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1 Introduction 

In design optimization, it is typical to minimize an objective function, such as the cost of the design, 
while constraining other responses. As a result, the final design often lies at the limit of permissible 
behavior. However, a slight perturbation of the design or the loading conditions can lead to an 
inadmissible response. In addition, the objective function may be highly sensitive to perturbations 
leading to a much worse value than the expected optimum values. To avoid these issues, reliability-
based design optimization (RBDO) and robust optimization are often performed [1,2]. Tolerance 
values play an important role in determining the effect of uncertainties on the optimal design [3-5]. The 
tolerance intervals define the variable probability density function (PDF) bounds and, therefore, affect 
the failure probability. In the absence of complete probability density information, they facilitate the 
search for a worst case design; an optimal design with zero failure within the tolerance intervals can 
be determined.  
 
In this work, LS-OPT is used to perform tolerance-based design optimization using a multi-level 
scheme [6].  The outer level consists of an optimization problem that maximizes the tolerance value 
such that there is no failure within the tolerance interval (i.e. neligible probability of failure). The 
nominal design parameters and their tolerance values are the optimization variables for this level; 
thus, each sample in the outer level uniquely defines the nominal values and bounds of the variable 
probability density functions (PDFs). The probability of failure for each sample is determined using an 
inner level Monte Carlo analysis. This value is then extracted as an outer level response and is 
constrained to be close to zero during the optimization. The outer level optimization is formulated such 
that a balance between robustness and performance is acheved. 
 
For problems with expensive analysis, e.g. crash anaysis, a two step approach is presented. For such 
problems, the first step involves the construction of high fidelity global metamodels for the system 
responses and saving their formulae to a file. In the second step, the previously constructed 
metamodels are used to replace the actual expensive function analysis. In other words, once the 
global metamodels are constructed, the multi-level tolerance scheme does not need any expensive 
function evaluation. 
 
The tolerance optimization methodology is applied to optimize the thickness design parameters for a 
Chevrolet truck impact problem as well as the associated tolerances. The details of the LS-OPT setup 
are illustrated through this design problem. The newly developed features and entities of LS-OPT 
used in this work include multi-level optimization using LS-OPT stage, transfer variable usage, 
exporting metamodel formulae to  a file and parametrization of LS-OPT attributes such as distrbution 
properties. A multi-objective tolerance-based optimization is performed to obtain a tradeoff. 
 
In the following sections, the tolerance optimization method is explained in greater detail along with 
some results. In Section 2, the tolerance optimization formulation is provided. Section 3 involves the 
the applicaiton of the proposed methodology to a Chevrolet pickup truck along with the steps required 
for setting up the problem in LS-OPT. In Section 4, results for the truck optimization problem are 
presented. Finally, Section 5 provides a summary of the work and some future work that will help in 
further streamlining the setup in LS-OPT.  
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2 Tolerance Optimization Methodology 

This section presents the formulation of the tolerance optimization [3-5] problem solved in this work. 
The methodology used in this work is summarized using Figure 1. In general, tolerance optimization 
involves a large number of function evaluations. Therefore, to avoid high computation cost for 
problems with expensive analysis, the methodology used in this work consists of two steps. 
Metamodels for the responses are constructed in the first step and these computationally inexpensive 
approximations are then used for the tolerance optimization, which is performed in the second step.  
 
First, in step 1, a zero tolerance problem is solved as a deterministic single iteration optimization using 
LS-OPT. The optimization problem can be formulated as: 
 
min
��
											 �� (��) 

�. 
.											��(��) − 1 ≤ 0, � = 1,2,3                                         (1) 
��
ℎ									��� ≤ �� ≤ ��� 	   
 
where the optimization variables ��  are nominal variables. It should be noted that the solution of the 
above optimization formulation may not be robust. However, the above problem is solved to achieve 
two objectives - to obtain a target value of �� for step 2, where a constraint is applied on ��, and to 
obtain high fidelity metamodel approximations of the responses that are used to replace the expensive 
analysis in step 2 tolerance optimization. It is important to obtain the response approximations as 
replacements of the expensive analysis, as tolerance optimization involves a high number of function 
evaluations. 
 
