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Abstract

This crashworthiness optimization study compares the use of three metamodeling
techniques while using a sequential random search method as a control procedure.
The three methods applied are (i) the original Successive Linear Response Surface
Method, (ii) the Neural Network method and (iii) the Kriging method. It is shown that,
although NN and Kriging seem to require a larger number of initial points, the three
metamodeling methods have comparable efficiency. The random search method is
surprisingly efficient in some instances, but by nature much less predictable.

1. Introduction

Version 2.1 of LS-OPT [1] features a number of new methods applicable to design
modeling and optimization. Techniques have been added to introduce more accurate
and flexible metamodeling tools as well as the possibility of conducting exploration
and optimization using a search method, i.e. without resorting to the construction of
response surfaces. Although the addition of new methods is generally beneficial, it
may also complicate the user’s decision on which tools to use.

Metamodeling techniques are necessary in design approximation when the
simulation runs for the physical modeling are extremely expensive. These techniques
allow exploratory techniques such as optimization, variable screening, tradeoff
studies and reliability and robustness assessment to be conducted using surrogate
design information. Several techniques are available in LS-OPT, namely the
response surface method (RSM), Artificial Neural Networks (NN) and Kriging. Each
has its advantages, pitfalls and idiosyncrasies. The purpose of this study is to provide
guidelines for using the various methods. The present study only focuses on the
optimization of nonlinear dynamic problems in crashworthiness design using LS-
DYNA and compares the different methods for efficiency and accuracy.
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As part of the study, a sequential random search method is used as a control
procedure so that response surface optimization and search results can be
compared. In this evaluation, it should be taken into account that the metamodeling
techniques, when sufficiently accurate, have the additional advantage that they can
be used as surrogate design models for design exploration such as reliability or
tradeoff studies. On the other hand, these techniques are less reliable when
extremely noisy designs occur, or if there is a high degree of nonlinearity, especially
instability. Such behavior, e.g. the display of major buckling modes, may be the result
of poor conceptual design rather than being inherent to crash behavior. There is
some evidence of chaotic behavior in the examples presented.

The examples shown encompass crashworthiness of a full vehicle as well as head
and knee impact. The study concludes with some remarks and guidelines.

2. Metamodeling techniques

Metamodeling techniques allow the construction of surrogate design models for the
purpose of design exploration such as variable screening, optimization and reliability.
LS-OPT provides the choice of three types of metamodeling techniques, namely
response surfaces, Neural Networks (NN’s) and Kriging. All these approaches can
be useful to provide a predictive capability for optimization or reliability. In addition,
linear polynomials, although perhaps less accurate, are highly suitable for variable
screening. At the core, these techniques differ in the regression methods that they
employ to construct the surrogate models. The polynomial response surface method
uses linear regression, while neural networks use nonlinear regression methods
requiring optimization. Kriging is a Gaussian Process that uses Bayesian regression,
also requiring optimization.

When using polynomials, the user is faced with the choice of deciding which
monomial terms to include. The polynomial model then determines the number of
simulations required. Because the typical choice is either linear or quadratic, there
may be a large difference in the number of simulations required in either case,
restricting the flexibility for large n. In addition, polynomials, by way of their nature as
Taylor series approximations, are not natural for the creation of updateable surfaces.
This means that if an existing set of point data is augmented by a number of new
points which have been selected in a local subregion (e.g. in the vicinity of a
predicted optimum), better information could be gained from a more flexible type of
approximation that will keep global validity while allowing global and local refinement.
Such an approximation could provide a more natural approach for combining the
results of successive iterations. Potential candidates are NN’s, Kriging and Space
Mapping.

21 Polynomial response surface methodology (RSM)

This technique is well known [2] and commonplace in today’s design environment.
The method consists of experimental design and regression using polynomials. LS-
OPT features a successive response surface technique (SRSM [3]) that is iterative in
nature and constructs a new response surface for each iteration. Because of cost,
linear response surfaces are commonly used.

To select appropriate sampling points, the D-Optimality criterion was chosen using
the default number of 1.5(n+1)+1 points per experimental design [1].
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2.2 Kriging

This method is named after D.G. Krige, who applied empirical methods for
determining true ore grade distributions from distributions based on sampled ore
grades. In recent years, the Kriging method has found wider application as a spatial
prediction method in engineering design. A detailed mathematical formulation of
Kriging is given by Simpson [4]. The basic postulate of this formulation is:

y(x) =f(x) + Z(x)

where y is the unknown function of interest, f(x) is a known polynomial and Z(x) the
stochastic component with mean zero and covariance:

CovjZ(X),Z(X)] = o *R([R(X'X)]).

