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Overview

Design Improvement and Optimization
= Best multi-criterion designs
= Multiple objectives
= Multiple constraints
= Parameters
- Continuous

« Discrete (underlying continuous, e.g. off-the-
shelf plate thickness)

. Integer (e.g. material types, binary)
= Multiple cases/disciplines
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Overview

Reliability and Robustness

= Reliability:
= Constrain probability of failure

= Robust Design:
- Minimize Standard Deviation of response
- Consistent product performance

= Reliability-based Design Optimization (RBDO)
- Incorporates Reliability and Robustness into

design improvement

= Identify sources of uncertainty in the FE models:
Outlier Analysis
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OPTIMIZATION FUNDAMENTALS
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Gradient Computation
Formulation and types

= Gradient based Optimization and certain
Reliability algorithms require gradient computation
= Types
= Analytical: Derivatives are formulated explicitly
and implemented into the code. Complicated.

= Numerical: Design is perturbed and (n+1)
analyses are simulated.

df(an’)zf(x"‘Aan’)—f(an’)zg. 82%—£
dx Ax Ax’ dr  Ax

e Simple but error prone.
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Gradient Computation

Numerical gradients: accuracy

Ax too small, Ax too large,
é find spurious gradients lose accuracy
~ o
S
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x Safe interval
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Gradient Computation

Causes of spurious derivatives

Spurious derivatives computed using small intervals are
due to:

® Highly nonlinear structural behavior. Especially in
crash analysis.

® Adaptive mesh refinement. Different designs have
different meshes.

® Numerical Round-off error. LS-DYNA uses single
precision computation.
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Response Noise
Wheel: Stamping of Center Pressing (1996)
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Response Noise
Wheel: Final thickness distribution
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Thickness(mm)

Response Noise: Stamping Problem
Final thickness a function of pre-forming die shape
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Approximations

= Sometimes referred to as metamodels

= Local Approximations
= Design Sensitivities (also called Gradients)
« Numerical. Perturb the design. Uses n+1 simulations
« Analytical. Incorporated in the analysis code

= Midrange Approximations

= Uses a region of interest in the design space to construct the
approximations

= Approximations can be simple polynomials, e.g. linear

= Used in iterative methods, e.g. Sequential Response Surface
Method in LS-OPT

=  Global Approximations
= Use the full design space
= Neural Networks
= Radial Basis Function Networks
- Response Surfaces (especially higher order polynomials)

Copyright © Livermore Software Technology Corporation 2009 15

Response Surface Methodology
How does it work?
Design surfaces ( 7) are fitted through points in the design space

(results from simulations) to construct an approximate
optimization problem

f J Computed results

Response surface i/

The idea is to find the surfaces with the best predictive capability
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Response Surface Methodology

Creates metamodel based on polynomial approximations

Does not require analytical sensitivity analysis (analytical
derivatives).

Smoothes the design response, hence stabilizes numerical
sensitivities

Avoids selection of outlier design points by averaging the design
response

Accurate design surfaces in a sub-region allow for inexpensive
exploration of the design space

= Response Surface optimization

« Reliability

Copyright © Livermore Software Technology Corporation 2009 17

Design Variable 2

Design Space Terminology
‘ Range 1 ‘

Region of

interest
\

N | Baseline Design

Range 2

\

Design Space \ Experimental

Design points

Design Variable 1
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Response Surface Methodology
Least squares

y=n(x).

The exact relationship is approximated as
n(x) = f(x).
The approximating function f is:

f(x) = ; a;;(x)

where L is the number of basis functions ¢;
used to approximate the model.

Copyright © Livermore Software Technology Corporation 2009 19

Response Surface Methodology
Least squares

Sum of the square error:

S {001,003 v, 00-Tanx, | |

p=1 p=1

P: number of experimental points

Y, 1s the exact functional response at the
experimental point X,.
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Response Surface Methodology
Least squares

The solution:
a=(X"X)"'X"y
where X 1s the matrix

X = [Xu] = [0:(x0)]-

Choose appropriate basis functions, e.g.
2]T

_ 2
O =[1,X1,. ey Xn, X, X1, « -+, X1 Xy« o -, Xy
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Response Surface Methodology
Approximation models

T :c% 1Ty ... T1Tn
1 9 ua| x% . 9T,
In TnT 2
Linear Quadratic
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Response Surface Methodology

1st vs. 2nd order approximations

@ First order approximations
@ The most basic approximation
® Inexpensive. Cost ~ n
@ Cycling (oscillation) can occur when used in sequential
method for optimization. Successfully addressed by adaptive
optimization algorithm (SRSM)
@ Second order approximations
® More expensive. Full Quadratic: Cost ~ rrsquared
e More accurate. Good for trade-off studies

Linear Approximation is recommended in many cases, e.qg.

Sequential approximations for Optimization, Reliability

Copyright © Livermore Software Technology Corporation 2009
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Response Surface Methodology
Factors influencing accuracy

® Size of the region of interest.
The smaller the size, the more accurate the surface
® Number and distribution of experimental points.

More points give better predictive capability

RMS
Prediction Error

Min  1.5%Min Number of points

® Order and nature of the approximating function.

Higher order is more accurate, but overfitting can occur

Copyright © Livermore Software Technology Corporation 2009
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Response Surface Methodology
Factors influencing accuracy

® Qverfitting. Prediction Error increases due to
overfitting (the addition of more terms to the
approximation model).

® MNoise. Reduction of the size of the region of interest

will improve accuracy up to a point where only the
noise dominates.
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Design Variable 2

Experimental Design
Design space and Sub-region

| Range 1 |

Region of

interest
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N | Baseline Design
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Copyright © Livermore Software Technology Corporation 2009

26

13



Experimental Design (Point Selection)
Factorial (n=3)

n

3
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Experimental Design
Koshal (n=3)

1st Order 2nd Order
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Experimental Design
Central composite design (n=3)
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Experimental Design
D-optimal design

Uses a subset of all possible design points as a basis to
solve (using genetic algorithm)

max | X7 X |

where X is the matrix

X = [Xui] = [0:(xu)]

Copyright © Livermore Software Technology Corporation 2009
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Experimental Design
D-optimal design

¢ Find the 'best' distribution of a fixed number of
sampling points

e The 'basis experiment' is used as a superset from
which the D-optimal points are selected.

e QOversampling improves the predictive capability of
the response surface. 50% is used as a thumb rule.

« Previous points can be used and new points added O-
optimally (augmented D-optimal).

« Irreqular design spaces (e.g. bounded by nonlinear
constraints) can be used. In this case the basis set is
irregularly distributed. (see Reasonable Design
Space)

Copyright © Livermore Software Technology Corporation 2009 31

Experimental Design
D-optimal design: Basis points

o Default subset (basis experiment) taken from factorial
design
« Linear: m"; m=119,7,53,2
e Quadratic m"; m=119,7,5,3
as n increases Selected point
« Space Filling used for large n Basis point
« Can choose discrete points when

using discrete variables.

