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Abstract 
 
A new surrogate-assisted Multi-Objective Optimization algorithm has been implemented in LS-OPT

®
. The 

algorithm, known as Pareto Domain Reduction, is an adaptive sampling method and an extension of the classical 

Domain Reduction approach (also known as SRSM). A Multidisciplinary Design Optimization (MDO) example 

involving a vehicle impact is used to demonstrate that the accuracy is very close to the NSGA-II “exact” method 

while using a small fraction of the computational effort. 

 
 

Introduction 
 

Historically, two methods have been available for the solution of Multi-objective optimization 

problems using LS-OPT
®
 [1]. The first is a direct optimization method: the NSGA-II as 

developed by Deb [2]. The second approach reduces the number of simulations by using a 

metamodel (typically a Radial Basis Function Network or RBF) to approximate the true design 

problem. The NSGA-II algorithm can be used to obtain “exact” results but requires a very large 

number of simulations so can be very expensive, especially in crashworthiness optimization 

where simulations involve highly detailed Finite Element models and nonlinear dynamic 

analysis.  

 

The surrogate-assisted method for MOO problems is the faster of the two methods but currently 

relies on uniform global sampling to construct the metamodel. This implies that during an 

iterative solution, the global accuracy of the metamodel is gradually improved at the expense of 

local accuracy in the neighborhood of the solution, an effect that delays convergence. For single 

objective problems, this deficiency is addressed in LS-OPT by the Domain Reduction approach. 

This method has been available in LS-OPT since its inception (known as Sequential Response 

Surface Method or SRSM [1,3]), but has not been available for multi-objective problems in 

which multiple solutions are possible. Surrogate-assisted Multi-objective optimization 

algorithms have been extensively described in literature, see e.g. Syberfeldt et al [4]. 

 

In this study a new adaptive domain reduction method known as Pareto Domain Reduction 

(PDR) is introduced for improving efficiency and accuracy. The method employs heuristics 

which are similar to SRSM but since multiple optimal solutions are possible, it uses the irregular 

subregion of the Pareto Optimal Frontier (POF) as a sampling domain. The size of this subregion 

is iteratively reduced in order to intensify the exploration the neighborhood of the POF. The 

method is conservative in the sense that early sampling is global with a gradual convergence to 

the POF. Hence it can also be viewed as an adaptive sampling approach. The method has the 

additional advantage that, if a multi-objective problem is posed so that it has only one optimal 

solution, it degenerates to SRSM which unifies and simplifies LS-OPT methodology and user 

choice. 
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Since the RBF is the default metamodel in LS-OPT, a Space Filling approach is used to obtain a 

well spaced sampling in the reduced domain. This avoids point duplication and maximizes the 

accuracy in the POF neighborhood. 

 

During the development phase of the new method, several other features were added to facilitate 

and automate an optimization run. The most important of these allows a selected number of 

computed POF points (verification runs) to be solved during the final iteration. This step is 

required to produce the final set of trade-off points from which the user can select a suitable 

design. These points are based on actual simulations, so the resulting trade-off curve can be used 

directly for design, without any further simulations. 

 

The remainder of the paper deals with a brief description of the methodology followed by a 

Multi-objective MDO crashworthiness/modal analysis example of a vehicle. The model is not 

very large, but sufficiently realistic and representative of a typical model used in industry. The 

results show that the PDR method is highly accurate and potentially an order of magnitude 

cheaper than a direct approach. 

 

 

Pareto Domain Reduction Methodology 
 

The algorithm is based on a simple concept consisting of the following major steps: 

 

 

Initial conditions: 

 

1. 1:k , choose m simulation designs in the full design space. 

2. Conduct the simulations, build the surrogate model and construct an approximate POF. 

 

For each iteration k: 

 

1. Select m kernels from the POF. 

2. Adapt the subregion size based on iteration (k-1) 

3. Center a subregion on each kernel. 

4. Populate each subdomain with a number of diversity design points. 

5. Select m points for simulation from the diversity design points. 

6. 1:  kk  

7. Conduct m simulations, build the surrogate model and construct an approximate POF. 

 

Figure 1 shows a typical sampling adaptation to the Pareto Domain. In this case, 5 simulation 

points are added per iteration (which is the default for 2 variables). The red points represent the 

most recent simulations in the progression.  
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Figure 1: Typical sampling pattern for the Pareto Domain Reduction method (two variable problem). 

 

 

Example 
 

The crashworthiness simulation considers a model containing approximately 30,000 elements of 

a National Highway Transportation and Safety Association (NHTSA) vehicle undergoing a full 

frontal impact. A modal analysis is performed on a so-called ‘body-in-white’ model containing 

approximately 18,000 elements. The crash model for the full vehicle is shown in Figure 2 for the 

undeformed and deformed (time = 78ms) states, and with only the structural components 

affected by the design variables, both in the undeformed and deformed (time = 72ms) states, in 

Figure 3. The NVH model is depicted in Figure 4 in the first torsion vibrational mode. Only body 

parts that are crucial to the vibrational mode shapes are retained in this model. The design 

variables are all thicknesses or gages of structural components in the engine compartment of the 

vehicle (Figure 3), parameterized directly in the LS-DYNA input file. Twelve parts are affected, 

comprising aprons, rails, shotguns, cradle rails and the cradle cross member (Figure 3). LS-

DYNA v.971 is used for both the crash and NVH simulations, in explicit and implicit modes 

respectively. 
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(a)       (b) 

Figure 2: Crash model of vehicle showing road and wall a) Undeformed b) Deformed (78ms) 

 

 
(a) 