With L the number of sampling points, R is the L x L correlation matrix with R()(,X’)
the correlation function between data points x'and x. R is symmetric positive definite
with unit diagonal. The correlation function used in this study is Gaussian:

R(@)zlf_[le—@kf’f3

where n is the number of variables and d, = xk'— xkj, the distance between the k™
components of points x "and x’. There are n unknown @ -values to be determined.
Once the correlation function has been selected, the predicted esitimate of the
response y(x) is given by:

y=p +r’ xR yfp)

where rT(x) is the correlation vector (length L) between a prediction point x and the L
sampling points, y represents the responses at the L points and f is an L-vector of

A

ones (in the case that f(x) is taken as a constant). The vector r and scalar 3 are
given by:

S

r'(x) = [R(x,x'),R(x,x"),...Rxx)]", B =FR'H'FRy.

The estimate of variance from the underlying global model is:

cAyzz(ly—fﬁ)rlz‘1 (y-=fB)

The maximum likelihood estimates for ®, , k = 1,2,...,n can be found by solving the

following constrained maximization problem:
A 2

~{Lin(c )+InR]]

Max ®(T )= 5

, subjectto T>0.
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A

where both ¢ and |R| are functions of T . This optimization problem is solved using
the LFOPC algorithm [1] of LS-OPT in multi-start fashion. R is adaptively regularized
because of potential ill-conditioning. The net effect is that the approximating functions
no longer interpolate the observed response values exactly, but still closely
approximate the observations.

2.3 Feedforward Neural Networks

Neural methods are natural extensions and generalizations of regression methods
[5]. Like RSM, they model relationships between a set of input variables and an
outcome. They can be thought of as computing devices consisting of numerical units
(neurons), whose inputs and outputs are linked according to specific topologies. A
neural model is defined by its free parameters — the inter-neuron connection
strengths (weights) and biases. These parameters are typically learned from the
training data using an appropriate optimization algorithm. The training set consists of
pairs of input (design) vectors and associated outputs (responses). The training
algorithm tries to steer network parameters towards minimizing a distance measure,
typically the mean squared error (MSE)

sE=$,, 1.

of the model computed on the training data. L is the number of data points.

network
output
network
input
x=(x,,%;)

welghts and weights and
biases of bias of
hidden layer output layer

Figure 2-1: Schematic of a neural network with 2 inputs and a hidden layer of 4
neurons with activation function f

Feed-forward (FF) neural networks have a distinct layered topology. Each unit
performs a biased weighted sum of their inputs and passes this value through a
transfer (activation) function to produce the output. The outputs of each layer of
neurons are the inputs to the next layer. In a feed-forward network, the activation
function of intermediate (‘hidden’) layers is generally a sigmoid function, network
input and output layers being linear. In the case of the examples presented, FF
neural networks with this classic topology were used.
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Neural networks have been mathematically shown to be universal approximations of
continuous functions and their derivatives (on compact sets). In other words, when a
network converges towards the underlying function, all the derivatives of the network
converge towards the derivatives of this function.

Standard non-linear optimization techniques including a variety of gradient algorithms
are applied to adjust the FF network’s weights and biases. The second-order
Levenberg-Marquardt algorithm appears to be the fastest method for training
moderate-sized FF neural networks (up to several hundred adjustable weights).
However, when training larger networks, the first-order RPROP algorithm becomes
preferable for computational reasons.

Regularization may be done by controlling the number of network weights ('model
selection’), by imposing penalties on the weights ('ridge regression’), or by various
combinations of these strategies. Model selection requires choosing the number of
hidden units and, sometimes, the number of network hidden layers. Most
straightforward is to search for an ‘optimal’ network architecture that minimizes the
cross-validation norms, e.g. using generalized cross validation (GCV). Often, it is
feasible to loop over 1,2, ... hidden units and finally select the network with the
smallest GCV error. In any event, in order for the GCV measure to be applicable, the
number of training points L should not be too small compared to the number of

adjustable network parameters M.

To prevent over-fitting, it is always desirable to find neural solutions with the smallest
number of parameters. In practice, however, networks with a very parsimonious
number of weights are often hard to train. The addition of extra parameters (i.e.
degrees of freedom) can aid convergence and decrease the chance of becoming
stuck in local minima or on plateaus. Weight decay regularization involves modifying
the performance function F, which is normally chosen to be the mean sum of squares
of the network errors on the training set. When minimizing the mean squared error
(MSE) the weight estimates tend to be exaggerated. A penalty for this tendency can
be imposed by adding a term that consists of the sum of squares of the network
weights.

