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Abstract

This paper describes a new method for curve magckigsential to the solution of inverse problems
represented by system parameter identificationtétgic response curves are specifically addressed

a general class. The method is based on Partiav€Mapping (PCM) of the experiment curve onto the
computed curve. This methodology involves a cuatehing metric which is computed using the volume
between the test curve and the computed curveosecli number of examples are presented to
demonstrate the capability. These examples reprdgesteretic curves which are impossible to match
without mapping.

Introduction

Parameter identification problems are non-lineaeise problems which can be solved using
mathematical optimization. System parameter ideatibn is a commonly used feature of LS-
OPT®, especially for the purpose of calibrating materimdels. The procedure consists of
minimizing the mismatch between two curves. Thege turves typically consist of a two-
dimensional experimental target curve and a congpateve. The computed curve is a variable
response, being dependent on the system parametgrsmaterial constants. The two main
essential components of an algorithm designedystem identification are (i) the optimization
algorithm and (ii) the curve matching metric. Tleus of the current paper is on the latter.

The original “MeanSqEr” (MSE) feature in LS-OPTessthe vertical coordinate distance

between two specified curves to compute the magcéiror [1]. In this feature, the mismatch is

guantified by the sum of the squares of the digame they-coordinate between the target points
and the interpolated points on the computed cuffels, the mismatch of the abscissa is not
explicitly included.

A major difficulty with ordinate-based curve mataediis that steep parts of the curve are
difficult to incorporate in the matching. Failureatarial models such as the GISSMO model
discussed in Reference [2] have the charactemdtie steep decline of the stress-strain curve
towards the end of the curve while steep curves fdature in models in which part of the

behavior (the leading part of the curve) is linear.

A related problem with ordinate-based matchinghet the ranges of the computed and target
curves often do not coincide horizontally so thame of the points are ignored. It may even
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happen that at an interim stage of the optimizatio& two curves do not share any vertical range
overlap (there is not a single vertical line whiefil cross both the computed and the target
curves). This type of problem may cause instabitiftythe computation because it becomes
impossible to quantify the error.

A third problem is that hysteretic curves (curvethwnore than one possibyevalue for some of
the x-values) cannot be quantified because of the nagqueness of the ordinate values of the
computed curve with respect to the target cunee.d. vertical line may cross the same curve
more than once.

These kinds of problems present a strong casecforeaincorporation of the abscissa into the
curve-matching metric and the most reasonable appréperhaps the only one) seems to be to
map one of the curves onto the other, in order aertheir comparison unique. Two questions
immediately arise, namely (i) how to scale the esrand (i) how to match two curves of
unequal length. Scaling is particularly importaimce scale changes have an effect on distance
metrics which incorporate both coordinates. In meases (e.g. stress vs. strain) there could be
several orders of magnitude difference betweenvtilaes on the abscissa and those of the
ordinate.

The mathematical literature provides some ideasuove matching approaches. Two commonly
used metrics for curve matching are Heusdorff[3] andFréchet[4] distances. The Hausdorff
distance measures the mismatch between two pdmisees therefore not suitably general for
curve matching as there is no continuous pointroiiéier instance it would not be able to handle
a hysteretic curve match. The Fréchet distanceeitetbsuited for curve matching because it
takes the continuity of the curves into accoune Fréchet distance is formally defined as:

Fr(P,Q) =inf gaﬂp(a ®) -ABM)|

where P and Q are polygonal curvest[1[01l] represents a position on each curve. The
parameters: andf are used to parameterize the distance whereaamwéhmk oft as “time”.
The analogy is that of a dog walking along the ameve and the dog’s owner walking along the
other connected by a leash. Both walk continuoasly monotonically along the curve from the
start point to the end point and can vary theioeiies according tax and . The Fréchet
distance is the length of the shortest leash thauificient for traversing both curves in this
manner.

A further possibility is to compute the volume @réetween the two curves. When both curves
are normalized, this would typically yield a smadismatch error £ <<1) for two reasonably
matching curves.