Copyright © Livermore Software Technology Corporation 2009 32
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Experimental Design
D-optimal augmented points

e The D-optimality criterion for the additional points is:

Add rows to X:

%) = | ate)|

and solving
max |[XIX,| = max |[XTX +ATA].
for x,.

e E.g. starting point + Augmented D-Optimal

Copyright © Livermore Software Technology Corporation 2009
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Reasonable Design Space
¢ Some designs may not be analyzable, e.g.
incompatible geometries can be created

e Causes the solver to terminate with an error or give
nonsensical results

e Can be prevented by specifying a reasonable design
space.

¢ A flag can be set for any constraint

Copyright © Livermore Software Technology Corporation 2009
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Reasonable Design Space
LS-OPT display

Optimization
Constraint C3

Constraints for
reasonable
design space,
REAS1, REAS2

35
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Reasonable Design Space
Selection in LS-OPT

Eile View TIask Help

‘[ Info‘ Strategy‘ Solver5| Di51| Variables| Samplmg‘ His10ries| Respcnses| Objective“ Constraints | Settings | Run | *

Response Lower Bound Upper Bound

-

]

gl_2

g2 2

[ )
| |
[ REAS1 ] int [ Strict C] [ Strict % Move
l )
[ )

REAS2 [-inf ] [] strict [] strict % Move
10 [ Strict [ Strict / O] Mave

1. Greate the Response definitions (Responses Tab).
2. Select Responses to use as Gonstraints.
3. Enter the Gonstraint Bounds.

C3

[E1D

Constraints for
reasonable design space
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Design Cycle

Performance
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Design Cycle
Design space
Performance
index
(response) \
o a\a‘o\e
‘)eggﬁ
Design
space
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38
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Design Cycle

Sub-region
Performance
index
(response) N
0\e
(\ua“ab\

Design
space

Subregion
(Range)
Starting (base) Ny .
design ar’ab/@ >
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Design Cycle
Experimental design
Performance
index
(response)
ove >
Design
..... space
. \ Subregion
Design points (Range)
. D@s
Starting (base) on . .
design <i?r"i’b/@ >
40
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Design Cycle

Simulation results
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Design Cycle
Response surface
! Response @)
Performance values/
index °
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Design
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Design Cycle

Optimization

Starting value on response
surface

Optimization of subproblem
(response surface) using
LFOPC algorithm

Optimum (predicted
by response surface)

Optimum (predicted :
by simulation using ~ ‘

design variables)

Copyright © Livermore Software Technology Corporation 2009 43
Variable Screening
The 100(1 — a)% confidence interval for the regression coef-
ficients b;,7 = 0,1, ..., L is determined by
Ab; Ab;
bj—7]§5j5bj+7]
where
Abj = 2ta/2,P7LV&2ij
and &2 is an unbiased estimator of the variance ¢ given by
&2 — g _ s (i — )
P—-L rP-L
Cj; is the diagonal element of (X X)~! corresponding to b;
and ?,/9 p_ 18 Student’s ¢-Distribution.
44
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Variable Screening

From regression
Analysis (sensitivity)

Ab;

—
e

| Uncertainty of variable | | Importance of Variable

Copyright © Livermore Software Technology Corporation 2009 45

Variable Screening: Sensitivities Chart

Normalized Sensitivity

H_/

Error bar: 90% Confidence Interval

Note: Values are normalized with respect to design space

Copyright © Livermore Software Technology Corporation 2009 46
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Variable Screening: Example

Crash model

30 000 elements
Displacement = 552mm
Stage1Pulse = 14.34g
Stage2Pulse = 17.57g
Stage3Pulse = 20.76g

BIW model
18 000 elements
Torsional mode 1

Frequency = 38.7Hz

Courtesy
DaimlerChrysler

LS-DYHA eigemvalue problem - FORD TAURUS BIW
Tt

€
Copyright © Livermore Software Technology Corporation 2009 47
Variable Screening: Parameters
Left and right Shotgun outer
apron and inner
Left and right
cradle rails
Inner and outer Front cradle upper and lower
rail cross members
48
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Variable Screening: ANOVA

-
— —

-

— —
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Variable Screening: ANOVA
—— I
iill I
50
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META-MODELING

Copyright © Livermore Software Technology Corporation 2009 51

Metamodeling
What is a metamodel ?

An approximation to the design response, usually a simple
function of the design variables. Is used instead of actual
simulations during exploration hence also called surrogate.

Copyright © Livermore Software Technology Corporation 2009 52
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Metamodel Types in LS-OPT

Response Surface Methodology (RSM)
= Polynomial-based
= Typically regional approximation (especially linear)
= Linear regression

Feedforward Neural Networks (FF)
= Simulation of a biological network, sigmoid basis function
= Global approximation
= Nonlinear Regression: more expensive

Radial Basis Function Networks (RBF)
= Bell curve type basis functions in a linear system
= Global approximation
= Linear Regression (assuming constant spread and center)

User-defined
= Dynamically linked (-so, -dIl)

Copyright © Livermore Software Technology Corporation 2009 53

Metamodeling
Motivation

Why Neural Nets / RBFN's
= Model for any number of simulation runs

- Different polynomial orders require discrete numbers of
runs (e.g. 10var: L=11+, Q=66+)

= Local refinement

= Refine regionally, but maintain global relevance
= High accuracy (with enough points)
= Regression (smoothing) vs. Interpolation

» Smoothing required to quantify noise

Copyright © Livermore Software Technology Corporation 2009 54
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Metamodel Applications

Variable screening

Optimization
= Sequential construction/updating
= Pareto-optimal front using GA

Outlier Analysis
= Locate sources of response noise

Reliability Estimation
= Monte-Carlo simulations
= Robust design

Copyright © Livermore Software Technology Corporation 2009 55

Radial Basis Function Networks

Network construction
= Linear output layer:

Y(x,a)=a,+ Y a,-f(p,)

= Hidden layer:

1

f(p)=e’| = .

04
_ 2 02
P —”ho§ ,(xk - X)
— 0
k=1 4 2 0 2 4
= Center:

X, =X, X))

Copyright © Livermore Software Technology Corporation 2009 56
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Radial Basis Function Networks

ro=1/20"; o,=Cd,

‘ Center of basis function

dhm is the mean |
of the distances to ml 2
O
| \l

the m closest points

m p =3

“Spread” coefficient o -
C=1.5

Copyright © Livermore Software Technology Corporation 2009
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Radial Basis Function Networks

predicted
Mean Squared Error: 'J— computed
P

MSE=3G, -1} 1P,

i
Requires linear regression to solve for coefficients
agy,.... Ay

if o,,X, isconstant.

