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Abstract 
 
This paper extends a 2017 study on full-field calibration using Digital Image Correlation (DIC) and the Finite Element Method to 
identify parameters of a material model developed for elastoplasticity. DIC is an optical method which provides full-field 
displacement or strain measurements for mechanical tests of materials and structures. It can be combined with the corresponding 
fields obtained from a Finite Element Analysis to identify constitutive properties. The methodology, which involves the solution of an 
inverse problem, consists mainly of two new core features namely (i) multi-point histories and (ii) suitable curve similarity measures. 
Multi-point histories are response curves which are evaluated at multiple spatial locations and extracted from simulations and 
experimental data. To improve on the previously used Euclidean curve distance measure, the Discrete Fréchet (DF), Dynamic Time 
Warping (DTW) and Partial Curve Mapping (PCM) measures were developed and validated for multi-point histories. An interface to 
a commercial DIC package, as well as two text-based generic interfaces, was also developed. A tensile test example was used to 
validate and demonstrate the methodology based on the DIC measurement of spatial point-wise strains. The example validated the 
code but revealed potential problem areas, such as solution stability, requiring further investigation. 

 
 

Introduction 
 

The goal of material parameter identification is to characterize the constitutive behavior using experimental 
results in combination with structural modeling of the test samples. Although rather well established, it is a 
complex subject which may involve material nonlinearity [1,2], hysteretic behavior (loading and unloading) [2], 
strain localization [1,3] as well as instability of the calibration [4]. The testing component may also involve full-
field optical measurement [1,5,6,7,8,9,10].  
 
A simple and common approach for identifying the parameters of certain types of materials is to use the tensile 
test, in which a coupon is subjected to a force while being measured for deformation. Both are global quantities. 
To extract the material properties, the coupon, usually of simple geometry, can be modeled using the Finite 
Element Method which incorporates the constitutive model to be calibrated.  
 
The methodology for conducting a calibration typically requires the construction of a distance function to 
quantify the distance between the experimental and computational results, for example the squared Euclidean 
distance measure: 
 

𝑓𝑓(𝒙𝒙) = ��𝜑𝜑𝑗𝑗(𝒙𝒙) − 𝜑𝜑�𝑗𝑗�
2

𝑛𝑛

𝑗𝑗=1

                                                                   (1) 

 
where 𝜑𝜑𝑗𝑗(𝒙𝒙) are the components of a force history or force-displacement vector and 𝑛𝑛 is the number of 
observation states. The vector 𝒙𝒙 represents the unknown material parameters and the ~ designates the 
experimental results. The Euclidean distance is minimized using optimization.  
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Methods and techniques to determine the similarity between time series play a critical role across a vast number 
of diverse research fields. However, the inferiority of popular measurements like Euclidean and Hausdorff have 
been illustrated by many authors [11,12,13,14]. For non-functions, such as when loading-unloading occurs, 
more sophisticated techniques are required such as the Discrete Fréchet (DF) method [16], Dynamic Time 
Warping (DTW) [17] or Partial Curve Mapping (PCM) [2]. In the current study, the DF, DTW and PCM 
measures are used as part of a full-field calibration. 
 
The (continuous) Fréchet distance was first defined by Maurice Fréchet in 1906 [16]. In 1994 Eiter and Mannila 
presented a discrete implementation in order to measure the similarity between two polygonal chains 𝑃𝑃,𝑄𝑄 using 
only the points along the chains [18]. A popular and intuitive analogy for the discrete Fréchet (DF) distance 
measurement is a man traversing a path along one curve while walking his dog, which follows the second curve, 
on a leash. The discrete Fréchet value equals the sufficient length of the leash. DF measures the similarity 
between curves by taking the minimum of the maximum of all possible edge lengths along a path, which 
connects all given data points. Mathematically, this can be expressed as 

𝐷𝐷𝐷𝐷(𝑃𝑃,𝑄𝑄) = 𝑚𝑚𝑚𝑚𝑛𝑛
 
�𝑚𝑚𝑚𝑚𝑚𝑚
𝑖𝑖=1,…,𝑙𝑙

�𝑑𝑑�𝑝𝑝𝑎𝑎𝑖𝑖 , 𝑞𝑞𝑏𝑏𝑖𝑖���, 

where 𝑑𝑑(∙ ,∙) denotes the Euclidean distance. The method takes into account the location and ordering of the 
points, which makes it applicable in cases where the Euclidean method would fail. However, when dealing with 
curves of different length, the result may be inaccurate since it considers all points in both curves. Furthermore 
when points are not uniformly distributed, particularly in case of a big gap between two points on a chain, DF 
will focus on the gap. This non-robust behavior can easily distort the distance value. 
 
