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1 Introduction 

Ever-tightening regulations on fuel economy, and the likely future regulation of carbon emissions, 
demand persistent innovation in vehicle design to reduce vehicle mass. Classical methods for 
computational mass reduction include sizing, shape and topology optimization. One of the few remaining 
options for weight reduction can be found in materials engineering and material design optimization. 
Apart from considering different types of materials, by adding material diversity and composite materials, 
an appealing option in automotive design is to engineer steel alloys for the purpose of reducing plate 
thickness while retaining sufficient strength and ductility required for durability and safety. 
 
A project to develop computational material models for advanced high strength steel is currently being 
executed under the auspices of the United States Automotive Materials Partnership (USAMP) funded 
by the US Department of Energy. Under this program, new Third Generation Advanced High Strength 
Steel i.e. 3GAHSS are being designed, tested and integrated with the remaining design variables of a 
benchmark vehicle Finite Element model. The objectives of the project are to integrate atomistic, 
microstructural, forming and performance models to create an integrated computational materials 
engineering (ICME) toolkit for 3GAHSS.  
 
The mechanical properties of Advanced High Strength Steels (AHSS) are controlled by many factors, 
including phase composition and distribution in the overall microstructure, volume fraction, size and 
morphology of phase constituents as well as stability of the metastable retained austenite phase. The 
complex phase transformation and deformation mechanisms in these steels make the well-established 
traditional techniques obsolete, and a multi-scale microstructure-based modeling approach following the 
ICME [1] strategy was therefore chosen in this project. 
 
Multi-scale modeling as a major area of research and development is an outgrowth of the 
Comprehensive Test Ban Treaty of 1996 which banned surface testing of nuclear devices [2]. This had 
the effect that experimental work was reduced from large scale tests to multiscale experiments to 
provide material models with validation at different length scales. In the subsequent years industry 
realized that multi-scale modeling and simulation-based design were transferable to the design 
optimization of any structural system.  
 
Horstemeyer [2] lists a number of advantages of the use of multiscale modeling. Among these are: the 
reduction of product development time by alleviating costly trial-and-error iterations as well as the 
reduction of product costs through innovations in material, product and process designs. Multi-scale 
modeling can reduce the number of costly large scale experiments and can increase product quality by 
providing more accurate predictions. Research tends to be focussed on each particular length scale, 
which enhances accuracy in the long term. 
 
This paper serves as an introduction to the LS-OPT® and LS-DYNA® methodology for multi-scale 
modeling. It mainly focuses on an approach to integrate material identification using material models of 
different length scales. As an example, a multi-scale material identification strategy, consisting of a 
Crystal Plasticity (CP) material model and a homogenized State Variable (SV) model, is discussed and 
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the parameter identification of the individual material models of different length scales is demonstrated. 
The paper concludes with thoughts on integrating the multi-scale methodology into the overall vehicle 
design. 
 

2 New user material models in LS-DYNA® 

Two constitutive models were implemented as user materials. These two models represent the two 
length scales respectively. 

2.1 The MSU Crystal Plasticity model (Michigan State University) 

The Combined Constraints Crystal Plasticity model [3]  which is based on the principle of maximum 
dissipation is used to model the large plastic deformation in single crystals.  
 
This model uses an optimization method to define a crystal plasticity based yield function. Crystal 
orientation is taken into account through the definition of Euler angles: ψ, θ, φ. The following hardening 

equation is used to model the flow stress [4,5]: 
 

 �̇�𝛼 = ∑ ℎ𝛼𝛽|�̇�𝛽|𝑁
𝛽=1  (1) 

 

This equation states that slip on any slip system β contributes to the shear stress on a slip system α. 

