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Abstract

This paper evaluates a Successive Response Surface Method (SRSM) specificaly
developed for simulation-based design optimization, e.g. that of explicit nonlinear
dynamics in crashworthiness design. Linear response surfaces are constructed in a
subregion of the design space using a design of experiments approach with a D-optimal
experimental design. To converge to an optimum, a domain reduction scheme is utilized.
The scheme requires only one user-defined parameter, namely the size of the initial
subregion. During optimization, the size of this region is adapted using a move reversal
criterion to counter oscillation and a move distance criterion to gauge accuracy. To test its
robustness, the results using the method are compared to SQP results of a selection of the
well-known Hock and Schittkowski problems. Although convergence to a small tolerance
is slow when compared to SQP, the SRSM method does remarkably well for these
sometimes pathological analytical problems. The second test concerns three engineering
problems sampled from the nonlinear structural dynamics field to investigate the method’s
handling of numerical noise and non-linearity. It is shown that, despite its simplicity, the
SRSM method converges stably and is relatively insensitive to its only user-required input
parameter.

Keywords: Simulation-based optimization, response surface methodology, multipoint
approximations, design of experiments, crashworthiness.

Introduction

The success of finite element simulation to augment or even replace physical
experimentation in design has accelerated the development of simulation-based
optimization in recent years. While having its origins in the statistics of physical
experimentation, response surface methodology (RSM) (Box & Wilson, 1951, Myers and
Montgomery, 1995) has been the primary gradient-free simulation-based approach
available. The general unavailability of analytical gradient information in analysis codes
arises from the complexity of the non-linear finite element formulation. While not requiring



Sander, N. and Craig, K.J. On the robustness of a simple domain reduction scheme for simulation-
based optimization, Eng. Comput., Vol. 19 (4), pp. 431-50, 2002

any code enhancement, an alternative approach by means of finite differences may result in
spurious gradients, not suitable for gradient-based optimization. For these reasons, and
because of the noise-filtering properties of RSM, it has become particularly popular for
impact design applications such as crashworthiness or metal forming where the response
can be highly nonlinear.

As anaysis methods for impact dynamics began to take hold in industry in the late eighties,
design optimization methods of impact design followed in the mid 1990's. Among the
topics studied are occupant safety (Etman et al, 1996, Etman, 1997), component-level
optimization (Marklund, 1999, Akkerman et al, 2000), airbag-related parameter
identification (Stander, 2000) and full-vehicle simulation (Sobieszczanski-Sobieski et al,
2000). The response surface method appeared in several forms, e.g. a successive response
surface method (Toropov, 1989, Etman et al, 1996, Kok & Stander, 1999, Stander, 2001)
and an updated response surface method (Schramm & Thomas, 1998, Sobieszczanski-
Sobieski et al, 2000). Toropov (1989) experimented with linear and multiplicative
approximations for his iterative multipoint approximation method and applied weighted
least squares fitting and reduction of the subregion size based on function accuracy. In later
work, Toropov presented refinements of his method in the form of indicators for move limit
strategies. These criteria have been incorporated in a multipoint approximation strategy
known as MARS (Toropov, 1998). The methodology of Etman (1997) uses a successive
linear approximation approach with a saturated experimental design (n+ 1 points, with n
the number of design variables) within a subregion of the design space. To determine the
location and size of each new subregion, a complex heuristic is used, based on oscillation,
the accuracy of the response surface and constraint activity. More recently, Sobieszczanski-
Sobieski et al (2000) conducted a full-vehicle simulation of a multidisciplinary nature while
using a single set of higher-order response surfaces. In a metal-forming application Kok &
Stander (1999) used a successive linear response surface method while Akkerman et al
(2000) demonstrated the use of a similar but slightly enhanced successive approximation
method to a knee bolster design with shape variables and involving transient mesh
adaptivity.

While these studies demonstrate optimization capability by means of examples, there
appears to be a dearth of studies that assess accuracy and robustness in design optimization
in nonlinear dynamics. Against this background, the present paper outlines a simple, dual
criterion successive response surface method (SRSM) that requires a single user-defined
parameter. Furthermore, a deeper investigation is conducted into the convergence
properties of the method (SRSM) as applied to alarge set of algebraic test problems as well
as a smaller set of simulation-based problems. For the algebraic problems, the SRSM
method is compared to the more standard Successive Linear Programming (SLP) method
where both use the same adaptive domain reduction approach.