Lo N2 M
F=PE, +0E, ; EDZZI':l(yi Vi) , E, = Zmzl m
2 2
where M is the number of weights in the neural network model.

24 Metamodel updating and experimental design

In the examples that follow, the Neural Nets and Kriging surfaces are updated (the
default option in LS-OPT). That means that, in each iteration, the data points used to
construct the metamodel are accumulated. For polynomials, a new experimental
design and surface is constructed in each iteration thereby omitting data points from
previous iterations. So far, more sophisticated updating techniques such as Space
Mapping [6], a methodology based on Broyden updates of an existing surface, have
not been used.
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Although NN’s and Kriging are similar in purpose, they differ in many respects.
Kriging surfaces interpolate exactly at the data points, while NN’s do not due to the
use of cross validation methods for establishing the best predictive capability.
Furthermore, Kriging surfaces can be more expensive to fit, depending on the
number of points and the configuration of the points. lll-conditioning is a problem in
the reduction of the correlation matrix, especially when datapoints are near
coincident. In LS-OPT the ill-conditioning is addressed by regularization and by using
a Space Filling point selection scheme which maximizes the minimum distance
between points using Simulated Annealing. The same Space Filling method is used
for NN’s.

3. Sequential Random Search using Latin Hypercube Sampling

The Sequential Random Search (SRS) method in LS-OPT relies only on Latin
Hypercube Sampling (LHS) and simple heuristics to narrow the search [7]. In this
paper, the performance of the continuous methods is measured against the SRS
performance.

The technique uses the standard design formulation:
Min. f(x), subject to gj(x) <0, j=1,....m

A sorting procedure is used to select the design with the lowest (for minimization) or
highest (for maximization) objective from all the feasible designs. If no feasible
design exists, the least infeasible design is chosen. An experimental design such as
Latin Hypercube Sampling (LHS) allows a sequential random search procedure. LS-
OPT automatically moves the region of interest by centering it on the most recent
best design. The scheme also involves automatic subdomain reduction in which the
subdomain is reduced by the zoom parameter”) (see LS-OPT User’'s Manual [1]) if

the best design is the same as the baseline design [7]. Otherwise ¥ . (typically = 1)

is used as the panning range. All the variable ranges are reduced by the same
amount.

The following example illustrates, what is perhaps typical, convergence performance
of the methodology as a function of the number of variables. The example is an
unconstrained minimization problem with starting point [1,1,1,...,1], solution
[0,0,0,...,0] and an initial range of [0.5;1.5]" and the objective to minimize:

for n = 20, 50 and 100. In Figure 3-1 SRSM is compared with the random search
method for 20, 50 and 100 variable optimization problems. In this example SRSM
uses the default number of simulations per iteration, namely 32, 77 and 152
respectively. D-optimal point selection is used. The random search uses 20 LHS
simulations per iteration. As expected, the cost increases with n for both SRSM and
SRS. Note the logarithmic trends of the convergence for both methods. Each interval
on the vertical axis represents an order or magnitude in accuracy. No attempt was
made to optimize the number of simulations per iteration.
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Figure 3-1: Minimization of a quadratic polynomial. Efficiency comparison of linear
response surface (| ) and random search (+) methods for 20, 50 and 100 variables.
Each point is an iteration.

4. Examples

As far as was possible, the examples were analyzed using what was thought to be
the most efficient approach. In all the examples, the less important variables were
first screened from the superset. This was done over one or two iterations. Further
iterations were then conducted with the reduced set. Because a variable screening
approach was not available for the search method, the search was started with the
best optimum resulting from the variable screening runs. The number of simulations
per iteration was chosen according to the recommended defaults for the surface and
19 runs per iteration for the search method. The actual number used can be
observed on the plots.

4.1 Full vehicle MDO using Crashworthiness and Vibration Criteria

The crashworthiness simulation considers a model containing approximately 30,000
elements of a National Highway Transportation and Safety Association (NHTSA)
vehicle undergoing a full frontal impact [8]. A modal analysis is performed on a so-
called ‘body-in-white’ model containing approximately 18 000 elements. The crash
model for the full vehicle is shown in Figure 4-1 for the deformed (t = 78ms) states,
and with only the structural components affected by the design variables, both in the
undeformed and deformed (time = 72ms) states, in Figure 4-2. In the NVH (Noise,
Vibration and Harshness — although only vibration is used) model, only body parts
that are crucial to the vibration mode shapes are retained. The design variables are
all thicknesses or gauges of structural components in the engine compartment of the
vehicle parameterized directly in the LS-DYNA input file. LS-DYNA 970 is used for
both the crash and NVH simulations, in explicit and implicit modes respectively.
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Figure 4-1: Crash (a) and Modal Analysis showing 1*' torsional mode(b)
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Figure 4-2: Structural components affected by variables —

