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1 Introduction

LS-OPT Version 7.0 was released in November 2020 with several new features which are briefly
summarized here:

- Job scheduler. The job scheduler for distributing simulation and other runs is a complete redesign.
It includes SSH Proxy, new Blackbox features and new GUI dialogs. It also supports user options
for normal, error and abnormal termination when employing user-defined solvers.

- Principal Component Analysis. This new methodology can be applied to histories and response
fields for the purpose of sensitivity analysis. Graphical post-processing features are available.

- Process management often involves disabling and enabling stages so that cases or stages can be
run independently, e.g., for debugging the setup, for testing load cases independently or in a
scenario where individual designers are responsible for specific stages. A new GUI feature, which
grays out disabled stages or cases, accompanies this new utility.

- Classifier-based sampling constraints for adaptive sampling. This can be used to define adaptively
refined sampling domains for probabilistic analysis or optimization. Thus, sampling of irrelevant
design space regions is avoided to reduce the number of function evaluations and more samples
are added to important regions to improve accuracy. For instance, samples can be added in the
vicinity of the constraint boundary for reliability analysis to obtain higher accuracy of the constraint
approximation.

- Sequential metamodel-based probabilistic analysis. In previous LS-OPT versions, probabilistic
analysis (Monte Carlo task) was limited to a single iteration. In version 7.0, probabilistic analysis
(Metamodel-based Monte Carlo) can be performed iteratively to obtain convergence statistics and
termination criteria can be defined based on failure probability value and/or response accuracy.
The iterative analysis can be done in conjunction with classifier-based adaptive sampling
constraints, also added in the same version.

- Material parameter identification typically involves comparing noisy, and occasionally hysteretic,
curves of different lengths. E.g., the test curve only spans part of the computed curve produced by
the solver. In an earlier version, the Dynamic Time Warping method [1,2,3,4] was introduced to
address noise and hysteresis. Version 7 features a modified DTW method, DTW-p, for improving
material identification accuracy for partial curve matching [5].

- Distribution fitting (Normal and Weibull) using user-defined observation data.

- Aninterface to Oasys PRIMER.

These features represent the last update of the original ‘free' version of LS-OPT developed since
1998. The development over the last year has emphasized integration with Ansys products. Among
other developments, this involves the transfer of features to and from the optimization code optiSLang.
Part of this integration involves the introduction of the Metamodel of Optimal Prognosis [6], an
automated metamodel selection method introduced in optiSLang, into LS-OPT Pro. A vehicle crash
example is presented here to demonstrate some of the capabilities in comparison with LS-OPT
metamodels. As part of the integration process, several LS-OPT features are also being transferred to
optiSLang.

The enhanced product, LS-OPT Pro, will be licensed as an Ansys-LST product.

2 LS-OPT Pro Release 2022 R1

A new version of LS-OPT will be released early 2022 as a licensed LS-OPT Pro 2022-R1. This means
that LS-OPT becomes part of a 3-tier series of optimization programs featuring LS-OPT Pro —
optiSLang Premium — optiSLang Enterprise. LS-OPT Pro has the following main new features:
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- Point Mapping: In addition to quadrilateral shells, point-based mapping has been extended to
triangular shell elements) as well as most solid elements supported by LS-DYNA (hexahedron,
pentahedron, tetrahedron. This is a useful feature since most meshes are not uniform and
automatic meshers often use tetrahedra (for solids) or triangles (for shells). This feature allows
extraction of results at arbitrary spatial locations that need not coincide with nodal points. The
mapping applies to responses, histories, multi-point histories and multi-point responses (fields).
The applications are in Digital Image Correlation (DIC) and Magnetic Resonance Imaging (MRI).

- LS-OPT Extractor: The Extractor has always been a standalone executable. This has allowed for
easy integration of LS-DYNA into other Ansys products. In addition to direct extraction, crash
criteria, mathematical expressions and other special functions such as similarity measures are
made available. The Extractor is now supported with a GUI to define the extraction commands.

- LS-Reader integration: LS-Reader is a comprehensive LS-DYNA interface developed by the LS-
PrePost group. This interface has now replaced the native LS-OPT/LS-DYNA interface for reasons
of robustness and being comprehensive and up-to-date. The previous versions of LS-OPT haven'’t
always kept up with new developments resulting in occasional extraction failures. This issue is now
resolved in the new interface. Currently only the d3plot interface has been replaced, this being the
major part of LS-Reader. LS-Reader is integrated with the aforementioned standalone Extractor, as
well as LS-TaSC. The plan is to expand the current LS-DYNA interface in LS-OPT to support all
the result types available in LS-Reader such as Acoustics, SPH, CFD, etc.