The motivation for the method proposed in the paper is derived from the requirements for
simulation-based optimization (Craig & Stander, 2001):
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1. Robustness and accuracy. In practical applications, it is important that the
optimization method produces an answer to engineering accuracy or at least an
immediate and significant improvement of the objective.

2. Efficiency. The number of expensive simulation-based function eval uations required
for each design iteration must be limited. Direct optimization methods without
approximations or evolutionary algorithms like the genetic algorithm are usually
disqualified due to the large number of function evaluations required.

3. Parallelization. To improve efficiency, modern simulations run on multiple
computers and/or processors. The optimization method must therefore be
parallelizable. This disqualifies e.g. sequential line searches.

4. Noise. The step-size dilemma of gradient-based methods must be addressed as this
impacts both robustness and efficiency. A noise filtering capability may avoid local
optima.

5. Infeasibility. The agorithm must be able to start from and handle intermediate
infeasible designs if they can be simulated. It must also be able to provide a best
compromised design if no feasible design is possible within the constraints
specified.

6. Global optimum. This requirement is probably the strictest of all those listed. If an
algorithm has features that at least provide the possibility of not terminating on the
first local optimum it finds, then this will be desirable in practical applications. The
study of true global optimization algorithms lies outside the scope of this paper.

7. Easeof use. The number of user-selected parameters must be kept to a minimum.

A method that successfully addresses most of these requirements is the Successive
Response Surface Method (SRSM) based on oscillation and move distance criteria and first
described in Stander (2001). This algorithm uses RSM (Myers & Montgomery, 1995), i.e. a
Design of Experiments approach, to construct linear response surfaces on a subregion from
a D-optimal subset of experiments. Linear functions are used to minimize the number of
simulations required, especially for a very large number of variables. Successive
subproblems are solved using a multi-start variant of the dynamic trgjectory method,
LFOPC (Snyman, 2000). To select the optimum, multi-starts are performed from the
locations coinciding with the subset of experimental design points. The size of each
successive subregion is adapted based on contraction and panning parameters designed to
alleviate oscillation and prevent premature convergence. To prevent remote designs from
affecting the accuracy of the subregional optimum, simulation results from previous
iterations are not incorporated and each response surface is strictly based on the results of a
D-optimal experimental design within the current subregion. Infeasibility is handled
automatically when it occurs through the construction and solution of an auxiliary problem
to bring the design within the subregion if possible. The method handles noisy responses
automatically through the selection of aninitially large subregion and a typically 50% over-
sampling of experiments in the implementation of the D-optimality criterion (Roux,
Stander & Haftka, 1998). As the optimum is approached, the subregion is contracted
automatically, implying that inaccuracies in the sensitivity information do not cause large
departures from the previous design. Therefore this handling of the step-size dilemma
(Haftka & Gurdal, 1990) also provides an inherent move limit to the algorithm. The use of
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an adaptive subregion or trust region is not new, e.g., in Lin et al (2000), Pérez et al (2000),
and Alexandrov et al (1997), the ratio of the simulated (actual) objective function reduction
to that of the approximated objective function reduction in each design step is used as a
measure to adjust the trust region size.

The SRSM method has proved itself to be robust but only moderately efficient if
convergence to a tight tolerance is required. The over-sampling required for each response
surface, athough fully paralelizable, implies that it requires 50% more function
evauations for each design iteration than the minimum required by gradient-based
algorithms. This method, although by no means a global optimization algorithm, may be
more likely to find a lower local optimum than local approximation (gradient) methods due
to its ‘wider’ perspective of the design space as embodied in the response surface.
However, experimentation with multi-start designs on suitable test problems is required to
verify this.