Here γ̇β is the shear strain increment on a slip system β and τ̇α is the increment of shear stress on a slip 

system α. ℎ𝛼𝛽 is the hardening moduli matrix and has the following form [5]: 
 

 ℎ𝛼𝛽 = ℎ𝛽[𝑞 + (1 − 𝑞)𝛿𝛼𝛽] (2) 
 

Here 𝛿𝛼𝛽 is the Kronecker delta, 1 ≤  𝑞 ≤ 1.4, and ℎ𝛽 is defined as [5]: 
 

 ℎ𝛽 = ℎ0 |1 −
𝜏0

𝛽
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𝛽|
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in which ℎ0 is a constant that defines the hardening rate, 𝑎 is the hardening exponent and 𝜏0
𝛽
 is the 

critical resolved shear stress on a slip system 𝛽. The value of 𝜏0
𝛽

 evolves during the deformation until it 

reaches 𝜏𝑠
𝛽

 which is the saturation value of the resolved shear stress on the slip system 𝛽. 

 

2.2 State Variable model (Pacific Northwest National Laboratory) 

PNNL has developed a State Variable model using the phase properties obtained from the CP model. 
A simple model is used to homogenize the Young’s modulus, Poisson ratio, plastic modulus and volume 
fraction of each phase respectively. Phase stress-strain curves can be provided from the lower length-
scale modeling (in this case CP) results or from experimental methods such as in-situ High Energy X-
ray Diffraction (HEXRD) test. As for the phase transformation, the Olsen-Cohen model [6] is used as a 
phenomenological phase transformation kinetics model with the evolution of the austenitic volume 
fraction defined by: 
 

𝑉𝑡𝑚 = 𝑉𝑎0[1 − exp {−𝑏[1 − exp(−𝑎𝜀�̅�)]𝑛}]    (4) 

 
where 𝑎, 𝑏, and 𝑛 can be determined by fitting with the experimentally obtained phase transformation 
kinetics under different loading conditions. 
 
The original model developed by PNNL was implemented in LS-DYNA and enhanced in the following 
aspects: 
 

1. The consistent tangent stiffness was implemented for implicit analysis. This is required in the 
larger design optimization problem which involves vehicle performance and requires modal 
frequency properties. The material identification process is also significantly accelerated by not 
having to use explicit dynamic analysis. 

2. A Newton iteration scheme was implemented to compute the plastic consistency parameter. 
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3. The material was extended to shell elements by implementing a Newton iteration scheme for 
enforcing the plane stress condition. This iteration scheme is necessary in LS-DYNA because 
for the Hughes-Liu shells, a Jaumann stress update results in a non-zero normal stress being 
provided to the material routine. Because of this, the common alternate approach of analytically 
projecting the stress to the plane-stress space is inadequate. 
 

3 Integration of the MSU-CP model with the PNNL-SV model in LS-OPT 

Because of the interdependency of the material parameters, calibration of the PNNL-SV model relies 
on the calibrated MSU-CP model parameters as inputs. Thererefore, a multi-level process is required to 
integrate the models. Different stages [7] are required in order to sequence the two parameter 
identification tasks which are accompanied by multiple test cases to incorporate the four metal phases 
and five triaxial load cases. Different levels [7] are required because, to calibrate the two models, 
optimization stages are involved in the process flow and have to be controlled from an outer level. 
 
The process is depicted in Figure 1 and is summarized as follows: 
 

1. Parameter identification of the MSU-CP model using single grain micropillar tests:: 
a. Choose a material model from the available lattice options: FCC, BCC-12, BCC-24, 

BCC-48. The code after the word BCC represents the number of the slip systems 
implemented in the model. These can be set in the MSU-CP model.  

b. Obtain experimental force-displacement curves for each of ferrite, austenite, martensite 
and newly transformed martensite phases. Micropillar tests are used for ferrite and 
martensite. A single grain with pre-determined orientation is used for generating the 
calibration test data in order to avoid the complexity associated with relative orientations 
of multiple grains. 

c. Construct finite element (FE) models for the micro-pillar experiments used to determine 
the force-displacement curves. 

d. Using 4 parameter identification runs, one for each phase, determine the strain-
hardening parameters 𝜏0𝑖, 𝜏𝑆𝑖, ℎ0𝑖, 𝑎𝑖, 𝑖 = 1,2,3  for each phase. The remaining 
parameters are assumed to be constant. 