- A CORA interface has been added for seamless integration of ISO 18571 standard rating for
dummies and barriers [7] into an LS-OPT process flow. The response interface allows the
extraction of similarity measures for individual load cases, signals and injury criteria or for all of
them together. The overall rating is a weighted sum of measures from different approaches, such
as the corridor method, correlation method etc. The CORA interface is selected as a stage type.

- Metamodel of Optimal Prognosis (MOP). This is a metamodel-based method, integrated from
optiSLang (an Ansys product), which relies on the automatic selection of metamodels [6]. Future
versions will integrate all the metamodels currently available in LS-OPT (Polynomials, Feedforward
Neural Networks, Radial Basis Function Networks, Support Vector Regression) into an extended
MOP feature (referred to as MOP-X). This automates the selection from a wide array of models.

3 Example

Fig.1: Truck frontal impact showing design components (NHTSA)
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3.1 Truck, frontal impact with 6 variables

Intrusions and pulses of a truck impact example were used to compare the accuracy of the MOP-
selected metamodel with selected LS-OPT metamodels Radial Basis Functions (RBF), Feedforward
Neural Networks (FFNN) and Kriging. The pulses are acceleration related quantities computed over
two time intervals of the crash event. The design optimization problem is stated as follows:

min  Scaled Mass

s.t. Scaled Displacement <1
Scaled Stagel Pulse <1
Scaled Stage?2 Pulse <1

Table 1 represents the results of a 6-variable problem including 6 thickness variables of grouped part
thicknesses. Table 2 represents a 22-variable problem which uses 11 part thickness variables and 11
material properties of the corresponding parts. In each case a number of test points larger than the
number of construction points was used to quantify the metamodel prediction accuracy. The root
mean square errors at the independent test points have been highlighted with the lowest value
italicized and boldfaced. As a control, a direct optimization, using the GA algorithm, was also
conducted. 25 lterations with a population of 30 each were run using the 6-variable problem while 20
iterations with a population of 100 each were executed using the 22-variable problem.

RBF FFNN | Kriging | MoP | mop gA Direct
ptimum
Predicted | Predicted | Predicted | Predicted | Model Computed
Optimal variable values
t1, 3 2.876 2.832 2.925 2.84 2.541
2, t4 2.398 2.407 2.524 2.517 2.982
t5, t6 2.72 2.72 2.72 2.72 2.725
t10 2.16 2.162 2.16 2.16 2.166
t64 1.455 1.396 1.096 1.139 1.045
t73 1.592 1.592 1.592 1.592 1.594
RMS fitting error and Optimal response values
N1_disp 724.8 722.9 722.8 725 Kriging 723
RMS 6.85 5.89 8.66 6.47
N2_disp 725.3 727.3 727.3 725.2 Kriging 724.9
RMS 6.58 5.51 8.53 6
Stage1 pulse 7.037 7.006 7.027 7.121 Linear 6.99
RMS 0.0482 0.0489 0.057 0.109
Stage2 pulse 19.24 19.01 19.82 19.49 Linear 20.16
RMS 0.27 0.251 0.355 0.383
Objective (mass) and constraint values
scaled_mass 0.825 0.823 0.827 0.826 0.829
scaled_disp 1 1 1 1 1
scaled_stage1_pulse 0.930 0.928 0.929 0.941 0.924
scaled stage2 pulse 0.907 0.894 0.936 0.919 0.951

Table 1: The LS-OPT Pro and MOP fitting (highlighted) and optimization results for the truck frontal
impact. The optimization problem has 6 thickness sizing variables. The lowest RMS error

values are highlighted in italic bold. The metamodel was built using 400 sampling points with

the RMS error evaluated at 600 independent test points. The metamodels selected by the
MORP system are also shown.
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3.2 Truck, frontal impact with 22 variables