X A typically centered on the design point

Copyright © Livermore Software Technology Corporation 2009
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Feedforward Neural Networks

Network construction

Linear output layer:

Y(X,W)=W, +iWh °f|:VVhO +ith‘xk:|

h=1 k=1

Hidden layer (sigmoid):

l_x e S S A—

l+e

fx)=

Copyright © Livermore Software Technology Corporation 2009 59

Feedforward Neural Networks

predicted
Mean Squared Error: l computed
P

MSE=3G, -1} 1P,

i

Requires nonlinear regression to solve for coefficients
Wy Woos Wi

RPROP, Levenberg-Marquardt, BFGS

Copyright © Livermore Software Technology Corporation 2009 60
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Feedforward Neural Networks

Regularization

Minimize:

F=MSE +

M
a Zsz

m=1

Response will be smoother

Causes the network to have smaller weights

Aids numerical robustness of the non-linear regression

& cannot be too big, otherwise increasing modeling error

Copyright © Livermore Software Technology Corporation 2009 61
Feedforward Neural Networks
Finding a suitable topology (number of hidden nodes)
e Construct ensemble of M;T’:“”IODEL .
sl
architectures (different O Bensituity
(@) Feedforward Meural Network
numbers Of h|dden nodes) ) Radial Basis Function Network
= Single layer architectures Con
N [¥] Augment pts, Update surface
(0 - 5 h|dden nodes) [ First iteration Linear D-Optimal
= Select the “best” net using 7 Bt TR
Min. Generalized Cross Validation (GCV) W
Number of Hidden Modes in Enssmble
U = Effective number of MSE Uun 102 e
- - 04 Os50s 7
model parameters (1 i U/P)2 SO
Default = Lin-2-3-4-5-8
« Leave-one-out is too expensive e e
Default =9
Half number of discarded nets
62

Copyright © Livermore Software Technology Corporation 2009

31



Feedforward Neural Networks

Variability of FF

¢ Neural nets have natural variability due to
= Local behavior of the FF training algorithms
= Uncertainty (noise) in the training data

e Variability is induced by random initial weights in the
regression procedure

¢ Sequential Response Surface Method: Recommended
to use Linear surface (D-optimal sampling) in
iteration 1 (default in GUI)

Copyright © Livermore Software Technology Corporation 2009 63

Feedforward Neural Networks

Variability (contd.)

o Committees (families of nets) are used to average
the result. (default = 9)

¢ Nets with highest and lowest training MSE are
discarded (default = 2x2) trying to avoid
over/underfitting

e Committees dramatically affect the cost of
computation

Copyright © Livermore Software Technology Corporation 2009 64
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Metamodels: Efficiency

Example
12 variables
305 points
31 responses
2.6GHz AMD Opteron
FF Neural Net (NN9) FF Neural Net (NN1) RBF
(9 committee members: (1 committee member:
preferred accuracy typically lower accuracy
setting) option)
minutes minutes minutes
220 22 3
Copyright © Livermore Software Technology Corporation 2009 65
Metamodels: Experimental Design
NN + RBFN
= Space Filling

= Simulated Annealing to locate new points
= Max. Min. distance between

= New points

« new points + fixed points
= New points bounded by sub-region

= 1.5(n+1) points per iteration: relatively sparse!

Response Surface Method
= Use D-Optimality (GA)
= 1.5(n+1) points per iteration (for linear)

= No updating (do not consider previous points)

Copyright © Livermore Software Technology Corporation 2009
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Metamodels: Summary

Global approximation
= Can apply global trade-off study or robustness analysis after optimization
run
= Maintains local smoothness, filters noise

Accuracy
= Nonlinear method. Will develop curvature as soon as enough points are
available. Faster convergence.
= RBF more accurate than NN in many cases because of cross-validation.

= NN appears to be more accurate for smooth problems.

User decision
= Choice of NN/RBFN architectures is automated
= Independent of number of points chosen (default same as for linear)
= No initial range specification required.

A regression method
= NN/RBFN Smoothes (as opposed to e.g. Kriging, which interpolates)
= Committees allow the extraction of point-wise variance information
= High variance an indication of sparsity (NN's only)

Copyright © Livermore Software Technology Corporation 2009 67
Metamodels: Summary
Response Surface Feedforward Neural Funlzt?igfll‘lBeats\llf)rks
Methodology (RSM) Networks (FF)
(RBF)
. . Simulation of a Local Gaussian or
Polynomial basis . . . . .
- biological network. multi-quadric basis
functions . . . .
Sigmoid basis fns. functions
Regional approximation | Global approximation Global approximation
. . Nonlinear regression. | Linear regression within
Linear regression. - :
SRa. High accuracy. nonlinear loop. Cross-
Accuracy is limited by b . lidation for hiah
order of polynomial. Ro us_tness requires validation for hig
committee (e.g. NN9) | accuracy
Very fast Very slow Fast
68
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Error Analysis
Random vs. Modeling

Random error

Copyright © Livermore Software Technology Corporation 2009 69
Error Analysis
Parameters in LS-OPT output
e RMS error
e Average error
e Maximum error
e PRESS error
e R? indicator
70
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Error Analysis
Root mean square error and Maximum error

1 & R
ERMS = \/P Z()’i —9i)*.
i=1

8max = max‘yi _ yi

Copyright © Livermore Software Technology Corporation 2009
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Error Analysis
RZ

The coefficient of determination R? is de-
fined as:

Z()’i — )

P: number of design points
y: predicted response

v;: mean of the responses
y;: the actual response

Copyright © Livermore Software Technology Corporation 2009
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Error Analysis
Significance of R?

¢ A fraction of the variation in the data explained by
the model

¢ A measure of the ability of the response surface to
quantify the variability of the design response

Copyright © Livermore Software Technology Corporation 2009 73

Error Analysis

R2
RZ— 0 O0<<R?2<1
Approximation
=~~~ Mean
© 0 o o *
e o " o o ‘
Approximation

Copyright © Livermore Software Technology Corporation 2009
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Accuracy of Response Surface
Noise detection

RMS R2

Small ~ 1 High variability detection: low noise,
good fit

Small ~ 0 Low noise/good fit, small gradient

Large ~ 1 High variability detection with noise

Large ~ 0 Lack of fit, perhaps accompanied by

noise. Must shrink the move limits.

Copyright © Livermore Software Technology Corporation 2009 75

Error Analysis
Remarks: RZ and RMS

Note: Too few points implies that
RMS —0and R? — 1

e The parameters reveal nothing about the
predictive capability of the curves.

¢ 50% oversampling is the default for O
optimal experimental design in LS-OPT.

Copyright © Livermore Software Technology Corporation 2009 76
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Error Analysis
Prediction errors

PRESS (PREdiction Sum of Squares):

Estimates the predictive capability of the reponse
surface. Also known as Leave-one-out (LOO)

1. Remove one point from the least squares calculation.

Fit a surface to the remaining points and predict the
error at the chosen point.

2. Sum the square of errors.

An alternative formulation is done without the outer
loop:

Copyright © Livermore Software Technology Corporation 2009
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Error Analysis
Prediction errors

P AN\ 2
Yi— Vi
PRESS =
% (i50)
h;; are the diagonal terms of

H=X(X"x)"'x".