The am of this study is aso to illustrate that the SRSM method provides an accurate yet
efficient and robust optimization methodology to address both smooth and noisy
simulation-based problems. The test cases are therefore chosen accordingly and are
grouped in two main categories. The first is a random collection of analytica and
sometimes pathologica problems from Hock & Schittkowski (1981) that are often used for
testing optimization algorithms. These examples possess reliable gradient information, so
one would expect a good local approximation method to perform well. The second category
contains simple but general structural optimization problems for testing the algorithm’s
ability to handle practical engineering problems. These are a nonlinear explicit dynamic
crash optimization problem of a simplified car, a material identification problem that
employs the nonlinear implicit analysis of a tensile test specimen, and an occupant
safety-related head impact problem. The problems in the second category exhibit various
degrees of noise and nonlinearity and are therefore ideal to demonstrate the handling of
these characteristics.

M ethodology of Successive Response Surface Method (SRSM)
Consider the general nonlinear optimization problem:

Minimize f (x),x e R" (1)
subject to the inequality constraints

L, <g;(x)<U;; j=12..m @)
and simple bounds on the design variables

X, <X <X, i=1...,n 3)
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where L; and U; refer to the upper and lower bounds on each of the inequality constraints,
and x; and X, the lower and upper bounds on each of the design variables, n is the number
of design variables, and m the number of inequality constraints. Note that equality
constraints can be written as two inequality constraints in the form of Equation 2 with L;
equal to U;.

Refer to Roux, Stander & Haftka (1998) and Stander (2001) for a detail description of the
Successive Response Surface Method (SRSM). The method, as implemented in LS-OPT
(Stander, 1999), has a number of features that makes it robust and suitable for the solution
of practical problems:

e The D-optima experimental design is used to best utilize the number of available
runs. Over-sampling of 50% is used to maximize the predictive capability (Roux,
Stander & Haftka, 1998) of the response surfaces.

e Linear approximations are constructed using linear regression on all the points of
the current iteration. Unit weighting is used for the regression.
e An adaptive domain reduction method is applied as described in detail below.

e An auxiliary problem that minimizes the maximum constraint violation is solved to
enforce feasible designs.

The SRSM method uses a region of interest, a subspace of the design space, to determine
an approximate optimum. A range is chosen for each variable to determine itsinitia size. A
new region of interest centers on each successive optimum. Progress is made by moving the
center of the region of interest as well as reducing its size. Figure 1 shows the possible
adaptation of the subregion.

The starting point x will form the center point of the first region of interest. The lower
and upper bounds (x™°,x™°) of the initial subregion are calculated using the specified
initial range value r® so that

X0 =x?-05r? and xV°=x?+05:?  i=1..n (4)

where n is the number of design variables. The modification of the ranges on the variables
for the next iteration depends on the oscillatory nature of the solution and the accuracy of
the current optimum.

A contraction parameter yis firstly determined based on whether the current and previous
designs x* and x*™ are on the opposite or the same side of the region of interest. Thus
an oscillation indicator ¢ may be determined in iteration k as

) = gD (5)
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where
d® = 2Ax® /100 Ax® = x® _ x(D: g® ¢ [-11] (6)
The oscillation indicator (purposely omitting indicesi and k) is normalized as ¢ where
¢ =|c|sign(c). (7)

The contraction parameter yisthen calculated as

14 (1+ é) + 705(:(1_ é)
y=" : (8)
2
The parameter s is typicaly 0.5-0.7 representing shrinkage to dampen oscillation,
whereas yan represents the pure panning case and therefore unity is typically chosen.

The accuracy is estimated using the proximity of the predicted optimum of the current
iteration to the starting (previous) design. The smaller the distance between the starting and
optimum designs, the more rapidly the region of interest will diminish in size. If the
solution is on the bound of the region of interest, the optimal point is estimated to be
beyond the region. Therefore a new subregion, which is centered on the current point, does
not change its size. This is called panning (Figure 1(a)). If the optimum point coincides
with the previous one, the subregion is stationary, but reduces its size (zooming) (Figure
1(b)). Both panning and zooming may occur if there is partial movement (Figure 1(c)). The

range .Y for the new subregion in the (k + 1)-th iteration is then determined by:
r*Y =21®: i=1..,n, k=0,...,niter (9)

where J; represents the contraction rate for each design variable. To determine 4, d® is

incorporated by scaling according to a zoom parameter 7, typically 0.5, that represents pure
zooming and the contraction parameter yto yield the contraction rate

A =n+d®\y-n) (10)

for each variable independently (see Figure 2). This criterion replaces function error and
feasibility-based criteria frequently employed in earlier response surface formulations
(Etman, 1997, Toropov, 1998).