Originating in speech recognition in the 1960s a second similarity measure, Dynamic Time Warping (DTW), 
has been a research topic for scientists of different fields, resulting in many variations of the method [19]. 
Variations such as FastDTW [20] and the Sakoe-Chiba Band [21] focus on reducing runtime while having an 
impact on accuracy. In this paper, we focus on the classical DTW approach. DTW calculates the distance 
between two data sets, which may vary in time, via its corresponding warping path 𝑊𝑊 = (𝑤𝑤1, … ,𝑤𝑤𝑙𝑙). This path 
is the result of the minimum accumulated distance which is necessary to traverse all points in the curves. The 
DTW distance value can be formulated as 

𝐷𝐷𝐷𝐷𝑊𝑊(𝑃𝑃,𝑄𝑄) = 𝑚𝑚𝑚𝑚𝑛𝑛
𝑊𝑊

��𝛿𝛿(𝑤𝑤𝑖𝑖)
𝑙𝑙

𝑖𝑖=1

�, 

where 𝛿𝛿(𝑤𝑤𝑖𝑖) = 𝑑𝑑(𝑝𝑝ℎ, 𝑞𝑞𝑘𝑘) if 𝑤𝑤𝑖𝑖 = (ℎ,𝑘𝑘). Note that a higher density of points yields an increased DTW distance, 
since it is defined as the accumulation of distances. Due to this design, a high distance value might be 
misleading. 
 
While simple material models can typically be uniquely identified using a tensile and/or shear test, a major 
difficulty in parameter identification is ill-posedness of the observation equation [4]: 
 

𝐴𝐴(𝑚𝑚) = 𝑦𝑦 ; 𝑚𝑚 ∈ X                                                                                     (2) 
 
in which the mapping 𝐴𝐴 represents the modeling (e.g. a FE model), 𝑚𝑚 ∈ X represents the model parameters (the 
material constants) bounded by the parameter space X and 𝑦𝑦 represents the data (experimental data) in the 
observable data space Y. This problem is typically solved as a minimization problem [4]: 
 

𝑦𝑦 = arg{Min
𝑦𝑦′

𝐽𝐽(𝑦𝑦′; 𝑚𝑚)} ≡ 𝐴𝐴(𝑚𝑚)                                                              (3) 
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In Reference [4] Bui lists important issues to check when solving the inverse problem, namely (i) stability of the 
solution with respect to variations in the data 𝑦𝑦 as well as with respect to modeling errors and small changes in 
the model space X (robustness). It should be mentioned that the inverse problem to determine the parameters 𝑚𝑚, 
for given experimental data 𝑦𝑦, is generally ill-posed. In material parameter identification, various conditions 
can cause ill-posedness, for example [4]: 
 

• False experimental data (measurement errors or erroneous data files) 
• Incompatible or insufficient data, i.e. there is no set of material parameters that will cause the model to 

produce results in data space D. 
• Noise in the experimental data 
• Modeling errors e.g. in the constitutive model or coarse approximation of the model A 

 
These problems are manifested because of the lack of suitable information provided by the chosen test. E.g. 
providing global information such as a force-displacement curve representing a chosen point or cross-section of 
a coupon may not be sufficient to characterize a nonlinear material model involving material flow, failure 
and/or damage. It is also typical of failure behavior to be localized, which eludes capture by global force-
displacement data [1]. It is probably safe to assume that the more sophisticated the material model and the 
phenomena it is intended to model, the more parameters it possesses and the greater the need exists for full-field 
calibration to capture localized behavior. 
 
