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1 Introduction 
The goal of material parameter identification is to characterize the constitutive behavior using 
experimental results in combination with structural modeling of the test samples. Although rather well 
established, it is a complex subject which may involve material nonlinearity [3,9], hysteretic behavior 
(loading and unloading) [9], strain localization [3] as well as instability of the calibration [1]. The testing 
component may also involve full-field optical measurement [2,3,4,5,6,7,8].  
 
A common and simple approach for identifying material parameters is to use the tensile test in which a 
coupon is subjected to a force while being measured for deformation. Both are global quantities. To 
extract the material properties, the coupon, usually of simple geometry, can be modeled using the 
Finite Element Method which incorporates the material model to be calibrated.  
 
The methodology for conducting a calibration requires the construction of a distance functional to 
quantify the distance between the experimental and computational results: 
 

𝑓𝑓(𝒙𝒙) = ��𝜑𝜑𝑗𝑗(𝒙𝒙) − 𝜑𝜑�𝑗𝑗�
2

𝑛𝑛

𝑗𝑗=1

                                                                   (1) 

 
where 𝜑𝜑𝑗𝑗(𝒙𝒙) are the components of a force history or force-displacement vector and 𝑛𝑛 is the number 
of observation states. The vector 𝒙𝒙 represents the unknown material parameters and the ~ represents 
the experimental results. Further investigation is required to find a method suitable for interpolating 
values 𝜑𝜑𝑗𝑗 which correspond to 𝜑𝜑�𝑗𝑗. This depends on whether 𝜑𝜑 represents a mathematical function 
(each input has exactly one output), or not. Functions can typically be handled with a least squares 
functional in which the interpolation of the computed curve is ordinate-based. For non-functions, such 
as when loading-unloading occurs, more sophisticated techniques are available such as Partial Curve 
Mapping [9,10]. In this method both curves are traced based on preservation of the interval length 
along the target curve. 
 
While simple material models can typically be uniquely identified using a tensile and/or shear test, a 
major difficulty in parameter identification is ill-posedness of the observation equation [1]: 
 

𝐴𝐴(𝑥𝑥) = 𝑑𝑑 ;𝑥𝑥 ∈ X                                                                                   (2) 
 
in which the mapping 𝐴𝐴 represents the modeling (e.g. a FE model), 𝑥𝑥 ∈ X represents the model 
parameters (the material constants) bounded by the parameter space X and 𝑑𝑑 represents the data 
(experimental data) in the observable data space D. This problem is typically solved with a 
minimization problem [1]: 
 

𝑑𝑑 = arg{Min
𝑑𝑑′

𝐽𝐽(𝑑𝑑′; 𝑥𝑥)} ≡ 𝐴𝐴(𝑥𝑥)                                                              (3) 
 
In Reference [1] Bui lists important issues to check when solving the inverse problem, namely (i) 
stability of the solution with respect to variations in the data 𝑑𝑑 as well as with respect to modeling 
errors and small changes in the model space X (robustness). It should be mentioned that the inverse 
problem to determine the parameters 𝑥𝑥, for given experimental data 𝑑𝑑, is generally ill-posed. In 
material parameter identification, various conditions can cause ill-posedness, for example [1]: 
 

• False experimental data (measurement errors or erroneous data files) 
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• Incompatible data, i.e. there is no set of material parameters that will cause the model to 
produce results in data space D. 

• Noise in the experimental data 
• Modeling errors e.g. in the constitutive model or coarse approximation of the model A 

 
These problems are manifested because of the lack of suitable information provided by the chosen 
test. E.g. providing global information such as a force-displacement curve representing a chosen point 
or cross-section of a coupon may not be sufficient to characterize a nonlinear material model which 
involves material flow, failure and/or damage. It is also typical of failure behavior to be localized, which 
eludes capture by global force-displacement data [3]. It is probably safe to assume that the more 
sophisticated the material model and the phenomena it is intended to model, the more parameters it 
possesses and the greater the need exists for full-field calibration to capture localization. 
 
While the regression problem can always be solved, the deficiency in the distribution of the input data 
may result in instability of the solution. It is with this problem, as well as accuracy, in mind that 
experimental mechanicians, over the last three decades, have introduced full field optical 
measurement techniques. These allow more complete sampling in order to capture phenomena to 
which the material parameters have non-zero sensitivity, thereby improving stability of the calibration. 
 
