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Abstract 
 

This paper describes a new method for curve matching essential to the solution of inverse problems 
represented by system parameter identification. Hysteretic response curves are specifically addressed as 
a general class. The method is based on Partial Curve Mapping (PCM) of the experiment curve onto the 
computed curve. This methodology involves a curve matching metric which is computed using the volume 
between the test curve and the computed curve section. A number of examples are presented to 
demonstrate the capability. These examples represent hysteretic curves which are impossible to match 
without mapping. 

 
 

Introduction 
 

Parameter identification problems are non-linear inverse problems which can be solved using 
mathematical optimization. System parameter identification is a commonly used feature of LS-
OPT®, especially for the purpose of calibrating material models. The procedure consists of 
minimizing the mismatch between two curves. These two curves typically consist of a two-
dimensional experimental target curve and a computed curve. The computed curve is a variable 
response, being dependent on the system parameters, e.g. material constants. The two main 
essential components of an algorithm designed for system identification are (i) the optimization 
algorithm and (ii) the curve matching metric. The focus of the current paper is on the latter. 
 
The original “MeanSqErr” (MSE) feature in LS-OPT uses the vertical coordinate distance 
between two specified curves to compute the matching error [1]. In this feature, the mismatch is 
quantified by the sum of the squares of the distances in the y-coordinate between the target points 
and the interpolated points on the computed curve. Thus, the mismatch of the abscissa is not 
explicitly included. 
 
A major difficulty with ordinate-based curve matching is that steep parts of the curve are 
difficult to incorporate in the matching. Failure material models such as the GISSMO model 
discussed in Reference [2] have the characteristic of a steep decline of the stress-strain curve 
towards the end of the curve while steep curves also feature in models in which part of the 
behavior (the leading part of the curve) is linear.  
 
A related problem with ordinate-based matching is that the ranges of the computed and target 
curves often do not coincide horizontally so that some of the points are ignored. It may even 



1-2    8th European LS-DYNA® Users Conference, Strasbourg 

happen that at an interim stage of the optimization, the two curves do not share any vertical range 
overlap (there is not a single vertical line which will cross both the computed and the target 
curves). This type of problem may cause instability of the computation because it becomes 
impossible to quantify the error. 
 
A third problem is that hysteretic curves (curves with more than one possible y-value for some of 
the x-values) cannot be quantified because of the non-uniqueness of the ordinate values of the 
computed curve with respect to the target curve. I.e. a vertical line may cross the same curve 
more than once.  
 
These kinds of problems present a strong case for active incorporation of the abscissa into the 
curve-matching metric and the most reasonable approach (perhaps the only one) seems to be to 
map one of the curves onto the other, in order to make their comparison unique. Two questions 
immediately arise, namely (i) how to scale the curves and (ii) how to match two curves of 
unequal length. Scaling is particularly important since scale changes have an effect on distance 
metrics which incorporate both coordinates. In many cases (e.g. stress vs. strain) there could be 
several orders of magnitude difference between the values on the abscissa and those of the 
ordinate. 
 
The mathematical literature provides some ideas on curve matching approaches. Two commonly 
used metrics for curve matching are the Hausdorff [3] and Fréchet [4] distances. The Hausdorff 
distance measures the mismatch between two point sets so is therefore not suitably general for 
curve matching as there is no continuous point order. For instance it would not be able to handle 
a hysteretic curve match. The Fréchet distance is better suited for curve matching because it 
takes the continuity of the curves into account. The Fréchet distance is formally defined as: 
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where P and Q are polygonal curves, ]1,0[∈t  represents a position on each curve. The 
parameters α and β are used to parameterize the distance whereas we can think of t as “time”. 
The analogy is that of a dog walking along the one curve and the dog’s owner walking along the 
other connected by a leash. Both walk continuously and monotonically along the curve from the 
start point to the end point and can vary their velocities according to α and β. The Fréchet 
distance is the length of the shortest leash that is sufficient for traversing both curves in this 
manner. 
 