While optimization always yields a solution to the unconstrained, but simply bounded, regression problem, the 
deficiency in the distribution of the input data may result in instability of that solution. It is with this problem, as 
well as accuracy, in mind that experimental mechanicians, over the last three decades, have introduced full field 
optical measurement techniques. These allow more comprehensive sampling in order to capture phenomena to 
which the material parameters have non-zero sensitivity, thereby improving stability of the calibration. 
 
The purpose of these non-contact methods is to measure the spatial distribution of physical quantities such as 
displacement or strain. Much of the development in this area arose from the improvements made to camera and 
computer technology as well as analysis techniques such as the Finite Element Method. Multiple optical 
measurement methods have been forthcoming such as digital holography and speckle interferometry. Magnetic 
Resonance Imaging (MRI) has been used to characterize myocardial material, see e.g. [9]. The focus of the 
current paper is an optical measurement method referred to as Digital Image Correlation [10]. 
 

 
 

Figure 1: Tensile testing equipment and optical measurement system by GOM ARAMIS. 
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Figure 2: Full field measurement of a tensile test using Digital Image Correlation. Above is the DIC image (GOM ARAMIS) 
while a strain contour plot is featured below (LS-PrePost®). 

 
Digital Image Correlation (DIC) started to appear in the early 1980s and is an optical measurement method (see 
Fig. 1 for test setup) which provides full-field displacement measurements for mechanical tests of materials and 
structures. A specific advantage of this tool is that it exploits numerical images acquired at different stages of 
loading. As such, it can be used to obtain temporal displacement, deformation or strain fields from an 
experimental coupon and can be combined with Finite Element Analysis to identify the constitutive properties 
of a material (see Fig. 2). 
 
Using DIC results, optimization is used to obtain the parameters which will minimize the distance functional 
involving the measured field and the computed field as components. As expressed for instance in Mahnken et al 
[1] the functional used is: 
 

𝑓𝑓(𝒙𝒙) = ��𝝋𝝋𝑗𝑗(𝒙𝒙) −𝝋𝝋�𝑗𝑗�
2

𝑛𝑛

𝑗𝑗=1

                                                                  (4) 

 
where 𝝋𝝋𝒋𝒋(𝒙𝒙) is a vector of nodal displacements or strains with dimension equal to the number of spatially 
distributed observation points and 𝑛𝑛 is the number of observation states. The functional can be augmented to 
incorporate global force-displacement measurements or any other functional resulting in parameter 
identification based on a multi-scale DIC (see e.g. [7]). 
 
The current study follows on an earlier paper [22] in which one of the main conclusions indicated a need to 
improve upon the current use of the Euclidean distance measure. For that purpose, a previously developed 
algorithm PCM [2] was extended to the full-field application and applied to the same example. 
 
 

Methodology and software features 
 
While LS-OPT has included parameter identification features since its first commercial release, the current 
development goal is to significantly enhance these capabilities to enable LS-OPT to accommodate modern 
testing techniques such as DIC. While full field calibration has been conducted using LS-OPT in the past [9], 
the current implementation generalizes the feature to enable it to address a greater diversity of problems.  
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A summary of essential features, most of which have now been implemented in LS-OPT, follows: 
 
1. A core feature of the methodology is the multi-point history, a basic mathematical entity representing both 

spatial and temporal dimensions. Multi-point histories are hyper-curves which are evaluated at multiple 
locations (possibly thousands) and extracted from simulations and experimental data. 

2. To access test data, an interface to the GOM ARAMIS DIC software (using their CSV and XML databases) 
was developed. Two generic features are provided, namely a fixed format (based on an LS-PrePost history 
format) file based input as well as a more general free format. In the latter, a software tool (GenEx) is 
provided so that freely formatted fields can be parsed from a text file.  

3. A binary tree-based exact nearest neighbor algorithm was developed to efficiently map a test point cloud to 
an FE model or vice versa. 

4. Both shell and solid elements are supported. The ability to interpolate fields within an individual finite shell 
element is incorporated into the mapping approach. Solid element quantities are represented by the values at 
the element center. Depending on the element size, an error will occur as the optical measuring systems only 
measure at the surface. 