A problem of curve matching is that the curvestgpecally of different lengths precluding the
mapping of entire curves to one another. A prattieason could be that the test curve, which
could be the result of digital output from an exmpent, is essentially unedited and therefore
contains superfluous points unrelated to the adbeabvior of the model. Conversely, it may
also be that the test curve represents only pathefesponse, perhaps because only a partial
curve could be obtained from the experiment. Inapeater identification this issue becomes
particularly critical as curves are typically conga at widely distributed points throughout the
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parameter space during the optimization process. gdgtential disparity of curve length requires
partial mapping of the two curves.

The next section outlines the Partial Curve MappgiRGM) methodology for the purpose of
finding the best match between two arbitrary cung&sveral examples, some with hysteretic
curves, are provided to illustrate the methodology.

Partial Curve Mapping (PCM)

The steps for computing the curve mismatch arertextin full detail below. The reader should
refer to Figure 1 which shows a test curve (inkhied) mapped on to a computed curve. The
prime symbol j is used to denote the curve on which the testecig being mapped while the
double prime symbol”} is used to denote the finally mapped curve. st turve is shown
inside its smallest bounding box, the boundariestath are used to normalize the curve. Hence
the normalized curvais in the [(0,0),(1,1)] range.

&"m")

V4 (&"mi')

"""""""""""""""""""""" S -

Curve a

Curve a’

Figure 1: Partial curve mapping of Curvea (in red) to Curve a’ with offset. The result is
Curve a". The solid points represent the original verticesf a’ whereas the open circles
represent the mapped points representing”. Curvesa and a’ are both normalized to the
bounding box ofa.

8™ European LS-DYNA® Users Conference, Strasbourg 1-3



The algorithm for computing the curve mismatch eisas follows:

1. Normalize them point coordinates of thetarget curve A to its smallest bounding box to
create Curve. See Figure 1.
E — Xi _Xmin ,7 — YI _Ymin
| xma>< - Xmin | Yma>< _Ymin
Xoin = mkin Xei Xoax = mkaxxk I A mkinYk; Yoo = mkaxYk

2. Normalize then point coordinateg of thecomputeccurveA' to the smallest bounding box of

A to create curva'. See Figure 1.
X; _xmin ' y _Ymin
5]_ —_ 1 cmn ,7J =_J1 ‘mn
Xmax - Xmin Ymax _len
3. Compute§ the total polygon length @ Also compute the individual segment lengd$s:
0S =(&~EL)+(-ns); =23..m

Here a segment is defined as a part of the curiveele® two consecutive points, connected
by a straight line.

4. Scale each segment length to the total polygogthS

§=0S/S; i=23..m

5. ComputeT, the total polygon length @f'.

6. IfS>T,renamea’ toaandatoa'. Hencea will always be shorter thaai.

7. Define arpffsetas a starting point of a curve section of totapte Son curvea'. The offset
= A, will be varied overp = 1 to P in order to “slide” Curvea along Curvea'.
AO[O, T -S]. AssumeP increments in this interval so that each incrembkas size
AN = T__S .

P

8. Setd, =/, _, +AAto create a new section afand create point coordinate pairs by mapping
each point of curve to curvea'. A typical curve segmenton a' which corresponds to a
segment onahas lengthdT. =9 S (see Fig. 1). This creates a new set of poinsair

9. Compute the discrepancy (mismatch error) betweetwo curves anda”. This is done by
summing thevolumesy; representing the individual segment errors. Fiostjgute the
distances between the point pairs:
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d = (&) +(0"1)°

Then compute the volume component of each segifidote form points, there are+1
segments.)