For the Successive Linear Programming (SLP) method used for comparison in the results
section, linear response surfaces are constructed using the gradient at the current point. The
subregion is centered on this point while its adaptive properties are governed by the same
heuristics as the SRSM method.
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Test cases

The move limit heuristics of the SRSM and SLP methods are set to jpa = 1.0, s = 0.6 and
1= 0.6 for all the test cases below unless indicated otherwise.

Hock and Schittkowski _problems

37 arbitrarily selected Hock problems and one problem from Svanberg (1995, 1999) are
used in this benchmark with the same starting designs being used for testing al the
algorithms. The problems are al analytical expressions with analytical gradients but the
gradients are computed numerically to emulate a simulation-based environment to align the
test with the thrust of this paper. Five of the problems (Nos. 2, 15, 16, 17, 20) are variations
of the Rosenbrock problem ( f =100(x, — x*)* + (1-x,)?), while the number of design

variables ranges between 2 and 21. All the selected problems are constrained optimization
problems.

Small car crash problem

This problem (Figure 3) consists of a ssmplified vehicle moving at a constant velocity of
15.64m.s* (35mph) and impacting a rigid pole. The nonlinear finite element structural
solver LS-DYNA (LSTC, 2000) is used to perform a simulation of the crash using the
explicit dynamic analysis method. The simulation duration is 50ms. The objective is to
minimize the Head Injury Criterion (HIC) (NHTSA, 2000) over a 15ms interval of a
selected point subject to an intrusion constraint of 550mm of the pole into the vehicle at
50ms. This criterion is based on linear head acceleration and was designed to minimize
skull fracture/brain injury due to head contacts with the vehicle interior (NHTSA, 2000).
The design variables are the shell thickness of the car front (thooq) and the shell thickness of
the bumper (toumper)-

Material identification problem (M uller, 2000)

In amateria identification problem the optimization process uses experimentally measured
data to calibrate a constitutive model. A non-linear simulation is performed with the model
parameters as input, and the discrepancy of the simulated and measured results is used as a
minimization criterion. In this example, the parameters of a power-law material model of a
tensile test specimen are determined using the experimental reaction force, F and
elongation, u. The stress-strain history of the specimen (Figure 4) is smulated using LS
DYNA (LSTC, 2000) and the objective is defined as the least-squares difference between
the ssmulated and measured force-elongation history. The design variables in this problem
are the two material parameters in the power-law model, as defined in Equation 11.

o,=Ke =K(g, +&°) (12)

where ¢, is the elastic strain to yield and £” is the effective plastic strain (logarithmic).
The strength coefficient, K and strain-hardening exponent, r are used as design variables.
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Head impact problem (Balasubramanyam, 2001)
This problem is outlined in Figure 5. Shown is a Free Motion Headform (FMH) impacting
the A-pillar of a vehicle covered on the interior with plastic trim. The am of the
optimization isto reduce the Head Injury Criterion,

HIC-d = 166.4 + 0.75466*HIC (12)

(as measured at the FMH’ s center of gravity) by modifying the trim design. The five design
variables used are the trim thickness, rib height and thickness, number of ribs and rib span
(distance between the first and last rib). Note that the inclusion of the number of ribs as a
design variable makes this an integer-based optimization problem. Adaptive meshing is
incorporated in the parameterization of the mesh through the TrueGrid (XYZ, 2000)
preprocessor to ensure good mesh quality for al possible designs. Note that this is an
unconstrained minimization problem as no limits are placed on e.g. the intrusion into the
trim or on the mass of the trim.

Results and discussion

Hock and Schittkowski problems

The results for the 38 problems are summarized in Tables | and Il. The results obtained
using Powell’ s Sequential Quadratic Programming (SQP) method as reported by Hock and
Schittkowski are given in Table I, while the results for the SRSM and SLP method are
givenin Tablell. nisthe number of design variables.