5. Four distance measures are available, namely squared Euclidean and Discrete Fréchet distance, Dynamic 
Time Warping and Partial Curve Mapping. 

6. Error analysis enables the user to assess the size of the mismatch as well as the resulting uncertainty of the 
parameters. 

7. Graphical features are available for previewing test results. 
8. Distance contour maps will be provided for post-processing the discrepancy between computed values and 

experimental quantities (not yet implemented at the time of going to press). 
9. Confidence intervals of the material parameters enable the user to quantify their uncertainty (not yet 

implemented). 
10. The DynaStats feature of LS-OPT [11] provides sensitivity analysis and stochastic influence tools to 

identify spatial strain or displacement sensitivities to individual material parameters. Aside from the obvious 
use of locating suitable measurement areas, sensitivity analysis also allows the user to compare the 
significance of different strain measures, e.g. 𝜀𝜀𝑥𝑥𝑥𝑥, 𝜀𝜀𝑦𝑦𝑦𝑦 and 𝜀𝜀𝑥𝑥𝑦𝑦. 

 
A more detailed discussion is provided in the following sub-sections. 
 
 
 
GOM ARAMIS interface and alignment of DIC points 
Since the final test example uses the GOM ARAMIS measurement software, an LS-OPT GOM interface was 
implemented to define input files, result components and alignment data. The alignment is computed using the 
least squares formulation shown in the equation: 
 

min
𝑻𝑻
‖𝑿𝑿Test𝑻𝑻 − 𝑿𝑿FE‖                                                                           (5) 

 
to match any number of test points 𝑿𝑿Test to corresponding coordinates on the FE mesh 𝑿𝑿FE. The points in 
𝑿𝑿Test and 𝑿𝑿FE respectively do not have to correspond exactly. The solution of Eq. (5), using Singular Value 
Decomposition, yields the transformation matrix 𝑻𝑻 which is then used to transform all the test points (see e.g. 
Fig. 7). The data can also be specified as nodal/point IDs. Three or four points normally suffice, but any number 
can be specified. Alternatively, the alignment step can be omitted, since LS-PrePost can also be used to pre-
align the point set.  
 
 



15th International LS-DYNA® Users Conference Optimization  

June 10-12, 2018  6 

 
Since time is not relevant to the calibration1, crossplots between kinematic and static quantities are typically 
used. To enable the creation of cross-plots from the GOM data, both the X- and Y-components shown in Fig. 3 
can be histories or multi-point histories. E.g. a multi-point 𝑚𝑚𝑚𝑚-strain can be crossed with a multi-point 𝑦𝑦𝑦𝑦-strain 
to create multi-point stress-strain cross-plots or, as in the example that follows in the next section (Fig. 13), the 
full-field 𝑚𝑚𝑚𝑚-strain can be crossed with the global force history to create multi-point strain-force cross-plots. 
The same applies to cross-plots of computational fields. 

 
Figure 3: GOM ARAMIS interface in LS-OPT showing alignment input and verification plot of selected test value X- and Y-
components. 

 
 
Multi-point histories 
In the GOM ARAMIS option in the multi-point histories interface, each history is computed at a location 
selected from the test point set in the original, undeformed state. Features are provided to preview the test point 
alignment (see Fig. 4). E.g. Fig. 5 shows three representative deformation states representing 4557 points 
extracted from the GOM database for a plate with a hole while Fig. 6 shows the FE mesh with corresponding 
test points. Fig. 7 shows the outcome of the least squares point alignment using Eq. (5). 

                                                 
1 Simulations are often done as quasi-static, using an implicit method to achieve equilibrium at each state of deformation, a notable 
exception being rate-dependent materials such as those exhibiting visco-elasticity or -plasticity. 
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Figure 4: Multi-point history interface enabling the definition of the response type and location data. Location type can be 
defined as 'nearest node' or 'element'. In the latter option, the result is interpolated at the precise location within the nearest 
element. 

   
 

Figure 5: Selected deformation states from GOM/ARAMIS output. 

 

 
 

Figure 6: Example of test point mapping showing test point set (red) of 4557 points in relation to the Finite Element mesh. 
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Figure 7: Interactive feature for verification of least squares test point alignment. The starting test point location (in bright 
red) is shown on the left. 