H 1s the “hat” matrix, the matrix which
maps the observed responses to the fitted re-
sponses, i.e.

Copyright © Livermore Software Technology Corporation 2009
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Error Analysis
Prediction errors

Square root form is presented in the output:

SPRESS = li =9\’
P 1—h;)

i=1

Copyright © Livermore Software Technology Corporation 2009 79

R-squared indicator for prediction

For the purpose of prediction accuracy the
R? indicator is used:

prediction
PRESS
Rlzjrediction =1- S
yy

P
R;redicﬁon represents the ability of the mod-
el to detect the variability in predicting new

responsces

where

Syy = yTy_

Copyright © Livermore Software Technology Corporation 2009 80
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OPTIMIZATION

Copyright © Livermore Software Technology Corporation 2009 81

Design Formulation
Entities

Design variables

Design parameters which can be changed e.g. size or shape
L = {xla L2, T3, .-, fcn}

Design objectives

A measure of goodness of the design, e.g. cost, weight, lifetime.
Can involve more than one function f(x).

minpfy(x)] ; i=1,23,.,N

Design constraints

Limits on the design, e.g. strength, intrusion, deceleration
LJ < gj(w) < UJ N j = 1,2,3,...,7’)1

Copyright © Livermore Software Technology Corporation 2009 82
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Mathematical Optimization
Constrained minimization

min f(x)
subject to
gix) <0 j=1,2,....m

and

he(x) =0 k=1,2,...,1

f: cost or objective function

g: inequality constraint function
h: equality constraint function
x: design variables (parameters)

Copyright © Livermore Software Technology Corporation 2009
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Mathematical Optimization
Equality constraints

hk(x) =0 ~ 0 S hk(x) S 0.
allows simplification to

min f(x)
subject to
gix) <0 j=1,2,...m

Copyright © Livermore Software Technology Corporation 2009
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Mathematical Optimization
Example: inequality constrained problem in 2D

Copyright © Livermore Software Technology Corporation 2009 85
Mathematical Optimization
Example: inequality constrained problem (LS-OPT display)
Feasible
Optimum
Infeasible Z
86

Copyright © Livermore Software Technology Corporation 2009

43



Optimality Criteria

Karush-Kuhn-Tucker conditions for constrained optimization:

V) +AT V(') = 0

A g(x*) =0
Feasibility: g(x*) <0
Lagrange Multipliers: A>0.

Unconstrained optimization: Vf(X) = 0

Copyright © Livermore Software Technology Corporation 2009
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Optimization Algorithms in LSOPT

There are three core-optimization algorithms

LFOPC is a gradient based optimizer. Multiple starting
points are used to avoid local optima.

Genetic Algorithm (GA) is a population based global
optimizer that emulates nature

Adaptive Simulated Annealing (ASA) is a probabilistic
optimizer that simulates metallurgical process

Two hybrid algorithms Hybrid ASA and Hybrid GA are also

available.

= In the hybrid approach, a ASA or GA run is followed by a single
LFOPC run. The idea is to find a good starting point using global

optimizers and then switch to local optimizer to speed
convergence.

Copyright © Livermore Software Technology Corporation 2009
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Optimization Algorithm — LFOPC

Leap-Frog method for Constrained Optimization

(LFOPC)

® Gradient method
® Generates a dynamic trajectory path
® Does not use any line searches

® Penalty formulation for constraints

Copyright © Livermore Software Technology Corporation 2009
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Optimization Algorithm LFOPC

Adjustable Parameters

nio | Svalegy Sobers | Dist| Varables  Sampling | Histories  Rasponses  Objective Consyaims

e Initial penalty value A

* LEce

e Maximum penalty value

e Gradient of the Lagrangian
function (tolerance)

e Convergence tolerance on
the step movement

e Maximum number of steps
per phase

Not necessary to adjust

Copyright © Livermore Software Technology Corporation 2009
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Feasibility Handling: LFOPC

Standard internal formulation :

Phase | :

Min. e (max.violation) | ¢ = Slack variable

subject to . Slack constraints (e >0

g,(X)se 5 j=l..,p +~—7— if feasibility not possible)

g,(x)<0 ; j=p+l..,m «—F—— Strict constraints (must

e>0 be satisfied)

Phase 11 (if e =0, otherwise stop) :

Min. £(X) Note: ¢ is automatic,
. internal

subject to

g;(xX)<0 5 j=l..m

Copyright © Livermore Software Technology Corporation 2009 91

Optimization Algorithm — Genetic Algorithm (GA)

GA was developed by John Holland in
1965

Inspired by nature — “Nature does not
waste resources”, GA emulates
Darwin’s “Survival of the fittest”
principle

Specific GA features are
= Population based stochastic optimizer
= Robust global optimization method
= Does not require gradient of function
= Works with any function evaluator

= Can be easily used on parallel
architecture of machines

Requires a large number of function
evaluations

Specialized
algorithms

Efficiency

Optimization problems

Copyright © Livermore Software Technology Corporation 2009 92




GA Terminology

Gene — each design variable (x)

3
Chromosome — group of design variables s
Individual — each design point H
Fitness — how good is the individual?
Population — group of individuals 5
Individual

Chromosome [4.00,2.80,19.0] or [0100111010011]
Fitness 25.8 (sum of variables)

Genetic operators — drive the search
= Selection — select the high fitness individuals — exploit the info.
= Crossover — parents create children - explore the design space
= Mutation — sudden random changes in chromosomes
Generation — each cycle of genetic operations

Copyright © Livermore Software Technology Corporation 2009 93
Flowchart of a Simple Genetic Algorithm
Randomly |
initialize parent [ Evaluate parent Selection @ \
. population ®
population 3
%".
:
e}
@
8
. o
Report best . 2
solution and Evaluate child 8
Stop population g‘
Is stopping Apply elitism
criterion
met?
Copy child
population to
T parent population j
|
Simple GA caters to single objective optimization problems
94
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Optimization Algorithm — Adaptive Simulated
Annealing (ASA)

This global stochastic optimization method simulates annealing process
— starts at a high temperature and slow cooling would allow to achieve
the lowest energy state

Objective function is defined as the energy function E
Points are accepted using a Metropolis criterion
A(E,E',T) =min{l,exp(~(E'-E)/T)}

Temperature is periodically updated and search terminates when the
temperature has fallen substantially
Conventional SA updates the temperature as  7+!) = T; /log(k)

Ingber modified sampling to focus in the fast varying parameters such
that faster cooling rates were feasible

T(k+l) — Tpk eXp(—Ckl/n)

p
Periodic re-annealing was also used to update the sensitivities

Copyright © Livermore Software Technology Corporation 2009
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Discrete Optimization

Discrete variables can have only distinct values, e.g. { 1.0, 2.0, 2.5, 4.5 }

In most cases too expensive to evaluate all possible designs, e.g. 30
design variables with 5 possible values result in 102! possible designs

Discrete and continuous variables can be used together.
User decides the sampling type to be continuous or discrete

The optimization solution using LFOPC is a three stage procedure:
= Find continuous optimum (using LFOPC)

Freeze continuous variables and do discrete optimization using Genetic
Algorithm

= Freeze new discrete variables and do continuous optimization

Optimization using adaptive simulated annealing or genetic algorithm is a

single stage procedure.