The purpose of these non-contact methods is to measure the spatial distribution of physical quantities 
such as displacement or strain. Much of the development in this area arose from the improvements 
made to camera and computer technology as well as analysis techniques such as the Finite Element 
Method. Improvements in optimization methods and techniques have undoubtedly also led to greater 
sophistication and accuracy in characterizing material properties, but are not able to surmount 
inherent deficiencies such as noise or bias error. Multiple optical measurement methods have been 
developed such as photoelasticity (a technique invented in the early part of the twentieth century), 
digital holography, speckle interferometry, magnetic resonance imaging (MRI) see e.g. [7] and the 
method used in this paper: Digital Image Correlation. 
 
 

 
 

Fig.1: Tensile testing equipment and optical measurement system by GOM ARAMIS. 
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Fig.2: Full field measurement of a shear test using Digital Image Correlation. On the left is the DIC 

image (GOM ARAMIS) while a strain contour plot is featured on the right (LS-PrePost®).  

 
Digital Image Correlation (DIC) (see e.g. [8]) appeared in the early 1980s and is an optical 
measurement method (see Fig. 1 for test setup) which provides full-field displacement measurements 
for mechanical tests of materials and structures. A specific advantage of this tool is that it exploits 
numerical images acquired at difference stages of loading. As such, it can be used to obtain temporal 
displacement, deformation or strain fields from an experimental coupon and can be combined with 
Finite Element Analysis to identify the constitutive properties of a material (see Fig. 2). 
 
Using DIC results, optimization is used to obtain the parameters which will minimize the distance 
functional involving the measured field and the computed field as components. As expressed for 
instance in Mahnken et al [3] the functional used is: 
 

𝑓𝑓(𝒙𝒙) = ��𝝋𝝋𝑗𝑗(𝒙𝒙) − 𝝋𝝋�𝑗𝑗�
2

𝑛𝑛

𝑗𝑗=1

                                                                  (4) 

 
where 𝝋𝝋𝒋𝒋(𝒙𝒙) is a vector of nodal displacements or strains at a number of observation points and 𝑛𝑛 is 
the number of observation states. The functional can be augmented to incorporate global force-
displacement measurements or any other functional resulting in parameter identification based on a 
multi-scale DIC (see e.g. [5]). 
 

2 Methodology and software features 
 
While LS-OPT has included parameter identification features since its first commercial release in 
2000, the current development goal is to significantly enhance these capabilities to enable LS-OPT to 
accommodate modern testing techniques such as DIC. While full field calibration has been conducted 
using LS-OPT in the past [7], the current implementation generalizes the feature to enable it to 
address a greater diversity of problems.  
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A summary of essential features, most of which have now been implemented in LS-OPT, follows: 
 
1. A central feature of the methodology is the multi-point history, a basic mathematical entity 

representing both spatial and temporal dimensions. 
2. To access test data, an interface to the GOM ARAMIS DIC software was developed.  
3. An algorithm was developed to map a test point cloud to an FE model. 
4. The ability to interpolate fields within a finite element is incorporated into the mapping approach.  
5. MSE distance functionals for multi-point histories can be used as objective functions. 
6. Error analysis enables the user to assess the size of the mismatch as well as the resulting 

uncertainty of the parameters. 
7. Graphical features are available to enhance the prior inspection and editing of test results. 
8. Distance contour maps are provided for post-processing the discrepancy between computed 

values and experimental quantities. 
9. Confidence intervals of the material parameters enable the user to quantify their uncertainty. 
10. The DynaStats feature of LS-OPT provides sensitivity analysis and stochastic influence tools to 

identify spatial strain or displacement sensitivities to individual material parameters. 
11. The 'overlap' fraction between experimental and computational results. In ordinate-based 

interpolation methods not all test points may be assignable to a corresponding computed value. 
The overlap is defined as 𝛼𝛼 =  𝑚𝑚interp/𝑚𝑚total where 𝑚𝑚interp is the number of test points which 
interpolate to corresponding computed values and 𝑚𝑚total is the total number of test points  total 
number of time states. A poor overlap diminishes the ability to accomplish accurate matching and 
may induce instability. 