 
 
Mapping test points to a FE mesh  
A given aspect of DIC is that the experimental points and FE nodes do not spatially coincide (see e.g. Figs. 6 
and 15). Hence, after the point set has been aligned with the FE mesh, they then have to be individually mapped 
to the nodes. The LS-OPT algorithm enables mapping in 3 dimensions using a binary tree. The approach allows 
for an exact nearest neighbor search with the ability to map 107 query points to 107 reference points in 
reasonable time (suitable for interactive use). Practical examples encountered thus far were handled virtually 
instantaneously. 
 
As a further enhancement to the nearest neighbor mapping, a distance tolerance can be set so that only data sets 
associated with nodes close to experimental points are used to compute the similarity measure. An additional 
measure to circumvent this problem, the ability to interpolate fields within each individual finite shell element 
has also been incorporated into the mapping approach. This is especially important for coarse meshes or high 
resolution DIC. Obviously, there could still be some discretization error, so the finer the FE mesh, the more 
accurate the interpolated value. The ideal mesh would be one which exactly coincides with the DIC points. 
 
 

Example: Tensile test 
 
An example of a tensile test was selected to test and demonstrate the full-field calibration feature in LS-OPT 
(Figs. 1 and 8). The example is the same as used in Reference [22] although multiple distance measures have 
now been validated and a switch has been made to the Genetic Algorithm in an attempt to improve convergence 
and accuracy. 
 
Fig. 9 shows the force-displacement trajectory as well as the strain contours at the time state depicted in the 
plot. The necking phenomenon is clearly visible from the test images in Fig. 9. 
 



15th International LS-DYNA® Users Conference Optimization  

June 10-12, 2018  9 

 

 
 

 
Figure 8: Test coupons for a tensile test (0° w.r.t. rolling direction) (Sample numbers MFz-00-*) 

 

 
 

𝜀𝜀𝑥𝑥𝑥𝑥 
 

𝜀𝜀𝑦𝑦𝑦𝑦 
 

Figure 9: Sample MFz-00-01: Force-displacement diagram and DIC contour plots for 𝑚𝑚𝑚𝑚- and 𝑦𝑦𝑦𝑦-strains. 

Simulation 
A Finite Element model was created in LS-DYNA® [23] to model a typical coupon (Fig. 8) subjected to a 
tensile force. The material model uses the von Mises yield locus and a Hockett-Sherby flow curve formula for 
extrapolation beyond the point of a uniform strain state: 
 

𝑓𝑓�𝜀𝜀𝑝𝑝� = 𝐴𝐴 − 𝐵𝐵𝑒𝑒−𝐶𝐶𝜀𝜀𝑝𝑝𝑝𝑝
𝑁𝑁

                                                                          (6) 
 
where 𝐴𝐴, 𝐵𝐵 𝐶𝐶 and 𝑁𝑁 are material constants. 𝐶𝐶1-continuity is assumed at the flow transition following the 
uniform strain state which removes the requirement to incorporate 𝐴𝐴 and 𝐵𝐵 in the optimization that follows. 
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Validation 
 
This section describes a validation of the implementation, but also compares the results obtained using a single 
global force-displacement curve vs. full-field strain data. 
 
Global force vs. displacement: 
A problem based on synthetic test data was first constructed by creating a target curve from a simulation using 
material properties fixed at [𝐶𝐶,𝑁𝑁] = [0.5,0.5]. A subsequent optimization was done from a different starting 
point in an attempt to recover the target curve. The FE model based on a test coupon and corresponding global 
load-displacement target curve are shown in Fig. 10. 

 

 
Figure 10: Finite Element mesh with corresponding global force-displacement curve based on [𝐶𝐶,𝑁𝑁] = [0.5,0.5]. The target curve is 
represented by the 's. 
 
Since the problem has only two variables, the PCM distance function can be displayed in three dimensions (Fig. 
11). The two pictures on the right show the relatively flat valley suggesting near instability of the problem.  
 
A Genetic algorithm was used to conduct a direct optimization using a population size of 30 and iteration limit 
of 100. The GA procedure is set to stop if the solution does not improve over 50 iterations. Table 1 shows that 
the target values [𝐶𝐶,𝑁𝑁] = [0.5,0.5]  are fully recovered by the GA. 