Undeformed and (b) deformed (time = 72ms)
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Formulation

Minimize Mass,
subject to
Maximum intrusion(Xgash) > 551.8mm
Stage 1 pulse(Xgash) > 14.34g
Stage 2 pulse(Xgash) > 17.57g
Stage 3 pulse(Xgash) > 20.769
37.77Hz < Torsional mode frequency(xyyn) < 39.77Hz (Fully-shared variables)
38.27Hz < Torsional mode frequency(xyyn) < 39.27Hz (Partially-shared variables)

The starting parameters for optimization are shown in Table 4-1. Variable screening
charts were used to select the variables. The full design space is used as starting
range for all the variables and all the methods.

Variable | Lower Bound | Baseline | Upper Bound | Crash | NVH

Cradle Rails | 1 3 3 ? ?

Cradle Crossmember | 1 3 3 ?
Shotgun (inner) | 1 2.5 2.5 ?
Shotgun (outer) | 1 2.5 2.5 ?

Rail (inner) | 1 3 3 ?

Rail (outer) | 1 3 3 ?

Aprons | 1 2.5 2.5 ?

Table 4-1: Design parameters and variable participation for full vehicle

Point selection. The NN’s and Kriging use 30 points per iteration, a number decided
on by using the number of points required for a full quadratic approximation as a
guideline. For RSM, 13 points were used for the first two iterations (variable
screening) and 10/7 (Crash/NVH) per iteration beyond. 19 points were used for SRS.
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Figure 4-3: Comparison of metamodeling techniques and random search for full
vehicle optimization
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Results. Figure 4-3 shows the comparison of the methods for the Mass and
maximum constraint violation. The optimum design does not become feasible for any
of the methods, but the maximum violation is reduced considerably from 23% to 2%.
The optimum design variables differ significantly for the different methods (not
shown), indicating the presence of local minima. RSM performs the best, while the
NN and Kriging methods have significantly slower convergence.

4.2 Head Impact

This unconstrained problem [1] is outlined in Figure 4-4. Shown is a Free Motion
Headform (FMH) impacting the A-pillar of a vehicle covered on the interior with
plastic trim. The aim of the optimization is to reduce the Head Injury Criterion, HIC-d
= 166.4 + 0.75466*HIC15 as measured at the FMH'’s center of gravity) by modifying
the trim design. The five design variables used are the trim thickness, rib height and
thickness, number of ribs and rib span (distance between the first and last rib). The
inclusion of the number of ribs as a design variable makes this an integer-based
optimization problem addressed by choosing the nearest integer before running the
preprocessor. Adaptive meshing is incorporated in the parameterization of the mesh
through the TrueGrid [9] preprocessor to ensure good mesh quality for all possible
designs.

A-Pillar

7 ms
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Variables

Trim thickness

Rib height,

Rib thickness,
Number of ribs,
Spacing between ribs

Figure 4-4 : Head impact: Design variables and trim deformation due to impact of

FMH
Variable | Lower Bound | Baseline | Upper Bound | Initial Range
Trim thickness | 2 2 3.5 1.5
Rib thickness | 0.8 1 2 1
Rib height | 5 6 20 10
Number of ribs | 3 10 15 6
Span | 130 180 180 40

Table 4-2: Starting design and design space parameters for head impact example

Point selection. The NN'’s and Kriging use 20 Space Filling points per iteration. This
choice is frugal when compared to the vehicle example, simply made to see how this
choice would affect the number of simulations. RSM and SRS use 10 D-Optimal and
19 LHS points respectively. The design space parameters are shown in Table
4-2.The full design space is used as the initial range for NN and Kriging.
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Results. Figure 4-5 depicts the efficiency comparison, showing that all the methods
perform similarly.
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Figure 4-5: Comparison of metamodeling techniques and random search for head
impact optimization