Vi - di +2di—1 x§, Vl = o’ | = 2,3,..-,m;

Then sum the volumes to get the final discrepancy:

10. Sefp = p+1 and repeat from point 8.

11. Find the distance = min £, This is the best match between the cuevaada'.
p

Optimization Methodology

In the optimization program LS-OPTthe proposed curve matching metric is used tibreaé
material or system properties. A finite element elad set up to include a number of parameters
which can be changed in order to change the behafidthe model. These parameters are
typically material properties. LS-OPT has been pgogned to compute the mismatch error as
described above and modifies the parameters Netatin order to minimize the mismatch error
value. By minimizing the error value, the model graeters are being calibrated to the
experimental results.

The optimization procedure is based on a sequempiatoximation of the problem leading to a

converged optimal result. Firstly an approximati®iconstructed for each point of the computed
curves. For instance, if the test curve is represkrby a force vs. a displacement, an
approximation is constructed for each point offibree vs. time history as well as for each point
of the displacement vs. time history. These appnaxions are constructed using Response
Surface Methodology [5] and generalize the respediistories so that they can be interpolated
at any point in the parameter space. Linear appratons are typically used, since they are
simple and hence inexpensive to compute. For reghmydand in order to filter any possible

noise, the number of simulations per iterationygidally around 1.5 times the number of

unknown optimization parameters. Their disadvantegehat, depending on the degree of
nonlinearity of the basic responses (e.g. forcalisplacement), multiple iterations might be

necessary. Using the approximations, a cross-plahis case a force vs. displacement curve,
can thus be constructed for any set of system peteam The approach is well established and
known as the Sequential Response Surface Methc8NIBIRL,6].

By exploring the parameter space, the optimizer faath a parameter set in which the curve
mismatch can be minimized. The default optimizatedgorithm used for parameter space
exploration in LS-OPT is the Adaptive Simulated Aaling algorithm [7]. Because of the fact
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that approximations are used to construct the héstothe solution after the first iteration isals
approximate. This can be seen in the optimizatistohes displayed for the examples below.
The points (computed values) (as in Fig. 2(b)) dat amlways coincide with the line
(approximation). Subsequent iterations refine tob&t®on until no further improvement is
possible in which case an optimal parameter sebbes obtained.

Although the analyst would always desire the misimab disappear altogether, this does not
always happen. Many factors are involved, such aperémental errors and noise,
misrepresentation by the finite element model, réiszation errors, incorrectly chosen material
model, etc.

Examples

A number of examples were run to test the capgbilihe nonlinear dynamics finite element
program LS-DYNA[8] was used in each case.

Example 1: Hysteretic model (DYNAmoré) the first example five variables were used to
calibrate a material model. The results of a faliglacement test were used as a target curve.
The material is significantly nonlinear and hasyatéretic behavior in the sense that the loading
and unloading curves are distinct (see Figure Phg example converged finely in about 3-4
iterations using a sequential linear response seirfigethod. The convergence history is shown in
Figure 2b.
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Figure 2 (a) Force-displacement curves at variousdrations. The black crosses (+)
represent the test curve.
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Figure 2 (b) Optimization history of the curve misnatch. The red points represent the
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actual computed mismatch values while the black lerepresents the mismatch computed
from the approximations.

Example 2: Hysteretic model (TRWhe second example represents a material withuehm
more prominent hysteresis. Four material paramatersised. The test results were purposefully
trimmed to represent only a part of the full hysgés loop so that the ability of the curve
matching algorithm to identify a suitable matchngsonly a part of the data can be tested. As in
the first example, a sequential linear approxinrati@s used. The example converged in about 2

iterations, but came very close in a single itera(light blue curve in Figure 3(a)).
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Optimization History
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Figure 3 (b): Optimization history of the curve mignatch. The red points represent the
actual computed mismatch values while the black lierepresents the mismatch computed
from the approximations (courtesy TRW).

Example 3: GISSMO model (Daimléfjith the basic capabilities tested, it was decitteddd a
practical industrial example. An interesting exagmnd one of great practical importance to
LS-DYNA users, is the calibration of the GISSMO [@jmage model. Because of the failure
properties of the model, the GISSMO model is chtarazed by steep beginning and end sections
of the stress-strain curves, so presented a plartticballenge.