  
 
Figure 11: Example based on synthetic test data: Neural Network used to demonstrate the instability of the optimal solution when 
minimizing the PCM distance measure to match the global 𝑚𝑚-displacement. RMS Error of the Neural Network fit = 0.0018 (0.454%) 
with 𝑅𝑅2 = 1.0. 
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Table 1: Validation using a target force-displacement curve based on 𝐶𝐶 = 0.5 and 𝑁𝑁 = 0.5. Optimization conducted with the Genetic 
Algorithm using a population size of 30 with a 100 generation limit. 
 

 𝑪𝑪∗ 𝑵𝑵∗ 𝜺𝜺 
PCM 0.500 0.500 𝟑𝟑 × 𝟏𝟏𝟏𝟏−𝟏𝟏𝟏𝟏 
Exact 0.500 0.500 0 

  
 
As a further demonstration of the relative instability, two individual points, with values significantly different 
from the exact solution, were chosen in the valley. The simulation results are tabulated below (Table 2). 
Sampling point #1 as well as its corresponding force-displacement curve is shown in Fig. 12. The computed 
result is very close to the test result, although a small discrepancy is noticeable at the tail end of the curve. 
 
Table 2: Sample tests, both chosen with relatively small residuals using a target force-displacement curve based on 𝐶𝐶 = 0.5 and 𝑁𝑁 =
0.5. 
 

Samples 𝑪𝑪 𝑵𝑵 𝜺𝜺 
#1 1.32 0.74 5 × 10−6 
#2 1 0.6 3 × 10−5 

Exact 0.500 0.500 0 
 
 

 

 
 
Figure 12: Example based on synthetic test data: curve similarity for Point #1: [𝐶𝐶,𝑁𝑁] = [1.32,0.74] chosen to be in the residual 
valley remote from the optimal point (shown as a + in the picture on the left). Note the slight discrepancy, mainly at the tail end of the 
green curve on the right (also compare with Fig. 10). The target curve () is based on  [𝐶𝐶,𝑁𝑁] = [0.5,0.5]. 
 
 
Full-field force vs. strain: 
The question arises whether a full-field calibration would improve the stability of the problem. Hence, in the 
second phase, a full body strain field consisting of both 𝜀𝜀𝑥𝑥𝑥𝑥 and 𝜀𝜀𝑦𝑦𝑦𝑦 based on [𝐶𝐶,𝑁𝑁] = [0.5,0.5] is used as a 
target multi-point curve set. In this phase, three similarity measures were validated using the full-field 
calibration method, namely the Discrete Fréchet, DTW and PCM measures. 
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Fig. 13 suggests that the example might be less unstable, but a relatively flat valley roughly connecting [𝐶𝐶,𝑁𝑁] = 
[0.01,0.4] with [1.8,1.0] (center in Fig. 13) is still present. The rightmost picture in Fig. 13 illustrates the degree 
of instability in the blue zone. The dark red cube represents the predicted optimum. 

  
 
Figure 13: Example based on synthetic test data: Neural Network used to demonstrate the instability of the optimal solution for 
matching 𝜀𝜀𝑥𝑥𝑥𝑥when minimizing the Discrete Fréchet distance measure (instability is also present using the other distance measures 
discussed in this study). The picture on the far left also shows the 121 simulation points used to compute the Neural Network. (RMS 
error = 0.00053, 𝑅𝑅2 = 1.0.) 

 
Fig. 14 compares the three distance measures for both matching 𝜀𝜀𝑥𝑥𝑥𝑥 and 𝜀𝜀𝑦𝑦𝑦𝑦 as a function of global force. As 
expected, the distance functions of both 𝜀𝜀𝑥𝑥𝑥𝑥 (the force direction) and 𝜀𝜀𝑦𝑦𝑦𝑦  are very similar, and these functions 
are also similar for the three distance measures (thereby validating the measures themselves). A minor 
exception is that the PCM valley is noticeably less narrow than that displayed by DF and DTW.  
 