RBF FFNN Kriging MOP MOP g': t’% rect
Predicted Predicted Predicted Predicted Model Computed
Optimal variable values
t1,m1 | 2.510,298.6 | 2.510, 325.7 | 2.510, 338.5 | 2.510, 205.9 2.920, 204.4
t2,m2 | 2.398,293.3 | 2.398, 190.8 | 2.398, 228.5 | 2.398, 340.5 2.467, 309.2
t3, m3 | 2.510,245.7 | 2.510, 288.3 | 2.510, 310.0 | 2.510, 321.6 2.623, 266.1
t4, m4 | 2.399,259.5 | 2.399, 280.2 | 2.399, 256.3 | 2.399, 290.2 2.588, 184.5
t5,m5 | 2.721,194.3 | 2.721,310.7 | 2.721, 183.3 | 2.721, 278.2 2.784,191.7
t6, m6 | 2.721,265.4 | 2.721,180.1 | 2.721, 181.3 | 2.721, 319.6 2.725, 183.9
10, m10 | 2.162, 254.1 | 2.162, 180.2 | 2.162, 329.2 | 2.162, 309.1 2.210, 194.0
t11, m11 | 2.440,320.2 | 3.600, 312.3 | 3.379, 337.3 | 2.784, 217.7 2.566, 194.7
t12, m12 | 2.652, 286.3 | 2.752, 349.7 | 2.484, 234.4 | 2.883, 348.3 2.761, 181.6
t64, m64 | 1.010, 180.1 | 1.010, 180.1 | 1.010, 247.0 | 1.229, 340.2 1.047,187.3
t73, m73 | 1.593,318.2 | 1.593, 345.0 | 1.593, 321.7 | 1.593, 333.3 1.614, 319.7
RMS fitting error and Optimal response values
N1_disp 721.2 724.4 721.9 723.6 Linear 719.06
RMS 7.75 5.89 8.03 8.14
N2_disp 721.6 725.6 720.5 721.6 Linear 718.55
RMS 7.37 5.69 7.90 7.8
ng,;"s? 6.389 6.256 7.518 7.141 Linear 5.49
RMS 0.0686 0.0653 0.129 0.166
ngliej 19.940 20.970 19.18 20.19 Linear 19.25
RMS 0.3450 0.3570 0.383 0.521
HIC -6.886+04 | -4.885e+05 | -2.13e+05 | 1.24e+05 Linear 5.013e+04
RMS 4.24e+05 1.04e+06 | 4.41e+05 | 4.56e+05
Objective (mass) and constraint values
Sca;es‘;’—m 0.8006 0.8000 0.8006 0.8051 0.8272
Scafpd—d’ 0.9951 1.0000 0.9948 0.9967 0.9914
scaled_st
age? 0.8451 0.8276 0.9945 0.9446 0.7264
pulse
scaled_st
age2 0.9407 0.9891 0.9045 0.9522 0.9082
pulse

Table 2: LS-OPT Pro and MORP fitting (highlighted) and optimization results for the truck frontal
impact. The optimization problem has 11 thickness sizing variables and 11 corresponding
part material variables. The lowest RMS error values are highlighted in italic bold. The
metamodel was built using 800 sampling points with the RMS error evaluated at 1200
independent test points. The metamodels selected by the MOP system are also shown.

The tables demonstrate the advantage of extending the MOP feature, especially by adding the
Feedforward Neural Network metamodel. Note that the HIC prediction accuracy remains very poor
(RMS error typically larger than the magnitude) presumably due to its highly nonlinear behavior.
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Two smaller 2-variable crash examples were also tested, displaying results in which the current MOP
feature outperformed the LS-OPT options for some responses. Smaller examples may be less
representative of an industrial environment but the results collectively illustrate the potential benefit of
automatic selection of the best metamodel for each response as well as extending the MOP strategy
(MOP-X) to include the LS-OPT metamodels (see also 4.1 below).

4 LS-OPT Pro Outlook (2022 R2)

Another version of LS-OPT (2022 R2) will be released in the second half of next year. Several new
features for this version are currently under development and some are nearing completion. Some of
the prominent features are as follows.

41 Extended MOP

The MOP feature imported from optiSLang was presented in sections 2 and 3. It has the advantage of
not having to manually select the metamodel type, but is limited in the choice of candidate metamodel
types. 2022 R2 LS-OPT Pro version will consist of an enhanced MOP with Feedforward Neural
Networks, Radial Basis Function Networks, Support Vector Regression and Support Vector
Classification as additional choices for automatically selecting the best candidate.