Convergence is defined in terms of the objective function, with the number of iterations
required for 1% and 0.01% convergence given in Tables | and 1. The error on the objective
isdefined as

act_.f ‘
for = x100% (13)
1+ f o |
where f,, is the exact objective function value (Hock, 1981) and f "is the computed
optimum.

For the SQP results, only final convergence values are available, and the iterations to this
final value and the error are given. Note that for each iteration, the objective function,
constraint function(s) (if present) and their gradients must be evaluated. SRSM employs
1.5(n+ 1)+ 1 D-optima design points for each iteration, while the SLP method uses a
small finite-difference step size (10°°), therefore requiring only n+ 1 evaluations for the
numerical gradient. For all the problems, unless otherwise indicated, the original subregion
is 25% of the design space in each variable. No problems other than those reported here
were attempted.
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The result of the twelve-corner polytope problem of Svanberg (1995, 1999) is adso given in
Tables| and I1. Svanberg listed the optimum as 280, found in about 150 iterations (50 outer

with about 3 inner iterations each) to an accuracy of 10°° using the Method of Moving
Asymptotes (MMA) algorithm. Astonishingly, the SLP method finds this optimum to

within 107 in 7 and to within 10™ in 8 iterations.

Summary of tabled results:
e The SQP method fails to find alocal minimum in 2 of the 37 problems it was tested
on.

e The SRSM method fails to find a loca minimum in 5 of the 38 problems with
modification to the default heuristics only required once for convergence.
e The SLP method failsto find alocal minimum in 4 of the 38 problems.

For three of the problems where SQP and SLP failed to converge to the global optimum
(Problems 16, 33, and 63), SRSM performed better. E.g. for Problem 16, SRSM found the
optimum in 80 iterations, but only through the alteration of ja in Equation 8 from the
default value of 1.0 to 1.2. Thisis the only such amendment in this study. The SQP method,
on the other hand, found the global optimum in Problems 13 and 20, while SRSM and SLP
converged to local minima. Both SQP and SLP found the correct optimum in Problem 15,
while SRSM converged to a local minimum. It should be emphasized that the results
presented are for a single starting design for each problem, and that the ability of some of
the algorithms to find the global optimum whilst others found local optima, is based on
chance.

Small car crash problem

The starting design and optimum design values of the small car crash problem are shown in
Table 111 together with the bounds on the design variables. Note that the initial design is
infeasible due to the violation of the intrusion constraint.

The optimization history for the small car crash problem is shown in Figure 6 for the
objective (HIC) and in Figure 7 for the design variables (thood 8Nd tounper). The correct
minimal HIC-value is approximately 106 with zero violation of the intrusion. The effect of
the only parameter that the user must select in SRSM, the range of the initial subregion, is
also shown in Figure 6. It can be seen that the initial subregion size has an effect on the
initial convergence, but that the heuristics of the algorithm removes the influence of this
parameter by the 8th iteration, making it robust to this selection for this example.

The effect of theinitial range is more pronounced on the history of the design variables (see
Figure 7), as the initial linear response approximation is less accurate for the larger ranges
(4 and 5mm). As soon as the zooming parameter is activated, the subregion becomes
smaller and the approximations more accurate, resulting in reduced oscillation in the design
variable values as convergence is approached.
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Figure 8 shows that simulation results and the response surface predictions converge by
about the fourth iteration for an initial range of 2.0mm. The comparison is interesting
because it shows the response surface accuracy and the degree of noise present in the
problem.

Material identification problem
The starting design and optimum design values of the material identification problem are
shown in Table IV together with the bounds on the design variables.

The optimization history for the design variables is given in Figure 9 as a function of the
initial range. It can be seen that although SRSM is sensitive to this parameter, the algorithm
Is robust. The stable convergence rate can aso be viewed in the objective function (least-
squares error) history plot in Figure 10.

Head impact problem
The starting design and optimum design values of the head impact problem are shown in
Table V together with the bounds on the design variables.

The objective function history is given in Figure 11. The solid line represents the result
interpolated from the response surface while the solid sguares indicate the simulated
objective at the current design. As the optimization progresses, the difference between these
two diminishes due to the improvement in the approximation. Figure 11 also demonstrates
that although SRSM does not include an integer optimization method, it succeeds in the
present example in converging to a solution likely to be near an optimum. This example
seems to have more noise than the crash problem.