2. Simulation of the 4 polygranular models using the afore-optimized MSU-CP model: 
a. Determine an average output stress-strain curve using a polycrystal FE model for each 

phase. A polycrystal model consists of a meshed representative volume, e.g. cube, with 
multiple grains. Each grain has a random orientation given by randomized Euler angles 
of the integration points. The Euler angles are randomized internally when the 
appropropriate option is selected. 

3. Parameter identification of the State Variable Model: 
a. Obtain experimental retained austenitic volume fraction vs. equivalent plastic strain 

curves for 5 triaxial stress states: (bi-axial, compression, tension, plane strain and 
shear). 

b. Feed the 4 output stress-strain curves from the 4 previous polycrystal runs into the 
PNNL-SV model. If computational stress-strain curves are not available due to 
unavailability of single grain CP calibration data, experimental curves for polycrystal test 
samples can be used. 

c. Execute a parameter identification run to determine 𝑎𝑖,𝑏𝑖,𝑛𝑖 for each triaxial load case 
𝑖. The Olsen-Cohen formula [Eq. (4)] is used for this purpose. 

4. Data Processing and sheet metal forming: 
a. Use response-variables [7] to convert the 5 𝑎, 𝑏, 𝑛 values to 𝒂, 𝒃 and 𝒏 curves with 

respect to triaxiality values, each with 5 points. The curves for 𝑎, 𝑏 and 𝑛 with respect 
to triaxiality define the final SV model that can be used for an LS-DYNA metal forming 
or crash analysis. In case all 5 values are not available, a smaller number can also be 
used to define each curve. 
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Fig.1: Process flow of the integrated multi-scale calibration of Crystal Plasticity and State Variable 
models 

 

4 Calibration of the MSU Crystal Plasticity model using LS-DYNA and LS-OPT 

To gain an understanding of the calibration of each phase and loading, each calibration was first studied 
as an isolated individual component. 
 
The calibration of the Crystal Plasticity BCC-24 model was conducted with LS-OPT using the ferrite and 
martensite phases. The experiments are done on single grain micropillar structures of which tip 
displacement and force results are extracted. A micropillar constitutes a pure crystal structure 
representing a single phase and is in the form of a tapered cylinder with measurements in the 1 micron 
range. BAO QP980 steel was used in the experiments. 

4.1 Preparation of the experimental data  

Experimental stress-strain test results for the Ferritic and Martensitic phases were obtained from Brown 
University. The two respective sets of compression stress-strain results are shown in Figure 2(a). The 

results are based on the Force-Displacement results where stress 𝜎 =
4𝐹

𝜋𝐷2 and strain 𝜀 =
𝛿

𝐿
 where F 

is the compressive force, D is the diameter of the micro-pillar tip and 𝛿 and L are the deformation and 

length of the micro-pillar respectively. The model is calibrated using the 8 strain hardening parameters 
shown in Table 2. 
 

Material parameters treated as constants are shown in Table 1. The 𝐶𝑖𝑗 symbols represent the elastic 

moduli, whereas  the Euler angles, which represent the crystal orientation, are specified based on the 
specific sample being calibrated as no two crystal orientations are alike. Either of the two crystal systems 
BCC (body-centered cubic) or FCC (face-centered cubic) can be specified in the model. Martensite has 
a BCT (body-centered tertagonal) structure, but its deviation form the BCC structure is very small. 
Therefore, this model treats martensite as BCC. 
 
 
 
 
 
 
 

Crystal Plasticity model  

calibration: 

Phase 𝑖 (𝑖 = 1, . . ,4) 

CP Polygranular model 
Phase 𝑖 (𝑖 = 1, . . ,4) 

State Variable 
model 

calibration: 

Triaxial loading 

(𝑗 = 1, . . ,5)

SV Macroscopic model 

Micropillar exp. 