A further possibility is to compute the volume (area) between the two curves. When both curves 
are normalized, this would typically yield a small mismatch error ( 1<<ε ) for two reasonably 
matching curves. 
 
A problem of curve matching is that the curves are typically of different lengths precluding the 
mapping of entire curves to one another. A practical reason could be that the test curve, which 
could be the result of digital output from an experiment, is essentially unedited and therefore 
contains superfluous points unrelated to the actual behavior of the model. Conversely, it may 
also be that the test curve represents only part of the response, perhaps because only a partial 
curve could be obtained from the experiment. In parameter identification this issue becomes 
particularly critical as curves are typically computed at widely distributed points throughout the 
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parameter space during the optimization process. This potential disparity of curve length requires 
partial mapping of the two curves. 
 
The next section outlines the Partial Curve Mapping (PCM) methodology for the purpose of 
finding the best match between two arbitrary curves. Several examples, some with hysteretic 
curves, are provided to illustrate the methodology. 
 
 

Partial Curve Mapping (PCM) 
 
The steps for computing the curve mismatch are described in full detail below. The reader should 
refer to Figure 1 which shows a test curve (in thick red) mapped on to a computed curve. The 
prime symbol (′) is used to denote the curve on which the test curve is being mapped while the 
double prime symbol (″) is used to denote the finally mapped curve. The test curve is shown 
inside its smallest bounding box, the boundaries of which are used to normalize the curve. Hence 
the normalized curve a is in the [(0,0),(1,1)] range. 
 

 
 
 

Figure 1:  Partial curve mapping of Curve a (in red) to Curve a′ with offset. The result is 
Curve a″. The solid points represent the original vertices of a′ whereas the open circles 
represent the mapped points representing a″. Curves a and a′ are both normalized to the 
bounding box of a. 
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The algorithm for computing the curve mismatch error is as follows: 
 
 
1. Normalize the m point coordinates i of the target curve A to its smallest bounding box to 

create Curve a. See Figure 1. 
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2. Normalize the n point coordinates j of the computed curve A'  to the smallest bounding box of 

A to create curve a'. See Figure 1. 
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3. Compute S, the total polygon length of a. Also compute the individual segment lengthsiS δ : 

 
2

1
2

1 )()( −− −+−= iiiiiS ηηξξδ ;   mi ,...,3,2=  

 
Here a segment is defined as a part of the curve between two consecutive points, connected 
by a straight line. 

 
4. Scale each segment length to the total polygon length S: 
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ii / ~ δ= ;    mi ,...,3,2=  

 
5. Compute T, the total polygon length of a'. 
 
6. If S > T, rename a' to a and a to a'. Hence a will always be shorter than a'. 
 
7. Define an offset as a starting point of a curve section of total length S on curve a'. The offset 

= pλ  will be varied over p = 1 to P  in order to “slide” Curve a along Curve a'. 

],0[ ST −∈λ . Assume P increments in this interval so that each increment has size 

P

ST −=∆λ  . 

8. Set λλλ ∆+= −1pp to create a new section of a' and create point coordinate pairs by mapping 

each point of curve a to curve a'. A typical curve segment i on a' which corresponds to a 
segment i on a has length ii ST   δδ =  (see Fig. 1). This creates a new set of point pairs a″.  

 
9. Compute the discrepancy (mismatch error) between the two curves a and a" . This is done by 

summing the volumes vi representing the individual segment errors. First compute the 
distances between the point pairs: 
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Then compute the volume component of each segment. (Note for m points, there are m-1 
segments.) 
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Then sum the volumes to get the final discrepancy: 
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10. Set p = p+1 and repeat from point 8. 
 
11. Find the distance p

p
εε min= . This is the best match between the curves a and a'. 

 
 

Optimization Methodology 
 

In the optimization program LS-OPT®, the proposed curve matching metric is used to calibrate 
material or system properties. A finite element model is set up to include a number of parameters 
which can be changed in order to change the behavior of the model. These parameters are 
typically material properties. LS-OPT has been programmed to compute the mismatch error as 
described above and modifies the parameters iteratively in order to minimize the mismatch error 
value. By minimizing the error value, the model parameters are being calibrated to the 
experimental results. 
 