 
A more detailed discussion is provided in the following sub-sections. 
 

2.1 GOM ARAMIS interface and alignment of DIC points 
Since the test example which follows uses the GOM ARAMIS measurement software, an LS-OPT 
GOM interface was implemented to define input files, result components and alignment data. The 
alignment is computed using the least squares formulation shown in the equation: 
 

min
𝑻𝑻
‖𝑿𝑿Test𝑻𝑻 − 𝑿𝑿FE‖                                                                           (5) 

 
to match any number of test points 𝑿𝑿Test to corresponding coordinates on the FE mesh 𝑿𝑿FE. The points 
in 𝑿𝑿Test and 𝑿𝑿FE respectively do not have to correspond exactly as the alignment is based on a least 
squares principle that will minimize the fitting error for any number of points. The solution of Eq. (5) 
yields the transformation matrix 𝑻𝑻 which is then used to transform all the test points (see e.g. Fig. 7). 
The data can also be specified as nodal/point IDs. Three or four points normally suffice, but any 
number can be specified. Alternatively, the alignment step can be omitted, since post-processing 
software (LS-PrePost®) can be used to pre-align the point set.  
 
To enable the creation of cross-plots from the GOM data, both the X- and Y-components shown in 
Fig.3: can be histories or multi-point histories. E.g. a multi-point 𝑥𝑥𝑥𝑥-strain can be crossed with a multi-
point 𝑦𝑦𝑦𝑦-strain to create multi-point stress-strain cross-plots or, as in the example that follows in the 
next section (Fig. 11), the full-field 𝑥𝑥𝑥𝑥-strain can be crossed with the global force history to create 
multi-point strain-force cross-plots. 
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Fig.3: GOM ARAMIS interface in LS-OPT showing alignment input and verification plot of selected 

test value X- and Y-components. 

 

2.2 Multi-point histories 
In the GOM ARAMIS option in the multi-point histories interface, each history is computed at a location 
selected from the test point set in the original, undeformed state. Features are provided to preview the 
test point alignment (see Fig. 4). Fig. 5 shows three representative deformation states representing 
4557 points extracted from the GOM database for a plate with a hole while Fig. 6 shows the FE mesh 
with corresponding test points. Fig. 7 shows the effect of the least squares point alignment using Eq. 
(5). 

 
Fig.4: Multi-point history interface enabling the definition of the response type and location data. 

Location type can be defined as 'nearest node' or 'element'. In the latter option, the result is 
interpolated at the precise location within the nearest element. 
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Fig.5: Selected deformation states from GOM output. 

 
 

 
 

Fig.6: Example of test point mapping showing test point set (red) of 4557 points in relation to the 
Finite Element mesh. 

  

  
Fig.7: Interactive feature for verification of least squares test point alignment. The starting test point 

location (in bright red) is shown on the left. 

 

2.3 Mapping of test points to a FE mesh 
After alignment, the test points are mapped to the FE mesh. The algorithm enables mapping in 3 
dimensions using a binary tree algorithm embedded in LS-OPT. The approach allows for an exact 
nearest neighbor search with the capacity to map 107 query points to 107 reference points in 
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reasonable time (suitable for interactive use). Practical examples encountered thus far have been 
limited to several thousand points, allowing a practically instantaneous solution. LS-OPT extraction is 
done in parallel anyway, so time taken for mapping is of little consequence. 
 
The ability to interpolate fields within a finite element is incorporated into the mapping approach. This 
methodology can interpolate a strain in the nearest element. This is especially important for coarse 
meshes or high resolution DIC. Obviously, there could still be some discretization error, so the finer 
the FE mesh, the more accurate the interpolated value will be. 

3 Example: Tensile test 
An example of a tensile test was selected to test and demonstrate the full-field calibration feature in 
LS-OPT (Figs. 1 and 8). Fig. 9 shows the force-displacement trajectory as well as the strain contours 
at the time state depicted in the plot. The necking phenomenon is clearly visible from the test images 
in Fig. 9. 
 