Stress-strain data 

Stress-strain  
curves 

𝑎𝑗 , 𝑏𝑗 , 𝑛𝑗 ,   

𝑗 = 1, … ,5 

Hardening 
parameters

𝜏0𝑖 , 𝜏𝑆𝑖 , ℎ0𝑖 , ℎ𝑎𝑖 ,   
𝑖 = 1, … ,4 

Vol. fraction 

exp. curve data 

20x20x20 element FE model 

Olsen-
Cohen  
Model 
[Eq.4)] 
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Parameter Baseline value 

Mat_selector Body centered cubic 

𝐶11  269,231 

𝐶12  115,385 

𝐶44  76,923.1 

𝝍 = 𝜶𝟏  Depends on 
experimental data 

𝜽 = 𝜶𝟐  Depends on 
experimental data 

𝝋 = 𝜶𝟑  Depends on 
experimental data 

 

Table 1: Constants defined in the MSU Crystal Plasticity model. 

 
A filtering procedure, which ensures a monotonic increase of the strain values across all data points, 
was applied to eliminate two problems encountered in the experimental data: 
  

1. Erratic stress-strain curves which do not have monotonically increasing displacement 
measurement. This could be problematic for ordinate-based curve matching since there is more 
than one stress solution for a particular strain value.  

2. This remedy also happens to partially address the slip behavior after the yield point. The slip 
phenomenon is not addressed in the material model, so should ideally be excluded from the 
data to prevent a false identification. 

 
The filtered curves are shown in Figure 2(b). 
 
 

 

 

 
(a)  (b) 

Fig.2: (a) Original experimental stress-strain curves of the single crystal Ferrite (F2-F7) and Martensite 
(M3-M7) phases used in the calibration of the Crystal Plasticity model (provided by Prof. S. 
Kumar and Dr. H. Ghassemi-Armaki, Brown U.). Each curve represents a different test and 
hence a different set of Euler angles to orientate the crystal lattice. (b) Results of filtering the 
original curves. The filtering procedure ensures a monotonic increase of the abscissa values to 
facilitate the calibration and partially obscures the deep spikes caused by slip behavior not 
accounted for in the computational model. 

 

4.2 The Finite Element model of the micro-pillar experiment 

The Finite Element model of the micro-pillar (MSU) used in the CP model calibration is shown in Figure 
3. The model has an elastic base to represent the foundation of the micro-pillar. To model a compression 
load, a rigid surface is applied at the top. 
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Fig.3: FE model of the micro-pillar (originally from Prof. Farhang Pourboghrat, MSU) used in the CP 
calibration. The lower part (dark green) represents an elastic foundation. The base is constrained 
at the bottom and a downward compressive force is applied at the top. 

 
An elastic base was introduced by MSU to represent the elastic foundation of the micro-pillar. To 
address the uncertainty of the elastic properties of the foundation, the Young’s Modulus of the elastic 
foundation was added to the calibration formulation as an optimization variable. The choice of foundation 
modulus influences the calculation of the deformation (determined by the tip displacement) and therefore 
also the stress-strain curve. 
 

4.3 Calibration results for the CP model  

The optimization setup was tested by computing the Mean Squared Error residual based on the ordinate 
values at the experimental points of each experimental curve and aggregating the results for the phase 
under consideration. For Martensite, the Euler angles were reported to be the same for all the 
experiments. Hence only a single simulation was used for each optimization step. For Ferrite, each 
experiment had a unique set of Euler angles which required a unique input file for each experiment at 
each optimization step. The BCC-24 crystal plasticity model was used for both phases. 
 
The results for both the martensite and ferrite calibrations are shown in Table 2. Figures 4 and 5 show 
the comparison of the test and computed results for the calibrated material. 
 
 

Parameter 𝜏01 𝜏02 𝜏𝑆1 𝜏𝑆2 ℎ01 ℎ03 𝑎1 𝑎2 

Ferrite 170 338 750 613 102 61.4 1.00 1.96 

Martensite 485 676 564 942 146 38.7 2.33 4.96 

 

Table 2: Final strain hardening parameters for the martensite and ferrite phases using the MSU CP 
model. These parameters were used as variables in the calibration. 