In step 2, the tolerance optimization is solved as a single or multi-objective problem. This work 
consists of a multi-objective optimization with two objective functions. One of the two objectives is a 
tolerance scale factor, which is the ratio of the tolerance and nominal values, and the  second 
objective is the nominal value of the step 1 objective function ��. It should be noted that �� can be a 
vector of multiple objective functions, but is treated as a scalar here for simplicity.  The optimization in 
step 2 is set up as a two-level problem in LS-OPT. The nominal design variables and the tolerance 
value are optimized in the outer level while the inner level computes the probability of failure at any 
design alternative. The failure probabilities in the inner level are calculated based on the previously 
constructed metamodel approximations.  
 
The outer level optimization is: 
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where � is the vector of relative tolerance values or the tolerance scale factors, tδ is the vector of 

absolute tolerance values, ��
∗ is the optimal objective function value for step 1 solution and η  is a 

factor greater than 1. It should be noted that the absence of failure within a large tolerance interval 
implies high robustness of the solution, but a very large tolerance will also lead to loss of performance. 
Therefore, it is important to include the original objective function �� as a constraint while maximizing 
the tolerance. A design obtained in this manner strikes a balance between robustness and nominal 
performance. Figure 1 shows the general overview of the multilevel tolerance-based multiobejctive 
optimization. Equation (2) can also be written as: 
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FIGURE 1 Tolerance Optimization Summary

 

3 Tolerance Optimization Using LS

The design problem discussed in this paper consists of
formulated to optimize the finite element (FE) model of the Chevrolet C2500 pickup truck 
by National Crash Analysis Center (NCAC)
lighter and robust design without compromising the crashworthiness characteristics of the vehicle 
model given by the intrusion distance and crash pulse respon
selected based on their contribution to the overall crash energy absorption were treated as the design 
variables. A total of nine parts were selected and due to symmetry in the design, the 
variables was reduced to six. Figure 2 shows the FE model of the Chevrolet C2500 pickup truck and 
the design parts selected for the optimization. 
 

 

FIGURE 2  FE model of Chevrolet C2500 pickup truck (left) and the parts selected for 
(right). 

 
The tolerance optimization methodology explained in section 2 was applied to the Chevrolet C2500 
pickup truck. The following discussion pertains to the setup of the tolerance optimization of the vehicle 
model using LS-OPT. The optimization is performed in two steps. The first step consists of a 
deterministic optimization and the tolerance optimization is performed in the second step. The second 
step further consists of a two-level (multi
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Tolerance Optimization Summary 

Tolerance Optimization Using LS-OPT - Design Problem and Setup 

design problem discussed in this paper consists of a multi-objective design optimization 
finite element (FE) model of the Chevrolet C2500 pickup truck 

National Crash Analysis Center (NCAC) [7]. The goal of the optimization process was
lighter and robust design without compromising the crashworthiness characteristics of the vehicle 
model given by the intrusion distance and crash pulse responses. The thickness of a few parts 
selected based on their contribution to the overall crash energy absorption were treated as the design 
variables. A total of nine parts were selected and due to symmetry in the design, the number of design 

duced to six. Figure 2 shows the FE model of the Chevrolet C2500 pickup truck and 
the design parts selected for the optimization.  

    
 

FE model of Chevrolet C2500 pickup truck (left) and the parts selected for 

The tolerance optimization methodology explained in section 2 was applied to the Chevrolet C2500 
The following discussion pertains to the setup of the tolerance optimization of the vehicle 

zation is performed in two steps. The first step consists of a 
deterministic optimization and the tolerance optimization is performed in the second step. The second 

level (multi-level) setup as explained below. 

Step 1: Deterministic objective function f1
minimization with constraint(s) g < 0
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objective design optimization 
finite element (FE) model of the Chevrolet C2500 pickup truck developed 

was to obtain a 
lighter and robust design without compromising the crashworthiness characteristics of the vehicle 

ses. The thickness of a few parts 
selected based on their contribution to the overall crash energy absorption were treated as the design 

number of design 
duced to six. Figure 2 shows the FE model of the Chevrolet C2500 pickup truck and 

 

FE model of Chevrolet C2500 pickup truck (left) and the parts selected for optimization 

The tolerance optimization methodology explained in section 2 was applied to the Chevrolet C2500 
The following discussion pertains to the setup of the tolerance optimization of the vehicle 

zation is performed in two steps. The first step consists of a 
deterministic optimization and the tolerance optimization is performed in the second step. The second 
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Step 1: The determinitic zero tolerance optimization problem required for step 1 was formulated as: 
 

min
��
											 �� !"#_% �� (��) 

�. 
.											�� !"#_�
 �"�_&'!�"(��) − 1 ≤ 0, � = 1,2            

																		�� !"#_#��&(��) − 1 ≤ 0                               (4) 

��
ℎ									��� ≤ �� ≤ ���	    
 

where �� !"#_% �� is the total mass of the selected parts normalized by its baseline value, 
�� !"#_�
 �"�_&'!�" are the normalized design constraints given by the crash pulse responses 
and �� !"#_#��& is the normalized design constraints given by the the intrution distance. These are 
required to be less than or at least equal to their baseline values. (̅ are the part thickness design 
variables that need to be between their respective lower and upper bounds.  
 