Table 3 provides a comparison of the optima obtained using a GA. The target values for 𝐶𝐶 and 𝑁𝑁 are almost 
perfectly recovered, thereby validating the implementation. 
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Figure 14: Comparison of Neural Network approximation models representing the distance functions of 𝜀𝜀𝑥𝑥𝑥𝑥 and 𝜀𝜀𝑦𝑦𝑦𝑦. The dark red 
point near the [0.5,0.5] coordinate depicts the optimum. 
 
 
Table 3: Validation results using a problem based on synthetic test data: A comparison of similarity measures with the optimal values 
computed using a full-field target curve set initially computed at 𝐶𝐶 = 0.5 and 𝑁𝑁 = 0.5. Optimization conducted with the Genetic 
Algorithm using a population size of 30 and a 100 generation limit. 
 
 

 𝑪𝑪∗ 𝑵𝑵∗ 
PCM 0.502 0.501 
DF 0.500 0.500 

DTW 0.497 0.499 
Exact 0.500 0.500 
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Calibration using experimental data 
Finally the material model was calibrated using the DIC results of a laboratory experiment. The LS-OPT setup 
required alignment of the 391 measured points with the FE mesh as shown in Fig. 15. The force vs. point-wise 
𝜀𝜀𝑥𝑥𝑥𝑥 strain curves are shown in the previewing feature depicted in Fig. 16. Each curve represents a measuring 
point as shown in black in Fig. 15. For the optimization, a cross-plot was defined using multi-point histories to 
represent the global force vs. point-wise strains. The incorporation of the force ensures that both statics and 
kinematics are incorporated into the behavior. 
 
The optimization problem was set up with parameters 𝐶𝐶 and 𝑁𝑁 as variables and with the objective to minimize 
the distance function 𝑓𝑓 [Equation (4)]. This defines the ideal of matching 𝜀𝜀𝑥𝑥𝑥𝑥 at each point and each 
deformation state. For maximum accuracy, and because the function evaluations are inexpensive, the 
optimization was conducted using the Genetic Algorithm in LS-OPT [11] using default settings.  
 
Real experiments present additional challenges to parameter identification implying that the choice of similarity 
measure is important. Because of the possibility of a partial curve overlap, the PCM method was chosen for the 
calibration. The accuracy of PCM can be significantly affected by noise (which affects the curve length) but, in 
this example, experimental noise does not seem to play a major role (see e.g. Figure 16). The reason the 
Discrete Fréchet and DTW methods were disregarded for this example is because they can be significantly 
affected by a length difference of the matching curves. The Euclidean distance method was also disregarded 
because the vertical drop-off of a large number of curves in the post-yield phase defies the use of an ordinate-
based distance measurement (see also Fig. 16). 
 

 
 

 
 

Figure 15: Finite element model of the coupon specimen (red) shown with 391 superimposed optically measured points at the 
center (black). 
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Figure 16: Preview of the multi-point curve: the force (AD-0) vs. full-field logarithmic 𝑚𝑚𝑚𝑚-strain as rendered in a previewing 
feature of the GOM/ARAMIS interface in LS-OPT. Each curve represents a single measuring point. 

 
Results and observations 
The optimization history of the distance function is shown in Fig. 18 while Table 4 shows the optimal results 
computed using the GA and FFNN. The starting point was the initially estimated values of 𝐶𝐶 = 0.5 and 𝑁𝑁 =
0.5  The non-zero value of the distance measure (0.02356), also seen in Fig. 17, indicates a failure to exactly fit 
the material model to the experimental data. Possible reasons for the lack of fit are discussed in detail in the 
summary and conclusion. Potential instability is noticeable in Fig. 17. 

 
 

   
 
Figure 17: Neural Network approximation of the PCM distance function shown with optimum. Note non-zero residual at the optimum. 
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Figure 18: Optimization history of the distance function, Note: the first point is already the best point of the first generation 
random sample of 30. (from LS-OPT) 

 
Table 4: Optimal parameters when using experimental data as input. Optimization conducted using Genetic Algorithm (30 × 73 
simulations) as well as a Feedforward Neural Network (FFNN) (11 × 11 sampling grid = 121 simulations). 𝜀𝜀 Represents the 
minimum value of the measure. PCM was used as a distance measure. 
 

