained from SMTO (aluminum). y axis: IE for static case; x-axis: IE for crash case. 
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Figure 7: Pareto Front obtained from SMTO (steel). y axis: IE for static case; x-axis: IE for crash case. 

 
Figure 8: Pareto Front obtained from MMTO (aluminum-steel). y axis: IE for static case; x-axis: IE for crash 

case. 
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Figure 9 shows the comparison of the Pareto fronts for all three cases (SMTO - aluminum, SMTO - steel and 
MMTO aluminum-steel). The y and x axes are the normalized internal energies for the static and crash load cases 
respectively. From the figure, it can be noted that the MMTO model performs much better than both the SMTO 
models since it absorbs a lot more energy, while the performance in the static case is good and comparable to that 
of the SMTO – steel model. 

 
 

Figure 9: Internal Energy Comparison 
The individual performances (based on internal energy) of the optimized model for SMTO and MMTO for various 
material models can be seen in Figure 10. The vertical axis represents the internal energy in the crash or static 
load case and horizontal axis represents the preference parameter. The left most point (0.1 preference) shows the 
least preference given to that particular load case and the right most point (0.9) is for most preference. For the 
crash load case, a higher internal energy signifies a better model since it absorbs more energy and for the static 
load case, a lower internal energy values is preferred, since it implies that the model is stiffer, thereby having a 
lower compliance.  
In Figure 10 the internal energy vs preference parameter for the crash load case, the internal energy is higher for 
the MMTO when compared to the two SMTO cases, especially when the preference for the crash case is set 
within the range of 0.5 to 0.9. The significantly higher internal energy in the MMTO cases suggests that the 
energy absorption is also higher. Similarly, for the static load case, the internal energy for the MMTO case is 
lower than SMTO for aluminum and quite comparable to the SMTO for steel case. This trend suggests that the 
MMTO better meets the minimum compliance requirement especially when the preference is within the range of 
0.5–0.9. 
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Figure 10: IE vs preference for both load cases (crash – left and static – right) 

For the results obtained from MMTO figure 11 shows an example for individual material distribution for both 
materials. The full density material assignment for aluminum and steel is done based on the thresholds mentioned 
in Section 2. The static and crash load cases have equal preference values (0.5, 0.5) in this case. The material 
distribution is such that the softer material (aluminum) is in the interior and stiffer material (steel) on the outside.  

      
Figure 11: Material Distribution for Aluminum (left) and for Steel (right) 

 
Figure 12: Average mass of optimized models for various preferences 
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The results from the SMTO and MMTO are post-processed based on the density thresholds discussed in (5) of 
Section 2. The post-processed model is the one with full density assigned to the elements. Figure 12 compares 
the average mass of the optimized model from SMTO (steel and aluminum) and MMTO models for various 
preferences (Steel: 4.8kg, Al: 2.5kg, Steel + Al: 4.3kg). The mass of the model obtained from MMTO falls within 
a reasonable range in between the mass of the models from SMTO. 

7 Discussion 
For linear elastic materials, the updated material model is formulated using the density and Young’s modulus of 
the desired materials as discussed previously in Section 2. However, in the case of crash behavior, it is important 
to consider the large deformations and plastic behavior of the materials. An approach similar to the one applied 
for elastic materials is proposed by Raeisi et al. in [10]. 
The most notable plastic material properties are yield strength, ultimate strength and tangent modulus. In the case 
of using different grades of the same material, the yield strength is the most appropriate parameter to be 
normalized and considered as a variable for ordered SIMP. The yield strength values are mapped between 0 and 
1 for the materials of interest. In the case of two completely different materials, the interpolation scheme will 
have to be applied to the Young’s modulus, for the elastic region, and to the yield strength for the plastic region, 
to produce the updated material model for TO. Figure 13 shows the material card generated from properties for 
two grades of the same material (steel DP 350 and steel DP 700) for the updated material [10]. 

 
Figure 13: Representation of the material card for Ordered SIMP [10] 

𝑆𝑆𝑦𝑦(𝜌𝜌𝑒𝑒) = A𝑠𝑠𝜌𝜌𝑒𝑒
𝑝𝑝 + 𝐵𝐵𝑠𝑠, (6) 

where 𝜌𝜌𝑒𝑒
𝑝𝑝 is a (penalized) normalized density of the finite element 𝑒𝑒, with a penalization exponent 𝑝𝑝. The element 

densities 𝜌𝜌𝑒𝑒 , 𝑒𝑒 = 1,2, … ,𝑛𝑛, with 𝑛𝑛 being the total number of finite elements, are the design variables for the 
optimization problem. 𝑆𝑆𝑦𝑦 is the resulting yield strength and the coefficients 𝐴𝐴𝑠𝑠 and 𝐵𝐵𝑠𝑠 for 𝜌𝜌𝑒𝑒 ∈ [𝜌𝜌𝑖𝑖 ,𝜌𝜌𝑖𝑖+1] are given 
as: 

𝐴𝐴𝑠𝑠 =
𝑆𝑆𝑦𝑦𝑖𝑖 −  𝑆𝑆𝑦𝑦𝑖𝑖+1

𝜌𝜌𝑖𝑖
𝑝𝑝 − 𝜌𝜌𝑖𝑖+1

𝑝𝑝 , (7) 

𝐵𝐵𝑠𝑠 = 𝐸𝐸𝑖𝑖 − 𝐴𝐴𝐸𝐸𝜌𝜌𝑖𝑖
𝑝𝑝 , (8) 

where 𝑆𝑆𝑖𝑖 is the yield strength of the 𝑖𝑖th material. 
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8 Conclusion and Summary 
In this paper, we successfully demonstrated the integration and application of the Ordered SIMP approach with 
LS-TaSC. The case study demonstrated the application of the ordered SIMP method for interpolating the elastic 
properties of a material model (in this case piecewise linear elastic-plastic). The methodology described in the 
paper can also be applied to the plastic region of materials by using the method in Section 7. The ordered SIMP 
method does not introduce any additional parameters; hence, the computational cost remains the same as the 
standard SMTO method. 
The examples demonstrated that the proposed algorithm can efficiently solve the multi-material topology 
synthesis problems under multiple loading conditions: static and dynamic. The comparative study between the 
results obtained from the ordered SIMP approach in LS-TaSC, and the gradient-based methods, indicated the 
necessity and usefulness of the ordered SIMP interpolation. The case study also showed significant improvement 
in structural performance of the multi-material design, when compared to the single material designs. Moreover, 
the finite element simulations with a combination of different materials showed that the responses for both static 
and crash cases could be tailored by varying individual preferences. 
The integration of the ordered SIMP method within LS-TaSC makes it readily accessible to the industry to include 
such a method into the development process. The approach can also be extended to larger components including 
a body-in-white (BIW) structure with multiple load cases. 
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