Sequential strategy: Uses SRSM with special modifications to the region
of interest for discrete variables

Copyright © Livermore Software Technology Corporation 2009
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Normalization of Constraints
Required by user

g(x)-U, <e
g,(0)-U, <e
The user must normalize the constraints so that e 1s

non - dimensional ;

LUISe = 5 <o
U, U,
UZ U2

by scaling individual constraints

Copyright © Livermore Software Technology Corporation 2009 97

The Design Improvement Cycle

Point Selection . - Mechanical
(DOE) Prepro::essmg =17 Model
T Simulation
- ¥
Region . Approximation
of Interest Build response surfaces [ Model
(Move Limits) v
1 Optimization |~ —-I Design Formulation |
Trial N J .
Start | pegign Approximate solution
y T

Solution
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Defining the Design Problem

Response 1 Response 2| [Response 3| [Response 4 Response 5
(Solver 1) (Solver 1)| [(Solver 2)| |(Solver 2) (Solver 2)

Dependents
| | | | |

Variables

Copyright © Livermore Software Technology Corporation 2009 99

Design Formulations
Standard composite functions

Mean Squared Error (MSE)

2 2
P X)—-G P e (X
c 12, (H00-G,) 12, ()
Pp=1 P Sp Pp=1 P Sp
Weighted

j=1 J ]

o)

N
i

I
x|

100
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Most Feasible Design

Theory

Standard internal formulation :

Phase I :

Min. e (max. violation)

subject to

g;(X)<e 5 j=L.,p —

g;(xX)<0 5 j=p+l..,m +——
e>0

Phase Il (if e =0, otherwise stop) :

Min. f(X)

subject to

g;(xX)<0 5 j=l..m

€ = Slack variable

Slack constraints (e>0
if feasibility not possible)

Strict constraints (must
be satisfied)

Note: ¢ is automatic,
internal

101
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Most Feasible Design
Applications

» Minimize the maximum of various responses

» Targeted formulation (System identification)

102
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Most Feasible Design
Example: Min-Max

Minimize the maximum knee force
subject to
constraints on the knee displacements

L !

Min. e

subject to

F(x), <e Knee force # 1 Slack
F(x),<e Knee force # 2 Slack

d,(x)-D, <0 Knee displacement#1  Strict
d,(x)-D, <0 Knee displacement#2  Strict

Copyright © Livermore Software Technology Corporation 2009
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OPTIMIZATION STRATEGIES
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Optimization Strategies
Space-filling point selection

Single stage \ | Sequential
Design Space

Ir || o @ oommmmomooes . © Subregion
i —
i o e o . . .
: ! Stage 1: open circle, white region
a o ! Stage 2: solid point, blue region
o o

Sequential with domain reduction

Copyright © Livermore Software Technology Corporation 2009 105

Optimization Strategies

¢ Single stage
= All the points are determined in one stage, using Space Filling
= Highly suitable to create a global surrogate model
= Choose a large number of Space Filling points to use NN or RBF

e Sequential
= Choose a small number of points for each iteration
= Add Space Filling points in each iteration
= Highly suitable to create a surrogate model, e.g. NN or RBF
= Accuracy is similar to single stage
= More flexible than single stage. Can stop depending on accuracy

Copyright © Livermore Software Technology Corporation 2009 106
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Optimization Strategies

Sequential with domain reduction

= Domain reduction in each iteration: all points within a subregion
= Two types:
» Sequential Adaptive Metamodeling (SAM):
- Use RBF or NN

- Global strategy: Points belonging to previous iterations are
included

- Same as Sequential but with domain reduction.
- Moderately good for constructing global approximations
« Sequential Response Surface Method (SRSM)
+ The original LS-OPT strategy using Polynomials with D-Optimality
- Points belonging to previous iterations are ignored
« Uses polynomials (typically linear) with 0D-Optimality

- No global approximation available, so cannot construct Pareto
optimal front

Reference: Stander, N. and Goel, T. Metamodel sensitivity to sampling strategies: a crashworthiness

design study. Proceedings of the 10th International LS-DYNA User’s Conference, Dearborn, MI. June 9-
10, 2008

Copyright © Livermore Software Technology Corporation 2009
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Design Variable 2

Sequential Response Surface Method: SRSM
Convergence

Region of
interest

\

L]

—

— start

@ 2 optimum

i

Design Space

Design Variable 1

Copyright © Livermore Software Technology Corporation 2009
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Sequential Response Surface Method
Parameters

¢ Sequential approximations are used to solve the

optimization subproblem

e Depending upon the approximate optimum, the
region of interest can either ‘pan’ (shift) or ‘zoom’

Irem Parameter Default value
objective | Tolerance on objective function accuracy €; | 0.01
design Tolerance on design accuracy €, 0.01
psi “Ypan 1.0
gamma Yosc 0.6
eta Zoom parameter 7 0.6
rangelimit | Minimumn range 0.0
Copyright © Livermore Software Technology Corporation 2009 109
Sequential Response Surface Method
Subregion reduction scheme
2
Zoom
@
1
1
@
Pan 2

Pan & Zoom
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Sequential Response Surface Method
Explanation of parameters

z1 pan zoom pan & zoom
subregion(®) U0 range Tgo)
20 ! z©®
] i
N L0 *
@ | o o
1
J 2@ = g e nger®
subregion(®)
L2 Za £

Figure 1: Successive Response Surface Methodology

it

“Ypan

I I
I I
1 1
I I
| I
| ‘
I I
I I
1 0 Id| 1

Figure 2: Oscillation and proximity criteria

Copyright © Livermore Software Technology Corporation 2009 111
Sequential Response Surface Method
Theory
The move limits are determined as:
0 =2 — 05, and 2/ =2z 4057 i=1,...,n [¢Y]
n is the number of design variables.
Oscillation: An oscillation indicator ¢ is determined in iteration k as
P = dfo o
where
d® = ZAz(k)/r(k); Az = z® _ &0, g ¢ [=1;1]. 3)
The oscillation indicator is converted to ¢ where
&= /lc| sign (c). )
The contraction parameter < is calculated as
y= 7pa.n(1 + C) ‘;'Yosc(l - C)_ (5)
Accuracy: The range rZ(Hl) for the new subregion in the (k + 1)-th iteration is determined by:
S W) i=1,....,n k=0,...,niter ©)
where A; represents the contraction rate for each design variable.
Ai=n+|di|(y—n) @)
for each variable.
112
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Sequential Response Surface Method

