

Probabilistic Analysis with LS-OPT

Willem Roux

Nielen Stander

LSTC

Information Day

"Nonlinear Optimization and Stochastic Analysis" Mai 27, 2003

Overview

- New Features in LS-OPT 2.1
- Probabilistic Structural Behavior
- LS-OPT Capabilities
- Example
- Summary
- Customer Feedback

New Features: LS-OPT 2.1

Probabilistic Modeling

Model and compute structural and response variation

Metamodeling

Kriging Metamodel added to RSM and Neural Nets

Search Methods

Sequential Random Search (SRS)

LS-DYNA interface

Binary interface (LS970)

Other:

- > Improved restart
- > GUI
- LS-OPT is free of charge on a LS-DYNA license

Probabilistic Analysis Objectives

1. Modeling of Variability

Repeatability of Response

2. Design Criteria

- Probability of failure
- Robustness (Variance)

3. Redesign

Source of variability

Response Variability

Response distribution

- > Mean
- > Standard deviation

Probability of Failure

Response Variation

Deterministic Variation

Due to change in a parameter value (controllable or uncontrollable)

Chaotic Variation

Bifurcation

Random Variation

Variability not explainable by the design model, e.g. mesh, roundoff, lack of convergence

Deterministic Variation

Random Variation

Sources of Variation

Structural

Design parameters

Environment

> Load, material properties

Modeling

Mesh density

Analysis

> Algorithm convergence, contact

Roundoff

Parameter Variation

Control Variables

Values are controlled by designer

- Gauge
- > Shape

Noise Variables

Values not controlled by designer but can vary

- > Load
- > Yield stress
- > Stiffness
- > Thermal

Sources of Variation Classification

- Analysis Variation
 - Physical buckling

> Algorithmic – contact

Sources of Variation Classification

Modeling Variation

- > FE mesh
- Postprocessing, time step size and filter selection, convergence
- Convergence: Iterative implicit solvers
- > Selection of node/element to monitor

Roundoff

- Machine precision
- > Different platforms give different results

LS-OPT Probabilistic Capabilities

- Statistical Distributions
- Stochastic Sampling Techniques
 - > Monte Carlo
 - Monte Carlo using Metamodels: Polynomials, Neural Nets
- Design Criteria
 - Probability of Failure
 - Robustness (Variance)
- Distributed LS-DYNA job execution and data collection

Statistical Distributions

- Normal
- Uniform
- Lognormal
- User defined
- Weibull

Sampling

- Random
- Latin Hypercube
 - > Structured Monte Carlo
- Space-filling
 - Maximizes minimum distance between any two points

Example – Head Impact Problem

Head Impact Problem

Monitor: Head Injury Criterion:

HIC-d

- Variables:
 - ➤ Hor. Angle of impact
 - 15 degrees
 - 10% standard deviation
 - > Rib height
 - 12.5mm
 - 5% standard deviation

Variation

Vary one variable at a time to investigate curvature.

Linear response with some scatter (noise).

Variation

- Quadratic Surface should fit accurately
- Range of response surface is 2σ

Response Variation

■ Baseline Design: HIC-d = 374.4

Monte Carlo Analysis: 150 FE analyses

Quadratic Response Surface: 60 FE analyses.
 Residuals have standard deviation of 2.35.

	Monte Carlo	Metamodel
	(150 simulations)	(60 simulations)
Mean	373.9	373.9
Standard deviation		
Deterministic		4.21 (87%)
Deterministic + Outliers	4.85	4.83

Probability of Value

Monte Carlo Analysis Values

Probability of Value

Metamodel values

Probability of Exceeding Bound

Derivatives

	Angle of Impact	Rib Height
P[HIC-d >378]	-0.15	-0.17

	Std Dev(Angle)	Std Dev(Height)
Std Dev(HIC-d)	2.1	1.0

Displacement Variation

Some displacements may be:

- > Unrelated to a design variable change
- > Not repeatable

Displacement Variation

- Create metamodel for each nodal displacement.
- Collect outliers (noise) not predicted by metamodel.
- Plot on model
- Investigate
 - Modeling
 - > Bifurcation

Standard Deviation of Outliers

Investigate Outliers

Different buckling modes

Acceleration History Variation

Vehicle Crash

History Variation

Displacement Variation

Vary angle of impact

25 FE Runs

Summary

- Objective : Repeatable performance of design
- Monte Carlo
 - Mean value
 - Standard deviation
 - Reliability
 - Indication of extreme values
- Metamodels
 - > Allow cost savings
 - > Separation of random components
 - Effect of design variable changes
- Outliers can be informative