The optimization procedure is based on a sequential approximation of the problem leading to a 
converged optimal result. Firstly an approximation is constructed for each point of the computed 
curves. For instance, if the test curve is represented by a force vs. a displacement, an 
approximation is constructed for each point of the force vs. time history as well as for each point 
of the displacement vs. time history. These approximations are constructed using Response 
Surface Methodology [5] and generalize the respective histories so that they can be interpolated 
at any point in the parameter space. Linear approximations are typically used, since they are 
simple and hence inexpensive to compute. For redundancy and in order to filter any possible 
noise, the number of simulations per iteration is typically around 1.5 times the number of 
unknown optimization parameters. Their disadvantage is that, depending on the degree of 
nonlinearity of the basic responses (e.g. force or displacement), multiple iterations might be 
necessary. Using the approximations, a cross-plot, in this case a force vs. displacement curve, 
can thus be constructed for any set of system parameters. The approach is well established and 
known as the Sequential Response Surface Method (SRSM) [1,6]. 
 
By exploring the parameter space, the optimizer can find a parameter set in which the curve 
mismatch can be minimized. The default optimization algorithm used for parameter space 
exploration in LS-OPT is the Adaptive Simulated Annealing algorithm [7]. Because of the fact 
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that approximations are used to construct the histories, the solution after the first iteration is also 
approximate. This can be seen in the optimization histories displayed for the examples below. 
The points (computed values) (as in Fig. 2(b)) do not always coincide with the line 
(approximation). Subsequent iterations refine the solution until no further improvement is 
possible in which case an optimal parameter set has been obtained. 
 
Although the analyst would always desire the mismatch to disappear altogether, this does not 
always happen. Many factors are involved, such as experimental errors and noise, 
misrepresentation by the finite element model, discretization errors, incorrectly chosen material 
model, etc. 

 
 

Examples 
 

A number of examples were run to test the capability. The nonlinear dynamics finite element 
program LS-DYNA[8] was used in each case. 
 
Example 1: Hysteretic model (DYNAmore). In the first example five variables were used to 
calibrate a material model. The results of a force-displacement test were used as a target curve. 
The material is significantly nonlinear and has a hysteretic behavior in the sense that the loading 
and unloading curves are distinct (see Figure 2a). The example converged finely in about 3-4 
iterations using a sequential linear response surface method. The convergence history is shown in 
Figure 2b.  

 

 
Figure 2 (a) Force-displacement curves at various iterations. The black crosses (+) 
represent the test curve.  
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Figure 2 (b) Optimization history of the curve mismatch. The red points represent the 
actual computed mismatch values while the black line represents the mismatch computed 
from the approximations.  

 
Example 2: Hysteretic model (TRW). The second example represents a material with a much 
more prominent hysteresis. Four material parameters are used. The test results were purposefully 
trimmed to represent only a part of the full hysteresis loop so that the ability of the curve 
matching algorithm to identify a suitable match using only a part of the data can be tested. As in 
the first example, a sequential linear approximation was used. The example converged in about 2 
iterations, but came very close in a single iteration (light blue curve in Figure 3(a)). 
 

 
 

Figure 3 (a): Force-displacement curves at various iterations. The black crosses (+) 
represent the test curve.  
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Figure 3 (b): Optimization history of the curve mismatch. The red points represent the 
actual computed mismatch values while the black line represents the mismatch computed 
from the approximations (courtesy TRW). 

 
Example 3: GISSMO model (Daimler).With the basic capabilities tested, it was decided to add a 
practical industrial example. An interesting example, and one of great practical importance to 
LS-DYNA users, is the calibration of the GISSMO [2] damage model. Because of the failure 
properties of the model, the GISSMO model is characterized by steep beginning and end sections 
of the stress-strain curves, so presented a particular challenge. 
 
The example consists of 3 test cases and the material has 7 unknown parameters. The objective 
function was computed by summing the objective functions of the three cases. Two optimization 
runs were conducted, each using a different starting point. The results are depicted in Figure 4 
and Figure 5 respectively. 
 