Contraction rate

A )

A[¢,abs(d)]

\

Copyright © Livermore Software Technology Corporation 2009

A 2’7

|
|
Jpan

113

Sequential Response Surface Method

Convergence criteria
« Using error norm of design variables:
|lz®) — k=1
T W
« Using objective function
1) — fB=1)))
NI

e Can choose whichever comes first or both

Copyright © Livermore Software Technology Corporation 2009

114

57



Sequential Approximation Scheme

Iteration 1
(o]
[}
)
8
g
c
[=)]
a RSM: Use only
(] points from current
iteration
NN: Use all
available points
Design Space
Design Variable 1
Copyright © Livermore Software Technology Corporation 2009 115
Sequential Approximation Scheme
Iteration 2
N Region of
2 interest
K]
8
S
>
o
2
(7]
0
[

Design Space

Design Variable 1
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Sequential Approximation Scheme

Copyright © Livermore Software Technology Corporation 2009

Iteration 3

o~ Region of

9 interest

)

3

S

>

c

2

[7)]

0

[a]

Design Space
Design Variable 1
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Sequential Approximation Scheme
Converged

N Region of
2 interest
o)
8

t=

C
> start

c

o
a . —__-/ RSM: Use only
a points from current

iteration
optimum
Ie_‘ NN: Use all
available points
—
Design Space
Design Variable 1
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Metamodels: Example

Crash model

30 000 elements
Intrusion = 552mm
StagelPulse = 14.34g
Stage2Pulse = 17.57g
Stage3Pulse = 20.76g

BIW model

18 000 elements
Torsional mode 1
Frequency = 38.7Hz

Courtesy
DaimlerChrysler

L5-DYHA eigenvalue problem - FORD TALRILS BIW
- TR

Copyright © Livermore Software Technology Corporation 2009
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Two Design Variables (Thickness)
Left and right
cradle rails (X)
Inner rails (Y)
120
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Sampling: Space Filling Method Q X
Iteration 1 '

Y -variable

T T T
Fixed o o

New o

Start °

1.5 2 2.5 3
X-variable

Copyright © Livermore Software Technology Corporation 2009 121

Sampling: Space Filling Method Q x
Iteration 2 '

Y-variable

I Opt1 I Fixed o o

New o

Start

1.5 2 2.5 3
X-variable
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Sampling: Space Filling Method
Iteration 3

'y

3 T X T T
I \ Fixed o e
o | New ©
o)
25+ 1° . 4
Opt 2
= .
£ 2+ ]S i
g . Start
>
1.5 F . _
[ ]
4 [ ]
1 L 1 |
1 1.5 2 2.5 3
X-variable
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Sampling: Space Filling Method U
Iteration 4 '
3 T ) 4 T
’ Fixed o o
. HERN New o
Opt\ 3/ ° *
25F ¢ [1 . i
o Voo
2 . °
£ 2 F ‘e ]
g . Start
>
1.5 F . i
L]
y L]
1 L 1 L
1 1.5 2 2.5 3
X-variable
124
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Optimization
Design variables (Thickness)

Left and right Shotgun outer
apron and inner

Left and right
cradle rails

Inner an-d outer Front cradle upper and
rail lower cross members

Copyright © Livermore Software Technology Corporation 2009 125
Design Formulation
Design Objective:
Minimize (Mass of components)
Design Constraints:
Intrusion < 552.38mm
StagelPulse > 14.58g
Stage2Pulse > 17.47g
Stage3Pulse > 20.59g
41.38Hz < Torsional mode 1 frequency < 42.38Hz
Crashworthiness design variables: 4 screened out of 7 total
Rails (inner and outer); Aprons; Cradle rails
NVH design variables: 7 (all)
Crashworthiness responses: Intrusion, Stage Pulses
NVH responses: Mass, Frequency, Mode number (for tracking internally)
126

Copyright © Livermore Software Technology Corporation 2009

63



Metamodel Comparison: Optimization Qﬁ

1.00 32%
0.98 Mass 28%
0.96 24% ¢
©
" 20%
0.94 \ / —o— Mass (RSM) i 2 g
7] 16% O .=
g 0.92 —e— Mass (NN) i (&) E
= O Max. Viol. (RSM) (Computed) | 12% £ ©
0.90 m Max.Viol. (NN) (Computed) [ 8% E >
Constraint | —wmax.viol. (NN) (Predicted) ° 'g
0.88 \ V|olat-|on —__Max. Viol. (RSM) (Predicted) | | 4% =
0.86 T : O = 0 = B 0%
0.84 T T T T T -4%
10 20 30 40 50
Number of Crash Simulations
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Instrument Panel with Knee Bolster System
= as:
,“ "«‘n‘?.:“
A
Courtesy:
Ford Motor Company
128
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Instrument Panel: LS-DYNA Simulation
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Instrument Panel: Design Variables
4 screened out of 11 total
Width
Radius
Depth
Width
Depth Depth
130
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.
Instrument Panel: Design Formulation %

Design Objective:

min ( max (Knee_F_L, Knee_F_R) )

Design Constraints:

N/

P

Left Knee intrusion < 115mm
Right Knee intrusion < 115mm
Yoke intrusion < 85mm

Design variables
Reduced from 11 to 4 (ANOVA)

Copyright © Livermore Software Technology Corporation 2009
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Knee Force

14

13

1.2

11

1

0.9

0.8

\ 3
Instrument Panel: Optimization Q‘ »
O L Knee Force (RSM)
——L Knee Force (RSM) (pred)
u A RKnee Force (RSM) 1
——R Knee Force (RSM) (pred)
B L Knee Force (NN)
——L Knee Force (NN) (Pred)
A A R Knee Force (NN)
A\ ——R Knee Force (NN) (Pred)
W A
2 , A 0
o i \A\/i \g:‘
0 8 16 24 32 40 48

Number of Simulations
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MULTI-OBJECTIVE OPTIMIZATION

Copyright © Livermore Software Technology Corporation 2009
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Multi-objective Optimization

Most engineering problems
deal with multiple objectives
e.g., cost, weight, safety,
efficiency etc.

Often conflicting requirements
e.g., weight vs. efficiency

Mathematical formulation —

Minimize f(x) i=1,M,
x={x:j=1,N}
Subject to:

Gx)<0,k=1,P
Ax)=0, 1=1,Q
No single optimal solution

Min f,

Min f;

134
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Concept of Pareto Optimality

¢ Non-dominated
solutions

e Pareto optimal solutions
e Pareto optimal front

e Salient features

= continuous or
discontinuous

= convex or non-convex

Copyright © Livermore Software Technology Corporation 2009 135

Different Methods in LS-Opt

Weighted sum strategy

= convert multiple objectives
into a single objective using
weights

g-constraint strategy

= all but one objectives are
treated as constraints and
optimize for the left-out
objective

Multi-objective genetic algorithm

= all objectives are
simultaneously optimized

Min f,

Copyright © Livermore Software Technology Corporation 2009 136
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Transition: Single to Multi-objective GA

GA is well-suited to solve multi-objective optimization
problem
= Results in a set of potential Pareto optimal solutions
= Extra computational effort in optimization can be justified by the
outcome — Pareto optimal front
Issues that need to be addressed are

= How to compare individuals? — easy for simple GA but not so
intuitive for multi-objective GA — use ranking to identify *fitter’
individuals

= Need to preserve diversity in the solutions — complete Pareto
optimal front is desired

= Convergence to the global Pareto optimal front

Popular MOGA are NSGA, SPEA, PAES, NSGA-II.