 𝑪𝑪∗ 𝑵𝑵∗ 𝜺𝜺∗ 
GA 0.0106 0.716 0.02356 

FFNN 0.0100 0.718 0.02357 
 

 
Summary and Conclusions 

 
A parameter identification run was executed using the LS-OPT optimization tool incorporating distance 
functions based on spatially distributed multi-point histories and DIC experimental results obtained from a 
tensile test. The calibration is based on a simple example with two variables.  
 
The test example provided here was intended as a working example during the development and is considered 
sufficient to validate the parameter identification code. However, it is not highly illustrative of the benefit of 
using DIC, since the experimental points fall in a region of fairly uniform deformation. Therefore, for 
calibration, it is expected that there would not be much difference in using a global force-displacement curve in 
comparison with using a full 𝜀𝜀𝑥𝑥𝑥𝑥 strain field. It also appears that the addition of 𝜀𝜀𝑦𝑦𝑦𝑦 does not have any 
significant effect on the stability of the problem. It is not immediately clear why the problem is unstable, but it 
likely has something to do with the chosen constitutive law. To address this and other questions, future work 
will attempt to incorporate more complex material models as well as more suitable experiments. 
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A more detailed analysis of the issues, with a view to address them in future development, follows: 
 

1. Stability and Uniqueness. The example, which demonstrates a near instability of the solution, 
highlights the possibility of ill-posedness of the inverse problem for material calibration. Non-
uniqueness of the solution is a result of instability, but non-uniqueness can also occur in stable problems. 
To find a unique solution, it is recommended to use a global optimization algorithm such as the GA.  

2. Curve matching technique (distance measure). It is apparent that response curves can have very steep, 
near vertical, post-yield behavior which presents a difficulty for Euclidean measures. As a consequence, 
some of the curve data may be inadvertently neglected. For this reason, Partial Curve Mapping was 
used. Other distance measures such as Dynamic Time Warping may also be suitable, but could be 
problematic if there is a significant length difference between the curves. 

3. Noise. Noise may emanate from discretization error and/or experimental error. Another source could be 
the proximity of test points with respect to the extraction locations on the FE model. For this reason, 
element interpolation was incorporated to extract values from the exact location in the model. Noise will 
cause a non-zero residual error of the distance function, but also defeats the utility of curve length based 
distance measures such as Partial Curve Mapping. 

4. Modeling error. It is possible that, in addition to noise, the material model does not represent the 
experimental response with sufficient accuracy. This is a bias or modeling error associated with a non-
zero minimal curve distance value. 

5. Finite Element discretization error. The FE mesh provided for the example is somewhat coarse, 
possibly resulting in a discretization error. This may be especially true because triangular elements are 
used in the transitions. An obvious remedy would be to increase the fineness of the mesh and to use only 
higher order triangles or quadrilateral elements. 

 
Future work is also likely to include the following: 
 

1. Confidence intervals of the parameters. It is suggested that confidence intervals be calculated for the 
parameters, a function which requires the calculation of the gradients (with respect to the parameters) of 
the multi-point histories at the optimal solution 𝒙𝒙∗. The confidence intervals quantify the degree to 
which the optimal value of a parameter can be trusted. The computation of confidence intervals requires 
response surfaces to be constructed at every location and deformation state. This is potentially expensive 
in terms of computational time. 

2. Sensitivity. For test coupons designed for localized deformation, a methodology that can be used to 
investigate sources of instability is sensitivity analysis. In LS-OPT DynaStats [11] the spatial sensitivity 
(or stochastic influence) contours can be studied to determine spatial locations where sensitivities of 
response types such as 𝜀𝜀𝑥𝑥𝑥𝑥 and 𝜀𝜀𝑦𝑦𝑦𝑦  to the individual material parameters are highest. DynaStats is a 
general tool for previewing the suitability of response field types by allowing the user to study the 
evolution, over time, of their spatial distribution and relative importance. 

3. Variability. Since experiments rarely involve a single coupon, future work will also focus on 
incorporating replicated experiments to assess their influence on the variability of the optimal 
parameters. 
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