 
(b) 

 

Figure 3: Structural components affected by design variables – a) Undeformed and (b) deformed 

(time = 72ms) 

 

 

 

 

Figure 4: Body-in-white model of vehicle in torsional vibration mode (38.7Hz) 
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The design formulation is as follows: 

Minimize  Mass    

Minimize Maximum intrusion    

subject to     

 Maximum intrusion(xcrash) < 551.27mm 

Stage 1 pulse(xcrash) > 14.51g  

Stage 2 pulse(xcrash) > 17.59g  

Stage 3 pulse(xcrash) > 20.75g  

41.38Hz < Torsional mode frequency(xNVH) < 42.38Hz 

Variables: 

xcrash  = xNVH = [rail_inner, rail_outer, cradle_rails, aprons, shotgun_inner, shotgun_outer, 

cradle_crossmember]
T
 

 

The three stage pulses are calculated from the SAE filtered (60Hz) acceleration and displacement 

of a left rear sill node in the following fashion: 

Stage i pulse = 

 2

1

d
12

d

d

xa
dd

k
 ;  

k = 0.5 for i = 1, 1.0 otherwise; 

with the limits [d1;d2] = [0;184]; [184;334]; [334;Max(displacement)] for i = 1,2,3 respectively, 

all displacement units in mm and the minus sign to convert acceleration to deceleration. The 

Stage 1 pulse is represented by a triangle with the peak value being the value used. 

Three optimization strategies were used to verify and compare the results: 

 

1. A direct optimization using the NSGA-II algorithm. A tolerance on the hypervolume 

change of 410  was used to create a realistic benchmark result. 

2. A metamodel-assisted optimization using sequential global Radial Basis Function 

networks (LS-OPT Version 4.2). A stopping criterion of 30 iterations was selected. 

3. A metamodel-assisted optimization using the new Pareto Domain Reduction approach. A 

stopping criterion of 30 iterations was selected. 

 

The parameters for each run were as shown in Table 1.  
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Table 1: Run statistics for Example 1. *Note that the number of simulations for the metamodel assisted 

methods includes a 100 final verification runs to construct a full trade-off curve. This number is user-

selectable and determines the size of the trade-off curve. 

 

 Number of 

iterations/ 

generations 

Number of 

simulations 

per iteration 

Total number of 

simulations per case, 

including 100 verification 

simulations for the last 

iteration 

Run configuration 

(Number of 

concurrent jobs × 

MPP cores per 

simulation) 

Direct 

NSGA-II 

75 160 12,000 80×4 

Global 30 13 390+100* 13×4 

PDR 30 13 390+100* 13×4 

 

All runs were conducted on a 768-core Xeon-based cluster running up to 80×4-core MPP-DYNA 

simulations in parallel. The SunGrid Engine queuing system was used with job monitoring using 

the LS-OPT GUI. 

 

Results 
 

Because the selection of the final trade-off curve for the metamodel-based methods is based on 

an approximation, LS-OPT provides a feature for a priori selecting a desired number of trade-off 

points (which can be different from the number of points in each iteration). If this number 

appears to be insufficient, the curve can be augmented in a simple post-processing run (change 

the number and re-start). The trade-off points are evenly spread throughout the Pareto domain 

using a space filling algorithm for optimal representation.  

 

Although it cannot be proven (there is no mathematical criterion for global optimality) the Direct 

GA run is considered to be “exact” in the sense that it was run to a very fine tolerance ( 410 ) of 

the dominated hyper-volume change. 

 

Figure 5 shows a comparison of the trade-off curves produced by the Direct GA optimization 

and the PDR run. The PDR results are simulation results of the final trade-off curve (i.e. not the 

approximate results). Note that the trade-off curve is discontinuous (two major discontinuities) 

with several concave and convex sections. In Figure 5, the PDR result can be seen to closely 

approximate the exact result. The wall clock time for the PDR method was approximately 7 

hours for the entire optimization. 

 

Figure 6 shows a comparison of the predicted trade-off curve and the computed curve using the 

PDR method which confirms the accuracy of the metamodel and sampling strategy. Note that the 

metamodel is based on all 390 (13×30) simulations, and not only the last 13. 

 

The new PDR method was also compared to the existing global sampling approach (Figure 7) in 

which the design points for building the metamodel are evenly distributed globally using a Space 

Filling sampling approach. The benefit of using the PDR method is clearly visible. Note that 

finer features such as discontinuities are not properly modeled by the global sampling, obviously 

because of a sparsity of simulation results near the optimum. 
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Figure 5: Pareto Optimal Frontier: Comparison of the computed POF (100 designs) obtained using the PDR 

approach with the reference POF computed using the Direct NSGA-II algorithm 
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Figure 6:  Pareto Optimal Frontier: Comparison of the PDR predicted POF and the PDR computed POF. 
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Figure 7: Pareto Optimal Front: Comparison of the simulation results for uniform global sampling (▲) and 

PDR sampling (+) with the reference solution obtained using the Direct NSGA-II algorithm (●). 

 

Conclusions 
 

The study presents an efficient new surrogate-assisted method for computing trade-off curves 

using LS-OPT. The new method, known as Pareto Domain Reduction, is almost as accurate as 

the Direct GA method while using a small fraction of its simulation effort. 

 

Naturally, some MOO examples may only possess single optima, due to the non-conflicting 

nature of the objective functions involved. In this case, PDR devolves to the classical SRSM 

available in LS-OPT. This simplifies user choice and means that the SRSM and PDR methods 

are unified and that PDR therefore applies to a broad class of optimization problems. 
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