 
 

 
 

Fig.8: Test coupons for a tensile test (0° w.r.t. rolling direction) (Sample numbers MFz-00-*) 

 

 

 
𝜀𝜀𝑥𝑥𝑥𝑥 

 
𝜀𝜀𝑦𝑦𝑦𝑦 

 

Fig.9: Sample MFz-00-01: Force-displacement diagram and DIC contour plots for 𝑥𝑥𝑥𝑥- and 𝑦𝑦𝑦𝑦-strains. 
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3.1 Simulation 
A Finite Element model was created in LS-DYNA® [11] to model a typical coupon subjected to a 
tensile force. The material model uses the von Mises yield locus and a Hocket-Sherby flow curve 
formula for extrapolation beyond the point of a uniform strain state: 
 

𝑓𝑓�𝜀𝜀𝑝𝑝� = 𝐴𝐴 − 𝐵𝐵𝑒𝑒−𝐶𝐶𝜀𝜀𝑝𝑝𝑝𝑝
𝑁𝑁

                                                                          (6) 
 
where 𝐴𝐴, 𝐵𝐵 𝐶𝐶 and 𝑁𝑁 are material constants. 𝐶𝐶1-continuity is assumed at the flow transition following the 
uniform strain state which removes the requirement to incorporate 𝐴𝐴 and 𝐵𝐵 in the optimization that 
follows. 
 

3.2 Optimization 
The LS-OPT setup required alignment of the measured points with the FE mesh as shown in Fig. 10. 
The force vs. point-wise 𝜀𝜀𝑥𝑥𝑥𝑥 strain curves are shown in the preview feature depicted in Fig. 11. Each 
curve represents a measuring point as shown in black in Fig. 10. For the optimization, a cross-plot was 
defined using multi-point histories to represent the global force vs. point-wise strains.  
 
The optimization problem was set up with parameters 𝐶𝐶 and 𝑁𝑁 as variables and with the objective to 
minimize the distance functional 𝑓𝑓 [Equation (4)]. This defines the ideal of matching 𝜀𝜀𝑥𝑥𝑥𝑥 at each point 
and each deformation state. The optimization was conducted using the Sequential Response Surface 
method of LS-OPT [10]. 
 

 
 

Fig.10: Finite element model of the coupon specimen (red) shown with 391 superimposed optically 
measured points at the center (black). 

 
 

 
 

Fig.11: Preview of the multi-point curve: the force vs. full-field logarithmic 𝑥𝑥𝑥𝑥-strain as rendered in a 
previewing feature of the GOM interface in LS-OPT. Each curve represents a single measuring 
point.  
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4 Results and observations 
The optimization history of the distance functional is shown in Fig. 12. The value of the distance 
functional (the graph ordinate) [Eq.(4)] has been normalized with the maximum absolute value of the 
measured values. The table in Fig. 13 represents a comparison of the 𝑥𝑥𝑥𝑥 strain contours obtained 
from the GOM software with the contours obtained from the LS-DYNA FE simulation for a set of 
initially estimated values of 𝑁𝑁 = 5 and 𝐶𝐶 = 1. The optimization yields values 𝑁𝑁 = 0.194 and 𝐶𝐶 = 0.0556 
which corresponds to the results of Fig. 14. It can be seen that the computational result in the latter 
figure is significantly closer to the experimental result. 
 
A second optimization run from a different starting point (not shown here) yielded values 0.226 and 
0.0717 for 𝑁𝑁 and 𝐶𝐶 respectively. Several observations can be made: 
 

1. The optimization result converges to a solution around the 10th iteration.  
2. Different starting points may yield different optimal parameters which, while not excessive, 

cannot be ignored entirely. 
3. The objective value varying between 0.0396 (baseline) and 0.0377 (It. 10) is a relatively 

small variation. 
 

 
Fig.12: Optimization history of the normalized distance functional showing convergence achieved 

between 10 and 15 iterations. The points represent LS-DYNA results while the line represents 
the response surface approximation values. 

 
 
Force vs. 
displacement plot 
showing 
deformation state 
(red dotted line) 

𝜺𝜺𝒙𝒙𝒙𝒙 (FE model) 𝜺𝜺𝒙𝒙𝒙𝒙 (GOM ARAMIS test)  
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Fig.13: Baseline parameters 𝑁𝑁 = 5 and 𝐶𝐶 = 1:  Computational vs. measured 𝜀𝜀𝑥𝑥𝑥𝑥 strain field contours at 
various deformation states (contour plots not to scale). The computational and measured 
values use the same color scale depicted in the right-most column, so can be compared 
directly. 