The optimization problem given by Equation 4 is solved using a metamodel-based single iteration task 
available in LS-OPT. A relatively high number of samples (1000) were used in this step to obtain high 
fidelity global metamodel approximations for the responses. This, however, allows one to avoid many 
more simulations in the potentially expensive second step. The following figure shows the setup 
required in the LS-OPT tool for solving Step 1.  
 

 
 

FIGURE 3 LS-OPT setup for Step 1. 

 
Radial basis function (RBF) networks were used to formulate the approximate equations for the design 
responses using a total of 1000 sample points selected using the space filling sampling technique. 
Through optimization, the total scaled mass of the selected parts was reduced to 0.8323 compared to 
the baseline value of 1.  
 
The single iteration deterministic optimization in step 1 serves two purposes. First, the deterministic 
optimal total mass value, after some relaxation, is used as a target to constrain the mass during the 
tolerance-based optimization in the second step. This ensures robustness of the mass in the final 
design. In addition, the mathematical expressions of the RBF metamodels constructed in this step are 
automatically saved into the DesignFunctions.1 file. These approximations are used to replace the 
expensive LS-DYNA FE crash analysis during the tolerance optimization in the second step. It should 
be noted that LS-OPT saves the approximation formulae in Matlab compatible format. In this work, 
however, the formulae in the DesignFunctions file were manually converted to perl compatible format 
using some simple modifications.  
 
 

Step 2: This step involves multi-objective optimization with total scaled mass of the design parts and 
the tolerance scale factor as the objectives. The optimization in step 2 is set up as a two-level (outer 
and inner) problem in LS-OPT. The outer level  consists of a direct simulation-based multiobjective 
optimization with a tolerance scale factor and the nominal thickness of the design parts as the design 
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variables. The analysis stage of the outer level consists of an LS-OPT stage that represents the inner 
level Monte Carlo analysis. Thus, for each outer level sample corresponding to a unique nominal 
variable value and tolerance value, an inner level Monte Carlo analysis is conducted to compute the 
corresponding probabilities of failure.  
 
The outer level LS-OPT stage itself represents an inner level LS-OPT setup that contains a user-
defined stage with a perl script as the input file. The perl script computes the response values for the 
truck impact and is based on the step 1 metamodel approximations. An example of a simplified perl 
script obtained by modifying the DesignFunctions file of the step 1 is shown in Figure 4. The script 
contains 9 parameters that are automatically detected in the inner level setup. However, three of these 
are dependent on the other variables. The remaining 6 parameters are defined as noise variables.  
 

 
 

FIGURE 4 Simplified step 2 inner level perl input file obtained by modifying the DesignFunctions 
database. The actual input file contains multiple response approximations. 

 
The probability density functions (PDF) of these variables needs to be parameterized with respect to 
the outer level variables, as each outer level sample represents a unique variable PDF. Therefore, in 
addition to the variables automatically detected in the perl script, the nominal design variables and the 
tolerance scale factor are manually added to the inner level setup as transfer variables. These transfer 
variables added to the inner level .lsopt setup file, which is also the outer level LS-OPT stage input file, 
are automatically detected as parameters in the outer level. These are set as optimization variables in 
the outer level, but are treated as constant parameters in the inner level. For each outer level sample, 
the corresponding transfer variable values are substituted in the inner level setup file. The noise 
variable PDFs in the inner level are parameterized using the transfer variables or their dependents 
using the "&" operator. The design variables for both inner and outer level LS-OPT analysis are shown 
in Figure 5 and Figure 6. 

 
For each sample of the outer level, the inner level LS-OPT analysis consists of a Monte Carlo 

analysis of the Chevrolet C2500 pickup truck to determine the probability of exceeding the crash 
response bounds. However, it is noteworthy that the expensive transiet dynamic FE crash analysis is 
replaced by metamodel approximations within the perl input file. This allows significant savings in the 
computational time. The inner level reliability analysis for probability of failure calculation is set up as  
a metamodel-based Monte Carlo analysis with 100 space filling sample points (Figure 7).   
 