The results for Starting Point 1 obtained with the classical MSE method in Figure 4(a) show the 
well known problem of non-converging behavior due to the very steep slope of the test curve. 
Note that fewer points are used for the MSE method, since the last few points represent a slight 
rebounding of the behavior (the abscissa diminishes). 
 
In order to capture correctly the fracture strain of a material, a second optimization was 
performed using the new PCM method. The result is shown in Figure 4(b), where a significant 
improvement compared to the MSE result in Figure 4(a) is observed. Since the original damage 
parameters were close to the optimum, the curve fit was not dramatically improved. However, 
there was a small improvement after 6 iterations resulting in an almost perfect fit. Figure 4(c) 
shows the optimization history of the three objectives. It can be seen that the response surfaces 
(linear in this case) are initially not accurate enough to represent the model, but through iterative 
refinement, this improves to an almost perfect metamodel fit (Iteration 6).  
 
 
 
 
 
 
 



8th European LS-DYNA® Users Conference, Strasbourg 1-9 

Starting point 1 (close to optimum) 
 
(a) MeanSqErr (ordinate-based) 
 

 
(b) Curve Mapping 

 

 
(c) Curve Mapping (optimization history) 

 
Figure 4: Optimization from a starting point close to the optimum: (a) Optimization of the 
MSE: Stress-strain curves at various iterations (b) Optimization with PCM: Stress-strain 
curves at various iterations. The black crosses (+) represent the test curve. (c) PCM 
Optimization history of the curve mismatch. The red points represent the actual computed 
mismatch values while the black line represents the mismatch computed from the 
approximations (courtesy Daimler AG). 
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Starting point 2 (remote) 
 
(a) MeanSqErr (ordinate-based) 
 

 
 
(b) Curve Mapping 
 

 
 
(c) Curve Mapping (optimization history) 

 
 

Figure 5: Optimization from a starting point far away from the optimum: (a) Optimization 
of the MSE: Stress-strain curves at various iterations (b) Optimization with PCM: Stress-
strain curves at various iterations. The black crosses (+) represent the test curve. (c) PCM 
Optimization history of the curve mismatch. The red points represent the actual computed 
mismatch values while the black line represents the mismatch computed from the 
approximations (courtesy Daimler AG). 

 
The same example was attempted with a different starting point, this time far away from the 
optimum. Another difference in this case is that the last few experimental points (represented by 
the black crosses) were moved slightly to the right to avoid the rebound behavior that could 
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present problems for the ordinate-based method. This seems to have helped with the calibration, 
but, for obvious reasons, cannot be used as a general remedy. Again, the PCM method is an 
improvement, especially with regard to Case b (see Figures 5 (a) and (b), center plot). 

 
Closure 

 
A new Partial Curve Mapping (PCM) method for matching response curves to experimental 
curves is proposed and has been implemented in the LS-OPT optimization program. The purpose 
of the method is the solution of inverse problems such as material identification problems in 
which an experimental curve is provided to which a computed curve needs to be matched. There 
are multiple, interrelated advantages of the new metric: 
 

1. It is able to identify hysteretic curves through a continuous mapping procedure. 
2. Through partial mapping, an optimal section of the computed/test curve corresponding to 

a short test/computed curve can be identified. 
3. By the nature of the mapping method, the metric incorporates both the ordinate and the 

abscissa into the mismatch computation. 
4. By tracking the abscissa, steep, almost vertical sections of stress-strain curves are 

automatically incorporated by the mapping procedure. 
5. Curve normalization assures that the method is independent of the chosen measurement 

units. 
6. The input is very simple, requiring only the names of the two histories compared. 

 
The method appears to be effective as demonstrated by analyzing two examples with strongly 
hysteretic behavior. Two of the examples, which includes an industrial example, involve a partial 
test point set covering only a section of the computed output curve. 
 
The PCM method represents a significant improvement of the parameter identification tools 
available in LS-OPT and is a major step forward in the identification of failure behavior in 
material models in general. 
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