 
 
 



10th European LS-DYNA Conference 2015, Würzburg, Germany 

 

 

 
© 2015 Copyright by DYNAmore GmbH 

 
 

Fig.4: Final stress-strain histories of the calibrated martensite constitutive model (M3,5,6,7). The 
crosses represent the experimental results. The blue curve represents the computed stress. 

 

  
(a) (b) 

  
(c) (d) 

 

Fig.5: Final stress-strain histories of the calibrated ferrite constitutive model (F2-5). The crosses 
represent the experimental results. The blue curve represents the computed stress. 
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4.4 Remarks 

It should be noted that the discrepancies observed in Fig. 4 and Figs. 5 (a)-(d) may partially be because, 
for each phase, the residual for a unique set of hardening parameters is minimized across all the 
experiments. A unique set of hardening parameters should therefore be able to represent all the 
experimental curves for a particular phase. A general mismatch, involving all the curves, can be caused 
by a single outlier. 
 

It should also be noted that 𝜏𝑆𝑖 > 𝜏0𝑖; 𝑖 = 1,2,3 as dictated by the CP model theory. 

 

5 Calibration of the PNNL State Variable model using LS-DYNA and LS-OPT 

 
The calibration of the State Variable model uses experimental data generated by the in-situ High Energy 
X-ray Diffraction (HEXRD) test. The experimental data is defined by the retained austenitic volume 
fraction or the corresponding transformed martensitic volume fraction as a function of equivalent plastic 
strain. The computed curves are obtained using the Olsen-Cohen model [6]. 
 
Five tests are required to calibrate the 𝑎, 𝑏 and 𝑛 constants to produce 5 curves required in the final 
model. The load states for the five tests are tensile, compression, shear, plane strain and biaxial. The 
results of the tensile test calibration are shown in Fig. 6 while the corresponding parameter values are 
shown in Table 3. 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.6: Results of the calibration of the State Variable model for the tensile test. 

 

Experiment type 𝑎 𝑏 𝑛 

Tensile 1.33 5 1.44 

 

Table 3: Final parameters for the Olsen-Cohen formula for the tensile load case using the State 
Variable material model. These parameters were used as variables in the calibration. 

 

6 LS-OPT enhancements required for integration 

After preliminary tests of the individual calibration components of the overall multi-scale framework, the 
components were integrated into LS-OPT as shown in Figure 7. Some of the individual components, 
such as some of the test results for the calibration of the SV model, were not available at the time of 
writing. However a display of the LS-OPT setup is provided and a detailed description is given in the 
caption of Figure 7. 
 

Baseline 

Optimum 

Experimental result 
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Fig.7: Multi-level LS-OPT GUI display of the process flow of the integrated multi-scale MSU-CP/PNNL-
SV model parameter identification showing (i) identification of the individual CP phases (1st row 
below Sampling), (ii) polycrystalline analysis of each phase (2nd row) and (iii) PNNL-SV 
parameter identification for five triaxiality cases. Each box is referred to as a „stage“ which is 
used to define the solver data (solver package, input files) for that stage. Each PNNL-SV 

parameter identification produces a point on the 𝒂, 𝒃 and 𝒏 curves to be specified for the forming 
analysis (last stage). Stages with “OPT” icons represent LS-OPT runs involving sublevel 
simulations, whereas other stages represent LS-DYNA simulations. The smaller boxes in the 
flow between (ii) and (iii) represent transfer of stress-strain curves from all the CP to all the SV 
models (to bridge the length scale gap). 

 
Several enhancements were added to LS-OPT to facilitate the integration of parameter identification at 
various levels. 
 