The initial and optimum designs are compared side by side in Figure 12. The reduction in
HIC-d is due to a more gradual deceleration of the Free Motion Headform (FMH) upon
impact. Figure 13 illustrates how the optimum design cushions the impact by removing the
peak in the acceleration curve.

Conclusions
A Successive Response Surface Method (SRSM), specifically tailored for simulation-based
optimization, was presented in this paper and tested on a variety of test cases.

The following conclusions can be drawn:

1. The SRSM method performed surprisingly well on the analytical test problems,
even though it only used linear approximations. Convergence was in general slower
than for SQP, but the contracting subregion helped the algorithm to move into close
proximity of the optimum. In general, progress to the region of the optimum is
rapid, followed by an expected slow convergence to a higher accuracy.

2. In the engineering test cases, the SRSM method exhibited stable convergence
characteristics and the robustness of the method proved to be insensitive to the
selection of theinitial subregion size.

10



Sander, N. and Craig, K.J. On the robustness of a simple domain reduction scheme for simulation-
based optimization, Eng. Comput., Vol. 19 (4), pp. 431-50, 2002

3. Inthefinal test case, SRSM was able to successfully include an integer variable in
the optimization process. Although the success rate of this application is not
evident, it is an indication that SRSM is able to deal with the noise induced by
approximating a continuous variable with an integer. A more rigorous approach
would be to conduct a discrete optimization of the approximate subproblem.

4. An SLP agorithm based on the same domain reduction scheme as SRSM proved to
be successful for coarse convergence although it is expected to be successful only
for smooth analytical problems.

Finally, the results in this paper demonstrate that, when considering coarse convergence
properties, the performance of the Successive Response Surface Method does not differ
dramatically from other, more established agorithms such as SQP. While the failure of
numerical gradient-based methods such as SQP is well documented for noisy problems, it
has been shown that SRSM has the potential of obtaining, with a reasonable degree of
accuracy and without experimentation with user-selected parameters, converged
optimization solutions to these problems. This makes the algorithm idea for
multidisciplinary optimization problems in which multi-point approximations are suitably
constructed for noisy functions (e.g. from crash simulations) and analytical gradients are
available for smooth functions (e.g. modal frequencies).
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Figure 2 — The sub-region contraction rate A as afunction of the oscillation indicator ¢ and
the absolute move distance |d|
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Hood

Figure 3 — Small car crash: geometry of deformed (50ms) and undeformed shape

Figure 4 — Quarter symmetric model of test specimen
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Figure 5 — Head impact problem: Design variables and trim deformation due to impact of
FMH
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Figure8 — Small car crash: Optimization history of HIC — simulation results (dots) and
response surface results (line). Initial range = 2.0mm.
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Figure 12 — Head impact problem: Initial and optimum trim designs
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Problem # n fact SQP
f Niter ferr

2 2 | 0.0504 28.4 - -
10 2 -1 -1 12 5e-8
12 2 -30 -30 12 le-8
13 2 1 1 45 5e-8
14 2 1.39 1.39 6 8e-9
15 2 307 307 5 1le-8

16 2 0.25 23.1° - -
17 2 1 1 12 le-8
20 2 38.2 38.2 20 5e-9
22 2 1 1 9 1e8
23 2 9 9 7 1e8
24 2 -1 -1 5 1e-8
26 3 0 0 19 4e-8
27 3 0.04 0.04 25 2e-8
28 3 0 0 5 3e-21
29 3 -22.6 -22.6 13 9e-11
30 3 1 1 14 le-8
31 3 6 6 10 le-8
32 3 1 1 3 1e-8

33 3 -4.59 -4" - -
36 3 -3300 -3300 4 le-8
45 5 1 1 8 1e-8
52 5 5.33 5.33 8 6e-9
56 7 -3.46 -3.46 11 le-8
60 3 | 0.0326 | 0.0326 9 3e8
61 3 -144 -144 10 2e-8