 
Force vs. 
displacement plot 
showing 
deformation state 
(red dotted line) 

𝜺𝜺𝒙𝒙𝒙𝒙 (FE model) 𝜺𝜺𝒙𝒙𝒙𝒙 (GOM ARAMIS test)  

   
 

   

 

   
 

   

 
 

Fig.14: Optimal parameters  𝑁𝑁∗ = 0.194 and 𝐶𝐶∗ = 0.0556: Comparison of computational vs. measured 
𝜀𝜀𝑥𝑥𝑥𝑥 strain field contours at various deformation states (contour plots not to scale. The 
computational and measured values use the same color scale depicted in the right-most 
column, so can be compared directly. 
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5 Summary and conclusions 
A parameter identification has been executed using the LS-OPT optimization tool incorporating a 
distance function based on multi-point histories and DIC experimental results obtained from a tensile 
test using the GOM ARAMIS software. 
 
While the study has validated the code implementation, several deficiencies were observed and are 
explained below, with a view to address them in future development: 
 

1. Stability and Uniqueness. It was shown that different starting points for the optimization 
procedure yield slightly different results which presumably affect the accuracy of the 
calibration result. Possible reasons are (i) the inability of the SRSM optimization algorithm 
to converge sharply, (ii) the presence of local minima (mathematical non-uniqueness) and 
(iii) instability of the solution. Both the reasons (i) and (ii) can only be addressed by 
switching to a different optimization algorithm, such as the Genetic Algorithm available in 
LS-OPT. Point (iii) can only be addressed by investigating the suitability and location of the 
quantities measured in the formulation of the objective. It should be noted that only 𝜀𝜀𝑥𝑥𝑥𝑥  was 
used in the calibration, while 𝜀𝜀𝑦𝑦𝑦𝑦 was neglected, a factor which may have influenced the 
stability of the solution. (See also the section on sensitivities below).  

2. Sensitivity. A methodology that can be used to investigate stability is sensitivity analysis. It 
is therefore suggested that a study be done, using LS-OPT DynaStats, in which the 
sensitivity (or stochastic influence) contours are studied to determine locations where 
sensitivities of response types such as 𝜀𝜀𝑥𝑥𝑥𝑥 and 𝜀𝜀𝑦𝑦𝑦𝑦  to the individual material parameters 
are highest. This could provide a general tool for investigating the suitability of response 
field types and their corresponding spatial distribution. No further development is required. 

3. Confidence intervals of the parameters. It is also suggested that confidence intervals be 
calculated for the parameters, a function which will require the calculation of the gradients 
(with respect to the parameters) of the multi-point histories at the optimal solution. The 
confidence intervals signify the degree to which the optimal value of a parameter can be 
trusted, and may provide a clue as to inadequate experimental data, especially to the user 
intimately familiar with the material model. Confidence intervals would require the definition 
of a mathematical composite (currently also used with virtual histories in LS-OPT) based on 
response surfaces and is presently under development. 

4. Noise. The very slight improvement of the objective function (0.0396 vs. 0.0377) seems to 
suggest that a significant component of the residual error (of the distance functional) 
contains noise so that fitting the material model to the test always yields a non-zero 
residual. The noise may emanate from discretization error and/or experimental error. 

5. Modeling error. It is likely that, in addition to noise, the material flow model does not 
represent the experimental response with absolute accuracy. This causes a bias or 
modeling error which remains a residual error even after finding a converged solution to the 
regression problem. 

6. Discretization error. The FE mesh provided for the example is somewhat coarse, possibly 
resulting in a discretization error. This may be especially true because triangular elements 
are used in the transitions. A remedy would be to increase the fineness of the mesh and to 
use only higher order triangles or quadrilateral elements. 

7. Curve matching technique. It is apparent from Fig. 11 that some of the curves have very 
steep post-yield behavior which presents a difficulty for ordinate-based interpolation. As a 
consequence some of this curve data may be inadvertently amiss. A possible solution 
would be to extend the Partial Curve Mapping capability in LS-OPT (see [9,10]), currently 
available for simple histories, to multi-point curves.  
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