The example consists of 3 test cases and the @lat@s 7 unknown parameters. The objective
function was computed by summing the objective fioms of the three cases. Two optimization
runs were conducted, each using a different stagimint. The results are depicted in Figure 4
and Figure 5 respectively.

The results foStarting Point lobtained with the classical MSE method in Figui@) 4how the
well known problem of non-converging behavior doethe very steep slope of the test curve.
Note that fewer points are used for the MSE metkowe the last few points represent a slight
rebounding of the behavior (the abscissa diminishes

In order to capture correctly the fracture strainaomaterial, a second optimization was
performed using the new PCM method. The resulhavd in Figure 4(b), where a significant
improvement compared to the MSE result in Figue 44 observed. Since the original damage
parameters were close to the optimum, the curverdit not dramatically improved. However,
there was a small improvement after 6 iteratiorssilteng in an almost perfect fit. Figure 4(c)
shows the optimization history of the three objedi It can be seen that the response surfaces
(linear in this case) are initially not accurat®egh to represent the model, but through iterative
refinement, this improves to an almost perfect metdel fit (Iteration 6).
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Starting point 1 (close to optimum)

(a) MeanSgErr (ordinate-based)
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Figure 4: Optimization from a starting point closeto the optimum: (a) Optimization of the
MSE: Stress-strain curves at various iterations (bOptimization with PCM: Stress-strain
curves at various iterations. The black crosses (+gpresent the test curve. (c) PCM
Optimization history of the curve mismatch. The redpoints represent the actual computed
mismatch values while the black line represents theismatch computed from the
approximations (courtesy Daimler AG).
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Starting point 2 (remote)

(a) MeanSgErr (ordinate-based)
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Figure 5: Optimization from a starting point far away from the optimum: (a) Optimization
of the MSE: Stress-strain curves at various iteratins (b) Optimization with PCM: Stress-
strain curves at various iterations. The black croses (+) represent the test curve. (c) PCM
Optimization history of the curve mismatch. The redpoints represent the actual computed
mismatch values while the black line represents theismatch computed from the
approximations (courtesy Daimler AG).

The same example was attempted with a differertirsggpoint, this time far away from the
optimum. Another difference in this case is that st few experimental points (represented by
the black crosses) were moved slightly to the rigtdvoid the rebound behavior that could
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present problems for the ordinate-based method. §¢ems to have helped with the calibration,
but, for obvious reasons, cannot be used as aa@arenedy. Again, the PCM method is an
improvement, especially with regard to Case b 8geres 5 (a) and (b), center plot).

Closure

A new Partial Curve Mapping (PCM) method for mamghiresponse curves to experimental
curves is proposed and has been implemented InSH@PT optimization program. The purpose
of the method is the solution of inverse problemshsas material identification problems in
which an experimental curve is provided to whiatoanputed curve needs to be matched. There
are multiple, interrelated advantages of the newime

1. ltis able to identify hysteretic curves throwgghontinuous mapping procedure.

2. Through partial mapping, an optimal sectionhaf tomputed/test curve corresponding to
a short test/computed curve can be identified.

3. By the nature of the mapping method, the meémcorporates both the ordinate and the
abscissa into the mismatch computation.

4. By tracking the abscissa, steep, almost vertssdtions of stress-strain curves are
automatically incorporated by the mapping procedure

5. Curve normalization assures that the methoddspendent of the chosen measurement
units.

6. The input is very simple, requiring only the remof the two histories compared.

The method appears to be effective as demonstitethalyzing two examples with strongly
hysteretic behavior. Two of the examples, whichudes an industrial example, involve a partial
test point set covering only a section of the cotegwutput curve.

The PCM method represents a significant improvenoérnthe parameter identification tools
available in LS-OPT and is a major step forwardhe identification of failure behavior in
material models in general.
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