1. A multilevel optimization capability was created by allowing LS-OPT to be defined as a solver 
or stage type [7] of itself. This allows a multi-level calling structure of infinite depth (at least 
theoretically). The practical implication is that calibration steps can be scheduled from a master 
level to integrate the calibration of the State Variable model which requires stress-strain input 
from individual CP phase calibration steps. Transfer variables were defined so that, in the event 
that the master level is incorporated into an outer vehicle design optimization loop, variables 
defined by experimental designs at the outer level can be transferred down as constants to inner 
levels. Conversely, optimal responses or histories produced at inner levels can be passed to 
outer levels through extraction. 

2. A class of variables named response variables [7] was introduced to allow transfer of data 
between consecutive stages:  

a. The main parameter setup allows the user to link a parameter to a response. This 
selection causes the selected parameter value to be replaced by a response value 
produced by a predecessor stage. The transferred response is therefore substituted 
into the input file of the successor stage. 

b. The response value to be linked can be any value which was directly extracted from a 
solver database, or it can also be a mathematical expression involving any variables, 
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dependents, histories or responses defined in any predecessor stages. All functions 
supported for evaluation at the end of the process flow can be evaluated at any stage 
in the flow, thereafter to be substituted as a parameter. The evaluation of expressions 
was thus transferred from the main LS-OPT program to the extractor process. 

c. Response variables can be transferred between any two stages of a particular thread. 
They do not have to be consecutive. 

d. A specific response can be linked to any number of downstream parameters. 
e. An output history can be flagged to produce a *DEFINE_CURVE file which can serve as 

an include file for LS-DYNA. For example, a stress-strain curve produced by a CP 
calibration can be passed as a material property to the State Variable calibration. 

3. Multilevel navigation features. While setting up or monitoring solver jobs as part of a multilevel 
optimization, navigating between levels can be a daunting task without automatic navigation 
features. A system was therefore implemented to automate the following two tasks: 

a. A feature in the Stage dialog to display the input file of an inner level. 
b. A recursive feature in the job progress dialog to select the GUI of an individual lower 

level process. Once this GUI has been opened, its progress can be selected for viewing. 
 

7 Closure 

An introductory account of the integration of a multi-scale material calibration using LS-DYNA® and LS-
OPT® is given. While the setup process is still in a preliminary stage, it is shown that a micro-scale 
Crystal Plasticity model can be integrated with a macro-scale State Variable model which can then be 
used to model metal structures (sheet metal forming, crash simulation). The two material models have 
been implemented as user materials in LS-DYNA while several features have been added to LS-OPT 
to facilitate sequencing of the calibration steps and the transfer of variables and responses along the 
process flow. Some of the individual calibration components have been tested using experimental 
results from the field.  
 
While the ultimate goal is to conduct an automated multi-scale calibration using LS-OPT, component 
testing and experimental data acquisition are still under way. 
 
Since the material calibration feature described here represents the material design component of a 
larger Multidisciplinary Design Optimization (MDO) of a vehicle, several approaches are being 
contemplated to find a strategy for the integration. Some research ideas are: 
 

1. Construct a model that relates material design variables such as constituent element (e.g. C, 
Mn, Si, Al, etc.) fractions of the alloys and heat treatment variables to the constitutive 
parameters. In this way materials can be designed in a continuous space involving the 
manufacturing process parameters as material design variables. Such a model could be 
constructed using metamodels. 

2. Create a feasible constitutive parameter space by calibrating all the available experiments and 
using classifiers to bound the parameter space. Material variables are continuous, but can be 
constrained during optimization by using the classifiers as constraints. 

3. Use the tools described in this paper to generate State Variable material models by calibrating 
a large number of experiments and use Combinatorial Optimization (such as the Genetic 
Algorithm in LS-OPT [7]) to solve the MDO problem which includes sizing and shape variables. 
This can possibly be done in a multi-level setting in which the material selection is conducted 
using a combinatorial algorithm at an inner level. The disadvantage is that a large number of 
experimental results need to be available before the optimization process can be started, the 
main advantage being that the optimization yields a solution which has already been physically 
tested. 
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