63 3 952* 962" = -

65 3 0.954 2.8 - -
71 4 17.0 17.0 5 2e-8
72 4 728 728 35 le-8
76 4 -4.68 -4.68 6 3e9
78 5 -2.92 -2.92 9 3e9
80 5 | 0.0539 | 0.0539 7 8e-10
81 5 | 0.0539 | 0.0539 8 2e-9
104 8 3.95 3.95 19 8e-9
106 8 7050 7050 44 le5

108 9 -0.866 | -0.697" - -
12-corner polytope” 21 280 280 150 le-6

Table | — Hock and Schittkowski problems (SQP): number of iterations Niter
corresponding to objective f* (error fo, and known optimum f..)
¥ SRSM found alower optimum than that listed in Hock & Schittkowski (1981)
+ Converged to local optimum # Obtained by MMA (Svanberg 1995, 1999), not SQP
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Problem # n fact SRSM SLP
f Niter Niter f Niter | Niter
(1%) | (0.01%) (1%) | (0.01%)
2 2 | 0.0504 6.55 - - 0.524 - -
10 2 -1 -1 13 18 -1 24 27
12 2 -30 -30 5 11 -30 5 7
13 2 1 0.76 - - 0.781 - -
14 2 1.39 1.39 9 13 1.39 4 5
15 2 307 360" - - 306 5 -
16 2 0.25 0.25° 68 79 23.1° - i
17 2 1 1 8 11 1 6 6
20 2 38.2 40.2° - - 40.2° - -
22 2 1 1 8 12 1 5 5
23 2 9 9 13 18 9 1 2
24 2 -1 -1 2 2 -1 2 2
26 3 0 0 15 22 0 9 11
27 3 0.04 0.079 - - 0.072 - -
28 3 0 0 10 14 0 11 12
29 3 -22.6 -22.6 7 16 -22.6 5 9
30 3 1 1 9 10 1 9 12
31 3 6 6 8 15 6 8 11
32 3 1 1 1 1 1 2 2
33 3 -4.59 -4.59 4 9 4" - -
36 3 -3300 -3300 5 5 -3300 5 5
45 5 1 1 6 6 1 6 6
52 5 533 533 9 15 5.33 6 11
56 7 -3.46 -3.46 15 25 -3.46 10 12
60 3 | 0.0326 0.0326 11 15 0.0326 11 23
61 3 -144 -144 6 11 -144 4 6
63 3 952¢ 952 2 8 962° - -
65 3 0.954 0.954 18 22 0.954 14 16
71 4 17.0 17.0 4 10 17.0 2 5
72 4 728 728 34 53 820" - -
76 4 -4.68 -4.68 5 13 -4.68 3 8
78 5 -2.92 -2.92 20 28 -2.92 9 12
80 5 | 0.0539 0.0539 7 11 0.0539 1 6
81 5 | 0.0539 0.079 - - 0.0539 4 6
104 8 3.95 3.95 8 14 3.95 8 18
106 8 7050 7050 8 13 7049 4 5
108 9 -0.866 -0.866 27 32 -0.675" - -
12-corner polytope | 21 280 279 7 - 280 7 8

Table Il — Hock and Schittkowski problems: number of iterations (Niter) corresponding to

objective f' (SRSM and SLP)

$Ypn = 1.2

+ Converged to local optimum
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¥ SRSM found alower optimum than that listed in Hock & Schittkowski (1981)

Minimum | Initial | Maximum Optimum
thood [ MM] 1 1 6 1.51
thumper [MM] 1 3 6 5.85
HIC 68.33 106.78
Intrusion violation [mm] 24.34 0

Table Il — Small car crash: Design variable upper and lower bounds; initial and optimum
values of objective, design variables and constraint

Minimum Initial Maximum Optimum
K [GP4] 0.7 1 2 1.23865
r-] 0.01 0.1 0.2 0.106726

Table IV —Material Identification: Design variable upper and lower bounds,
initial and optimum values of design variables

Minimum | Initial | Maximum Optimum
Trim thickness [mm] 2 2.9
Rib thickness [mm] 0.8 1 1.8 0.8
Rib height [mm] 6 6 15 6.5
Number of ribs[-] 4 4 16 11
Rib span [mm] 130 180 180 140
HIC-d 1400 482

Table V — Head Impact Problem: Design variable upper and lower bounds;
initial and optimum design values of objective and design variables
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