4.2 Adaptive Multi-objective Optimization (MOO)

2022 R2 will also include an adaptive sequential MOO method in addition to the current direct NSGA-II
and metamodel-based (non-adaptive) sequential method. This will be based on a patented classifier-
based method referred to as Adaptive Explicit Multi-objective Optimization (AEMOO) [9]. It has been
shown to be a fast and robust approach compared to current methods [10]. A comparative study is
provided here for the current state of AEMOO implementation that is still missing some algorithm
steps. The final release will contain a more robust and efficient implementation that will include those
steps. The example used involves a simplified car model with frontal crash. Mass and intrusion are
minimized while applying a constraint on a Head Injury Criterion (HIC) value.

Iteration 5 Iteration 10 Iteration 15

X NSGA Il (600 samples) X NSGA 11 (00 samples) X NSGA 11 (600 samples)
% A Sequential Metamodel (50) Sequential Metamodel (100) A Sequential Metamodel (150)
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Fig.2: Comparison of predicted Pareto Optimal fronts using sequential metamodel-based
optimization (blue triangles) and AEMOOQ (red circles) to the computed front using 600 point
direct NSGA-II-based optimization (top). 10 points per iteration were used for both sequential
metamodeling and AEMOO. The bottom figures depict the validation results for the Pareto
Optimal fronts obtained using sequential metamodeling (bottom leff) and AEMOQO (bottom
right).
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Fig.3: Comparison of sample distribution in the design space (left) and the objective space (right) for
sequential metamodel-based optimization and AEMOO.

It is evident from Fig.2: that AEMOO outperforms the current sequential metamodel-based method
despite its partial implementation. At iteration 5, a large part of the AEMOO-based Pareto front
dominates the sequential metamodel-based front. The same is true for the middle part of the Pareto
front at iteration 10 although the sequential metamodel provides a slightly better spread at this point.
At the final 15th iteration, AEMOO has slightly better spread and also dominates some parts of the
sequential metamodel-based front. Although the later seems to dominate part of the AEMOO-based
Pareto Optimal front, the validation results show these points to be infeasible. Thus the AEMOO-
based front seems to be more accurate with relatively fewer infeasible points. This can be attributed to
the difference in sampling between the two methods. Fig.3: clearly shows that AEMOO avoids
sampling large parts of the design space and focuses on the important regions to improve the
accuracy there. This can also be seen from the objective space sampling as most of the AEMOO
sampling in latter iterations (red) is focused towards the final Pareto Optimal front, which is not the
case during sequential metamodel-based optimization. It should be noted that AEMOO does allow
some sampling to take place away from the front as well in order to explore the space for existance of
disjoint fronts. It is interesting to note that the results are actually better than the direct optimization
results with many more (600 vs 50/100/150) samples.

4.3 Reduced Order Modeling

Reduced Order Modeling (ROM) will be added for approximation of histories and multi-point
responses/histories. Applications will include history/field approximation based parameter
identification, DynaStats etc. In the future, the ROM implementation will be used as a foundation for
several other applications and methods that will be presented in due course. An example of DynaStats
using ROM approximation (standard deviation of Von Mises stress for plate impacted by a rigid ball
with randomized parameters) is shown below.
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Fig.4: Spatial field approximation of the standard deviation of Von Mises stress using ROM.

4.4 Point Cloud Matching

Methods are currently being implemented for point cloud mapping that have multiple applications, for
instance in shape optimization.

4.5 LS-DYNA Results Extraction

The extraction capabilities of LS-OPT will be enhanced in 2022 R2 as well. The integration of LS-
Reader in 2022 R1 has provided a foundation to achieve this goal. The plan is to expand the current
LS-DYNA interface to support all the result types available in LS-Reader.

5 Closure

The paper again demonstrates the LS-OPT capability of handling reasonably large optimization
problems (i.e. 22-variable crash design). More importantly, the results emphasize the need for allowing
an individual metamodel type for each response, as well as an automatic selection method for
choosing the best metamodel. It therefore demonstrates the benefits of integrating the MOP feature
into both the Ansys optimization codes. The extended MOP thus being developed for 2022 R2 should
further improve this feature. LS-OPT 7.0 and LS-OPT Pro 2022 R1 enhancements provide a
foundation for significant improvements in metamodeling, sample selection and LS-DYNA result
extraction. The future 2022 R2 will further build on these to introduce and improve various methods,
including the ones discussed in this paper.
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