 

FIGURE 5 Inner level variable setup for step 2 (left). Parameterization of PDF using & operator (right).

FIGURE 6 Outer level stage setup (left) and variable setup (right)

 

FIGURE 7 LS-OPT setup for the inner loop metamodel

 

Inner level variable setup for step 2 (left). Parameterization of PDF using & operator (right).

 

 
 

Outer level stage setup (left) and variable setup (right) 

OPT setup for the inner loop metamodel-based Monte Carlo analysis. 

 

Inner level variable setup for step 2 (left). Parameterization of PDF using & operator (right). 

 

 



The four design constraints 
(intrusion distance and crash pulses)
responses are required to be less than or at least equal to the baseline values. Since the optimum 
value of the total mass in step 1 was 0.8323, a 
the total mass. It is important to introduce this additional mass constraint in order to ensure 
level of mass reduction within the entire tolerance interval
the inner level Monte Carlo analysis. 

 

FIGURE 8 Constraint definitions for inner loop 

 
The result of the Monte Carlo

given by the probabilities of exceeding the constraint 
analysis corresponds to one sample of the outer l
responses are defined as the responses of the outer l
probabilities can be obtained from the 
analysis. Since lsopt_report is a text file, GenEx response extraction tool of LS
extract the values of probability of failure
the parts was also extracted from the inner
outer level, a multiobjective optimization 
total mass was formulated as: 
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where t is the tolerance scale factor and 
sign indicates that the value of the scaled mass 
probability of failure of the crash responses
A robust solution is desired both w
variation within the tolerance limits does not lead to failure. To alleviate the effect of uncertainties, the 
tolerance scale factor t  is maximized. All the thicknesses are assumed to have the same tolerance 
scale factor or percentage tolerance. 
minimized, and the problem is solved as a multi
nominal mass and the tolerance. 
constraint definitions. The setup of the outer level task, which is set as direct
Figure 10. 
 

 

 defined in the Monte Carlo analysis are the three crash responses 
s) and a constraint for the total mass of the design parts. The crash 

responses are required to be less than or at least equal to the baseline values. Since the optimum 
value of the total mass in step 1 was 0.8323, a relaxed value of 0.9 was given as the upper bound for 

It is important to introduce this additional mass constraint in order to ensure 
level of mass reduction within the entire tolerance interval. Figure 8 shows the constraint definition of 

arlo analysis.  

Constraint definitions for inner loop Monte Carlo analysis. 

Monte Carlo analysis is a list of probabilities of failure of the crash responses 
probabilities of exceeding the constraint bounds. Since each inner level 

sample of the outer level, the probabilities of failure of the crash 
responses are defined as the responses of the outer level LS-OPT stage. The values of the 
probabilities can be obtained from the lsopt_report file generated during the inner level

text file, GenEx response extraction tool of LS-OPT was used to 
bility of failure. Apart from the probabilities of failure, the mean total mass of 
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multiobjective optimization to maximize the design tolerance and minimize the mean 
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the scaled mass is minimized during the optimization process. 
failure of the crash responses, evaluated using the inner loop Monte Carlo

A robust solution is desired both with respect to the objective and the constraints, such that any 
variation within the tolerance limits does not lead to failure. To alleviate the effect of uncertainties, the 

is maximized. All the thicknesses are assumed to have the same tolerance 
scale factor or percentage tolerance. t  is, therefore, a scalar. The nominal mass is simultaneously 
minimized, and the problem is solved as a multi-objective optimization to obtain a trade
nominal mass and the tolerance. Figure 9 shows the LS-OPT outer level objective fu

The setup of the outer level task, which is set as direct optimization

analysis are the three crash responses 
and a constraint for the total mass of the design parts. The crash 

responses are required to be less than or at least equal to the baseline values. Since the optimum 
given as the upper bound for 

It is important to introduce this additional mass constraint in order to ensure a minimum 
shows the constraint definition of 
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FIGURE 9 LS-OPT setup for outer loop objectives (left) and design constraints (right).

 

FIGURE 10 LS-OPT setup for outer loop design optimization.