Copyright © Livermore Software Technology Corporation 2009 137

How to Use Multi-Objective GA?
/ Select task

Direct simulation based GA i s e e e
= optimize without creating meta- S o
models

= use simulations to evaluate
designs — high computational
cost!

= accurate results

Meta-model based GA

= use metamodels to evaluate
functions —

= accuracy depends on the quality
of metamodels

= computationally inexpensive

Create Pareto Optimal Frontier

Copyright © Livermore Software Technology Corporation 2009 138
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Validation of GA Using Benchmark Examples

Computed vs. True Pareto opsmal froet (ZD72)

Unconstrained test problems
Minimize f;(¥)=x; f,(X)=g@hlg®), (D) -1
— N 0.2
ZDT2:g(X)=1+9(N-1)"D x; [ famrer ]
i=2 02 04 , [-1] o
h(X)=1-(f,/g)%sx, e[0.] o '
. N 04) \,‘r “. B
ZDT3:g(X)=1+9(N-1)"> x; R A T
o . ozoT3Voi
WX)=1-\1/g ~(f,/2)sin(10a); x, €[01]. e
o N Cm::!vl Y:: F{-I:e ::\!anru
ZDT4:g(X)=1+10(N —1)+ Y (x7 —10cos(4xx,)); e
i=2 o8l =~ True POF
hX)=1-4f,/g:x €[01]:x,;_y €[-5.5]. 574
Goel T, Stander N, Multi-Objective Optimization Using LSOPT, 6" o
German LS-Dyna Forum, Oct 11-12, 2007, Frankenthal, Germany. e

Copyright © Livermore Software Technology Corporation 2009

Direct Multi-Objective Optimization: Example 1

Min. (Mass, Intrusion)
Subject to:

Intrusion < 551mm
Stage 1 pulse > 14.5g
Stage 2 pulse > 17.6g
Stage 3 pulse > 20.7¢g
41.38Hz = freq < 42.38Hz

Vibration

7 Crash variables
7 Vibration variables
(2 discrete)

Copyright © Livermore Software Technology Corporation 2009
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Direct Multi-Objective Optimization: Simulation
Statistics

IBM x3455 cluster. 40 nodes (160 cores)
Queuing through Loadleveler

Crash simulation time 3,400-3,900 sec
Modal analysis time 40 sec

Population: 80

Generations: 100

Total of 8,000 crash runs + 8,000 modal analysis runs (run
to convergencel)

Copyright © Livermore Software Technology Corporation 2009 141
Pareto Optimal Front History
099 | T | T T T T T T
11
b ) —+—Gen-10
098 e . - Gen-20 .
; - - Gen-40
’ =& - Gen-60
0.97F i O GenBO |r
——Gen-90
5 —e— Gen100
g 0.96 1
£
Rl H
Q :
W 095 .
O
(2]
0.94 B
0.93F .
I 1 i i i i 1 i h
0'9&96 098 1 1.02 1.04 1.06 1.08 11 112 1.14 1.16
Scaled Mass
Li G, Goel T, Stander N, Assessing the convergence properties of NSGA-II for direct crashworthiness
optimization, 10" International LS-Dyna Conference, Jun 8-10, 2008, Detroit, MI.
142
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Direct Multi-Objective Optimization: Example 2

Thickness design variables

~ WS
N A

Lin Y-Y, Goel T, Stander N, Direct Multi-Objective Optimization Through LS-OPT Using a Small
Number of Crashworthiness Simulations, 10t International LS-Dyna Conference, Jun 8-10, 2008,
Detroit, MI.
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Design Criteria
Minimize
= Mass
= Acceleration
Maximize
= Intrusion
= Time to zero velocity
9 thickness variables of main crash members
Intrusion < 721
Stage 1 pulse < 7.5¢
Stage 2 pulse < 20.2g
Stage 3 pulse < 24.5g
144
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Simulation Statistics

640-core HP XC cluster (Intel Xeon 5365 80 nodes of 2 quad-core)
Queuing through LSF

Elapsed time per generation ~ 6 hours

Population: 20

Generations: 50

Total of 1,000 crash runs

Copyright © Livermore Software Technology Corporation 2009 145

Results
Minimize
= Mass 0.3%7
= Acceleration 45% v
Maximize
= Intrusion 1%
= Time to zero velocity 10%
Intrusion <721 (711 — 719)
Stage 1 pulse < 7.5¢g (7.9 — 6.99)
Stage 2 pulse < 20.2g (21.1 — 20.19g)
Stage 3 pulse < 24.5¢g (25.2 — 23.69)
Copyright © Livermore Software Technology Corporation 2009 146
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Mapping: Design Space < Objective Space
+ Obj2 Obj3

——— -
- ~ -~

Var2 ,/ Obje e Op atio

Feasible Objective Space

Obj1

Varl
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Visualization of Pareto Optimal Frontier
Hyper Radial Visualization

e Hyper Radial Visualization (HRV) maps any number of objectives
to 2D
e Objectives are placed in X and Y groups

e Grouping does not matter as points on the same contour have
the same indifference “value” % “Best” point (closest to Utopian
point) is always the same

e Objectives can be weighted by moving sliders to adjust W,

Copyright © Livermore Software Technology Corporation 2009 148
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Hyper Radial Visualization

e Conversion of the multi-objective optimization problem to a two-

objective optimization problem using the objective:

N, _ n N
[\/ZW,.F,%J ZW,F,?J
i=1 =N +1

subject to
> W,=1 and W,>0
i=1
and
~ F-F _ r
i :Ft—zmm i=1,..,n where F, €[0,1]

2D Mapping: The two additive components represent the
objectives assigned to the two plot axes (see figure)
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Hyper Radial Visualization
A
Pareto §ront1er of
. frontier arelo
Axis 2 ol frontier
Utopian point and
igin of the plot
Indifference
curves
0 >
0
150

Copyright © Livermore Software Technology Corporation 2009

75



Hyper Radial Visualization

Sliders for adjusting weights

* RS A HE 8k wron
e |
= = vl . ‘ S Mapped Pareto
= . Indifference jcurves " Frontier
A (Utopian level) All points are
Pareto optimal
| =
b
- \
“Best” design for L -I"iq.
5 Selected weighting | """ sl

