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Background and motivation
• Geometrical and material imperfections cannot always be 

ignored as in deterministic design
• Imperfections are random fields (stochastic processes) and 

can be modeled
• Shell buckling particularly sensitive to imperfections (both 

in geometry and in boundary conditions)
• Stochastic analysis (Monte Carlo) required to quantify 

stochastic variation in non-linear buckling
• For optimal design when geometric imperfections are 

present, the stochastic analysis has to be incorporated into 
the optimization process

Karhunen-Loève expansions 
• Expand random field
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( ) xϖ Average random field
fi eigenfunctions of covariance kernel

ξ uncorrelated random numbers
λ associated eigenvalues

Series representation of a continuous Gaussian process in 
terms of the spectral expansion of its covariance function
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Karhunen-Loève expansions (2)
• Fredholm equation of 2nd kind

• Covariance kernel obtained experimentally or 
specified analytically

is solved to obtain f
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Karhunen-Loève expansions (3)
• Solutions to Fredholm equation not available 

in general, perform numerical integration
• One method is to use Galerkin method
• Basis functions: 

Write as error and make orthogonal to basis 
functions: 
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Karhunen-Loève expansions (4)
• Eigensystem is obtained

• Efficient to use orthogonal wavelets as basis 
functions:

So that

where
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Karhunen-Loève expansions (5)
• Solve through 2 successive wavelet 

transforms for 2D random process
• So that we again get an eigensystem

Or

And finally
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Non-linear dynamic analysis of 
buckling

• LS-DYNA simulation
• Shell with cut-outs
• Random field of geometrical 

imperfections superimposed
• Peak normal force and 

internal energy extracted 
from simulation

• Parametric model using 
Truegrid

thickness

Hole area

Non-linear dynamic analysis of 
buckling (2)

• Internal energy

Elastic material modelElastoplastic
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Non-linear dynamic analysis of 
buckling (3)

• Peak force

Elastic material modelElastoplastic

Stress on buckled shape

Elastic material modelElastoplastic

at 2.4ms
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Optimization set-up
• Design variables: thickness and hole area
• Constraints on maximum peak force and 

internal energy considered
• Run Monte Carlo analysis at each 

experimental point to obtain average peak 
force and internal energy

• Use LS-OPT for Successive Response Surface 
Method (SRSM) and Monte Carlo analysis

Optimization cases
• Case 1: Deterministic optimization

– Min Mass, 
s.t. Peak Force < 1800, Internal Energy > 0.3

• Case 2: Stochastic optimization
– Min Mean Mass, 

s.t. Avg Peak Force < 1800, 
Avg Internal Energy > 0.3

• Case 3: Robust optimization
– Min COV (Peak Force), 

s.t. Avg Peak Force < 1800, 
Avg Internal Energy > 0.3

COV 
= Coef of Variation
= σ/μ
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Optimization flow chart (stochastic)
Starting design

Generate 7n full-factorial experimental design

Run Monte Carlo analysis (96 samples)

Calculate average responses

Construct metamodels for each averaged response

Optimizer

Converged? Stop
YesNo

New design

Repeat for all
exp points

LS-OPT in Metamodel-
Based Optimization Mode
LS-OPT in Monte Carlo

Analysis Mode

Case 1: Deterministic optimization

Design variables Objective

Optimum

Min Mass, s.t. Peak Force < 1800, Internal Energy > 0.3
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Case 1: Deterministic optimization (2)

Peak force constraint Internal energy constraint

Min Mass, s.t. Peak Force < 1800, Internal Energy > 0.3

Case 2: Stochastic optimization

Initial

Robust

Stochastic

Deterministic

Min Mean Mass, 
s.t. Avg Peak Force < 1800, Avg Internal Energy > 0.3

Mean Mass

Active constraint
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Case 2: Stochastic optimization (2)

Initial

Robust

Stochastic

Min Mean Mass, 
s.t. Avg Peak Force < 1800, Avg Internal Energy > 0.3

Mean Internal Energy

Active constraint

Case 2: Stochastic optimization (3)

Initial

Robust

Stochastic

Min Mean Mass, 
s.t. Avg Peak Force < 1800, Avg Internal Energy > 0.3

Mean Peak Force

Active constraint
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Min COV(Peak Force), 
s.t. Avg Peak Force < 1800, Avg Internal Energy > 0.3

Case 3: Robust optimization

Quadratic Neural Net

COV Peak Force

Active constraintActive constraint

Initial
Robust
Stochastic

Summary results
 Case 1 

(Deterministic) 
Case 2 (Mean Mass) Case 3 (COV peak force) 

 Initial Final Initial Quadratic NN Initial Quadratic NN 
Thickness 

[mm] 
0.116 0.102 0.116 0.103 0.105 0.116 0.142 0.140 

Hole area [m2] 0.0015 0.000730 0.0015 0.0005 0.0005 0.0015 0.00182 0.00171 
Average mass [kg] 0.0257 0.0246 0.0257 0.0253 0.0259 0.0257 0.0305 0.0304 

Average peak force [N] 1656 1737 1390 1671 1717 1390 1800 1800 
Average  internal 

energy 
0.313 0.300 0.221 0.3 0.3 0.221 0.3 0.3 

Peak 
force 

  124 144 148 124 148 147 
Standard 
deviation Internal 

energy 
  0.0209 0.0129 0.0150 0.0209 0.0318 0.0335 

Peak 
force 

  0.0892 0.0860 0.0862 0.0892 0.0823 0.0815 
Coefficient 
of variation Internal 

energy 
  0.0946 0.0430 0.0500 0.0946 0.106 0.112 

 

Mass reduced

Similar result 
(small holes, thin)

COV improved at cost of mass 
increase (large holes but thick)

NN fits similar
Notice different 

baseline 
performance
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Geometrical imperfections of optima
96 random fields for Monte Carlo runs

Robust optimumStochastic optimum

Conclusions
• Feasible, but expensive, to include stochastic 

and robustness effects into optimization 
process

• Inclusion of stochastic effects did not modify 
deterministic optimum significantly

• Robust optimization led to a much heavier 
design

• Robust and stochastic optimization process 
fully automated using LS-OPT in Metamodel 
mode to call LS-OPT in Monte Carlo 
Analysis mode
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Future work

• Extend simulation to consider post-
buckling performance

• Apply to more realistic examples 
(require measured geometric 
imperfections)

Post-buckling
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