4.3 Knee Impact Problem

Figure 4-6 shows the finite element model of a typical automotive instrument panel
(IP) [10]. For model simplification and reduced per-iteration computational times, only
the driver's side of the IP is used in the analysis, and consists of around 25 000 shell
elements. Symmetry boundary conditions are assumed at the centerline, and to
simulate a bench component "Bendix" test, body attachments are assumed fixed in
all 6 directions. Also shown in Figure 4-7 are simplified knee forms that move in a
direction as determined from prior physical tests. As shown in the figure, this system
is composed of a steel knee bolster that also serves as a steering column cover with
a styled surface, and two steel energy absorption (EA) brackets attached to the cross
vehicle IP structure. The brackets absorb a significant portion of the lower torso
energy of the occupant by deforming appropriately. A steering column isolator (also
known as a yoke) is used as part of the knee bolster system to delay the wrap-
around of the knees around the steering column. The last three components are non-
visible and hence their shape can be optimized. The 11 design variables are shown
in Figure 4-7.
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Figure 4-6: Typical instrument panel prepared for a "Bendix" component test
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Figure 4-7: Typical major components of a knee bolster system and definition of
design variables. The variables shown in bold were selected from an ANOVA
screening process.

The simulation is carried out for a 40 ms duration by which time the knees have been
brought to rest. The Bendix component test is used mainly for knee bolster system
development; for certification purposes, a different physical test representative of the
full vehicle is performed. Since the simulation used herein is at a subsystem level,
the results reported here are used mainly for illustration purposes.
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Definition of optimization problem. The optimization problem is formulated as
follows:

Minimize Max. (Knee_F,, Knee_Fg)
Subject to
Left Knee intrusion < 115mm
Right Knee intrusion < 115mm
Yoke displacement < 85mm

The knee forces were normalized to 6500N. Minimization over both knee forces is
achieved by constraining them to impossibly low values (in this case 0.5*6500N).
The optimization algorithm will therefore always minimize the largest of the two knee
forces, since it first attempts to minimize the constraint violation. The knee forces
have been filtered SAE 60 Hz, to improve the approximation accuracy. The starting
design and design space data are given in Table 4-3. The initial range was only
applied to the RSM and SRS methods; otherwise the full design space was used.

Variable | Lower Bound | Baseline | Upper Bound | Initial Range
Left Bracket Gauge | 0.7 1.1 3 2
Left Flange Width | 20 32 50 10
Right Bracket Gauge | 0.7 1.1 3 2
Right Flange Width | 20 32 50 10
Bolster Gauge | 1 3.5 6 3
Yoke Radius | 2 4 8 2

Table 4-3: Starting design and design space parameters for Knee impact problem

Point selection. The NN’s and Kriging use 30 Space Filling points per iteration.
RSM and SRS use 11 D-Optimal and 19 LHS points respectively. Two separate trials
were conducted using the SRS method.

1.4
—/v— RSM
1.35 AM —0— SRS (Trial 1)] |
13 ; —
§ 1.25 \\ \E\ j—-zﬁs el 2)7
"é,: 1.2 \\ \ —O0— Kriging
% 1.15 - \ : \
3 11 O 0
= 1 H \3 T
0.95 \/ ~\7X/A o
0.9 \ ‘ ‘ :
0 20 40 60 80 100
Number of Simulations

Figure 4-8: Optimization histories for knee impact example.
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Results. In this case, the metamodels did significantly better than both trials of the
SRS method which required about twice as many simulations for the same accuracy.
The NN and Kriging methods give almost the same results.

5. Conclusions

1.

2.

Linear SRSM appears to still be the most reliable choice. However it has the
deficiency of not providing global approximations after the analysis.

The SRS method performs surprisingly well with the relatively few design
variables, but as shown in the knee impact example, can also give unexpected
poor results. In this case, a second try confirmed that, although the design is
always improved, the results could be somewhat erratic. This unpredictability is
largely due to the relatively low sampling rate (~20) used. As shown, the total
number of samples is also dependent on the number of design variables.

It is recommended that when using NN’s or Kriging that the full design space
be used as the initial range. The purpose of global approximations is to develop
surrogate functions valid throughout the design space. If the starting range is
smaller than the design space, patches of the design space may remain
unsampled, resulting in extrapolation errors. The space filling point selection
method ensures that, no matter where subsequent regions of interest may
occur, new points will be placed in sparse areas. RSM should be applied in a
small subregion, as always.

6. Remarks on ongoing testing

1.

As applied in this study, NN’s and Kriging are known to perform better with a
larger number of points (chosen here roughly as the number of points that
would be necessary for a quadratic polynomial fit, i.e. order n® points).
However, it may be possible to start with order n points across the design
space, and to update the point selection from that basis using the standard
heuristics.

For completeness, the quadratic polynomial RSM should be investigated.

It may be possible to refine the updating procedure by using Space Mapping

[6].
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