Utopian point (origin)
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Visualization of the Pareto Optimal Frontier

Other methods

e 4-D Scatter plot: 3D + color

¢ Parallel coordinate plot
= Handles any number of dimensions

¢ Self-Organizing Maps

Copyright © Livermore Software Technology Corporation 2009
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MULTI-DISCIPLINARY
OPTIMIZATION

Copyright © Livermore Software Technology Corporation 2009 153

Multidisciplinary Design Optimization

Specify multiple solvers to subdivide optimization process, e.g.
multiple cases (Crash: Frontal, Offset, Side, Rollover) or
disciplines (e.g. crash, vibration)

Each solver has unigue solvers, input files, job information,
preprocessor, histories and responses

Variables can be exclusive or can be shared with other solvers.
Variable screening can be used to remove variables from
disciplines prior to optimization

GULI: Variables: Participating solvers can be selected for each
variable

Optimization Solution: All variables are updated after each
iteration

Copyright © Livermore Software Technology Corporation 2009 154
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Multidisciplinary Design Optimization

e Dependents and Composites are always global

e See MDO example involving crashworthiness and vibration

properties elsewhere

Copyright © Livermore Software Technology Corporation 2009
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APPLICATIONS
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Metal Forming Criteria
Types

e Thickness, Thickness reduction

e Forming Limit criterion based on in-plane principal
strains

e Average principal stress

Copyright © Livermore Software Technology Corporation 2009 157
Metal Forming Criteria
FLD criterion
FLD-diagram
0.6 T T T T T
Curve 90 ———
05
= 04
£
T 03¢t
=2
=
02
0.1
O 1
-0.4 -0.2 0 0.2 0.4
Minor Strain
158
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Metal Forming Criteria
FLD criterion

€1

A

Constraint Active
9= dmaz:

€2

Constraint Not Active

9= —dmin
€2
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Metal Forming Criteria
Example: Stamping With LS-DYNA
z
L
160
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Metal Forming
Deformed blank

Time = 0, #nodes=8641, #elem=8280

Copyright © Livermore Software Technology Corporation 2009 161
Metal Forming
Parameters
162
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Metal Forming
Design criteria

Design Objective:
Minimize Maximum Radius

Design Constraints:

Maximum thinning (At) < 20%
FLD < 0
Radius design variables:

3 radii: r1, r2, r3 (see diagram)
FE model:
Adaptive meshing

Copyright © Livermore Software Technology Corporation 2009
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Optimization history: Responses
40 0.25
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20 ¢ = " 0r . - n —
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Iteration Number Iteration Number
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Metal Forming
Optimization history: Variables
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FLD-diagram (baseline)
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Metal Forming
Final product thickness distribution

T = DLDOES, Snodess11305, #sheitss] 0003

Fringue Lovels
Comtours of % Thicknuas Rudection (local wors)

b 2D
i - 10, 7R53, a1 slemns 7900

13aan
=22, AL pleme S0H9
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170800 _

At_max=20.46

LS-PrePost
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Mode Tracking

e During NVH optimization necessary to track mode as
mode switching can occur due to design changes

¢ Use eigenvalues and mass-orthogonalized
eigenvectors of modal analysis

e Search for maximum scalar (dot) product between
eigenvector of base mode and each solved mode:

max (M 0 %o (M ;9

Reference mode | | Compared mode |
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Parameter Identification

Used for calibrating material or system properties

Methodology uses optimization of the Mean Squared Error to
minimize differences between test and computed results

Response surfaces constructed at each point instead of for the
total MSE

MSE can be point-based or history-based
= Point-based: The target value has to be specified for each point
(selected as a “Composite” in Responses panel)
= History-based: The target values can be specified in a history file
and imported as a history. A single function computes the MSE
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History-based Parameter Identification
Test points

g 7]
Test results
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History-based Parameter Identification
Test points + Computed curve

GF
Computed curve: F(x,z)

./ Response Surface constructed
- for each interpolated matching

oint /\

55

—

Residual e,

Test results

Interpolated test curve G(z)
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History-based Parameter Identification
Mean squared error

Weight (Importance of error)

Response Surface Value Test Value Residual

1 l —

1

N P p=1 S,

2 (oY
_VVi F.(xX)-G, 1 We"(x)

/ Variables (material
or system constants)

Number of points
Residual Scale factor

(Normalization of error)
172
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Confidence Intervals
of Individual Parameters

Nonlinear regression model:

Measured results History time Unknown parameters
Git)=F({,X)+6—__
Residual

Discrete nonlinear least squares problem

1 &
mme E (G, —Fp(X))2
/' p=l

Number of points
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Confidence Intervals
of Individual Parameters

The variance is estimated by
le-Fx)
P—n

The 100(1- )% confidence interval for each variable is:

.

¢ =62 (vE( vE())

and 75'? is the Student t-distribution for &

2 .
Number of variables

~2
O =

N

<\

*

X —X.

l l

where
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History-based Parameter identification
Relevant commands

Get test data
History "testcurvename® file 'testfilename"

Construct crossplot
History "curvename® {Crossplot (

history_x_nare;—history_y_name?—— | Dyna

[numpoints, begin, end] )} time-histories

Construct error norm of curve mismatch

Composite “name” {MeanSqErr /

“testcurvename®, “curvename®,
[numpoints, begin, end,
weighting_type, scaling_type,
weighting_value, scaling_value,

weighting_curve, scaling_curve] )}
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Material Identification: Concrete Material 159
11 parameters, 9 test types, 20 different test sets
Par. Co00 TOO PRS UNX Cco7 Cl4 C20 C34 C69
UNC DP 1SO- UNX TXC7 TXC14 TXC20 TXC34 TXC69
comp

G ° ° ° )

K ° ° ) °

R ° ° ° ) ° °

X, .

w ° °

D, .

D, °

6 ° ° ° o o

A ° ° ° [} °

B . . . o .

n ° ° ° ° °
Multiple cases, shared variables -
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Material Identification:
Optimization (10 iterations) and Stress vs. Strain Results

o o
e o

N
s

N
°

Compressive Stress (zz) (MPa)
= w
° S

180
T 160 m
S
s s,
S " ~—
§ 120 M—
£ 100 T
2 80 —
g —+ Triaxial (34MPa) A
% 60 r/ —=— Triaxial (34MPa) B
% 40 —a— Triaxial (34MPa) C
2 — Computed
a 20
0
0 1 2 3 4 5 6
Strain (2z) (%)

- E -0.015 -0.01 -0.005
< — Computed
§ || ~*-irectpuila 6
& —— Direct Pull B
2 —o- Direct Pull C

—a 1| 2 | = Direct Pull D 2.6
@

NG i /:%-;;;"

—=-UNC3 M 2 y

—&— UNC5 Ll W

0.05 0.1 0.15 0.2 0.25 0.3 ’

Compressive strain (2z) (%) Tensile Strain (22) (%)
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