 

4 Results and Discussion 

 
The multi-objective optimization problem given 
the direct simulation based optimization
technique. A population size of 100 designs per 
iterations. Thus, 100 outer loop samples were analyzed during
sample consisting of its own inner level
the NSGAII method available in LS
functions, i.e. tolerance scale factor 
 
 

FIGURE 11 Tradeoff between the objective functions over iterations.

 

   

OPT setup for outer loop objectives (left) and design constraints (right). 

 
 

OPT setup for outer loop design optimization. 

optimization problem given in equation 5 and shown in Figure 10 was solved using 
direct simulation based optimization task of the LS-OPT with genetic algorithm as the optimization 

100 designs per iteration was considered with a maximum of 50 
samples were analyzed during each outer level iteration

inner level Monte Carlo analysis. A Pareto optimal front obtained using 
the NSGAII method available in LS-OPT was used to determine the tradeoff between the 

tolerance scale factor vs. the nominal mass as shown in Figure 11 and Figure 

 

Tradeoff between the objective functions over iterations. 
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iteration, with each 
front obtained using 

was used to determine the tradeoff between the objective 
and Figure 13.  



 
The optimization process reached convergence at 50 iterations as shown by 
volume and spread over iterations
nondominated solutions is shown in 
loop is based on the approximate 
design points of the Pareto Optimal Front
through LS-DYNA FE analysis to determine the true 
the metamodel-based and simulations
Optimal Front shows that the most Pareto Optimal
satisfied the crash response design criteria. 
Pareto front are due to the error in prediction accuracy of the approximate analytical equations 
obtained in step 1 that could arise due to some inherent noise in the problem
note, however, is that the infeasibility of nominal design is observed only for some of those Pareto 
Optimal points that have low tolerance values. This
mitigates some of the effects of approximation/solution process inaccurac
underscores the importance of tolerance
optimization. 
 
 

FIGURE 12 Hyper volume change (left) and change in spread (right) of the multi
showing convergence. 

   

 
 

FIGURE 13 Metamodel-based (left) and simulation
scaled mass. 

     
The Pareto Optimal Front (Figure 13
scaled mass is obtained, 1 being the
vehicle mass reduction of 22.8 kg. Among the 
varies between 17.54 kg and 22.8 kg. A
obtained. A knee is observed in the tradeoff plot and it is seen that approximately 2% tolerance can be 
achieved without significant increase in the mass
kg.  

 

reached convergence at 50 iterations as shown by the change in hyper 
volume and spread over iterations in Figure 12. The final Pareto Optimal Front consisting of the 
nondominated solutions is shown in Figure 13. Since the evaluation of crash responses in the inner 
loop is based on the approximate analytical equations obtained from step 1, all the 

Pareto Optimal Front obtained from the multi-objective optimization were analyzed 
DYNA FE analysis to determine the true nominal crash responses. Figure 

based and simulations-based Pareto Optimal Front. The simulation
most Pareto Optimal points of the multi-objective optimiza

design criteria. A few infeasible design points in the simulation
due to the error in prediction accuracy of the approximate analytical equations 
that could arise due to some inherent noise in the problem. An interesting thing to 

is that the infeasibility of nominal design is observed only for some of those Pareto 
Optimal points that have low tolerance values. This is an expected result as a higher tolerance 
mitigates some of the effects of approximation/solution process inaccuracies also. This further 
underscores the importance of tolerance-based design optimization compared to deterministic 
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5 Summary and Future Work 

A methodology for application of LS-OPT to multilevel tolerance-based optimization is presented. It 
has been sucessfully applied to optimize the FE model of Chevrolet C2500 pickup truck. A set of 
Pareto Optimal solutions is obtained with a trade-off between the tolerance and the nominal mass of 
the vehicle. Significantly higher robustness is achieved as a result of considering tolerances. A 
maximum tolerance of 3% has been obtained using the optimization technique. At the same time, a 
mass reduction varying between 17.54 kg and 22.8 kg has also been achieved compared to the 
baseline. In order to reduce the overall computational cost, the expensive transient dynamic finite 
element analysis of the truck was replaced by simpler analytical equations obtained using the 
metamodeling techniques. 
 
The usability of LS-OPT can be improved using two enhancements to the current software. First, the 
user-defined solver that uses analytical formula previously generated using LS-OPT will be replaced 
by a metamodel import feature in the near future. In addition, it is also possible to introduce a new task 
for tolerance optimization that will eliminate the need for a multilevel setup, replacing it with a simpler 
single level setup. 
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