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Summary: 
 
This study expounds the multi-objective optimization of a realistic crashworthiness problem with 
special reference to the incorporation of uncertainty and the visualization of the Pareto Optimal 
Frontier (POF). LS-OPT® and LS-DYNA® are used for the optimization based on the C2500 truck 
model developed by NHTSA. The design problem is set up as a Reliability-Based Design Optimization 
(RBDO) problem which includes specifications for the variation of the input parameters. For the 
purpose of design, reliability-based constraints on the displacements and stage pulses (interval-based 
integrals over the acceleration history) are specified. Nine thickness variables were assigned to 
various parts affecting the crashworthiness performance. Solution of the example employs Radial 
Basis Function networks as surrogate functions with Space Filling sampling as well as the NSGA-II 
algorithm for determining the POF starting from an infeasible design. Post-processing is done to 
determine a subset of optimal points of interest using the Viewer of LS-OPT® Version 4. This post-
processor is based on a new architecture which allows window splitting and detachable windows for 
flexible viewing. It also includes the following new features:  (1) Correlation Matrix, (2) Parallel 
Coordinate plot (POF) and (3) Hyper-Radial Visualization (POF). Thus 3 types of POF viewing are 
available, including the current 3D scatter plot. The study shows that a complex decision-making 
process such as optimal design involving uncertainty and multiple objectives can be simplified by 
using appropriate analysis and visualization tools.  
 
 
 
 
 
 
 
 
 
Keywords: 
 
RBDO, Reliability-based Design Optimization, Crashworthiness optimization, Multi-Objective 
Optimization, LS-OPT  

 



7th European LS-DYNA Conference 
 

 
© 2009 Copyright by DYNAmore GmbH 

1 Introduction 
Design technology has progressed significantly over the last decade so that today it is unusual to 
make engineering decisions based on a single physics simulation. Multiple analyses can be executed 
systematically by varying the design and using the combined results for design improvement. LS-
OPT® [1] which has now been under development for more than a decade provides an environment 
for design and is tightly interfaced to LS-DYNA® [2] and LS-PREPOST® with the goal of allowing the 
user to organize input for multiple simulations and gather and display the results and statistics. More 
specifically, LS-OPT has capabilities for improving design performance in an uncertain environment 
and conducting system and material identification.  These objectives can be achieved through the use 
of statistical tools, optimization and visualization. 
 
Version 4 of LS-OPT features a new generation graphical postprocessor Viewer. The Viewer is based 
on a redesigned architecture that provides a much more flexible environment for the design engineer. 
The major enhancements are as follows: 
 

• New plot types such as Correlation Matrix, Parallel coordinate plot, Hyper-radial Visualization 
(HRV). 

• A higher level of interactivity in the various plots. E.g. the Correlation Matrix plot allows 
selection to enlarge the scatter plots or histograms for closer inspection while the Parallel 
Coordinate plot allows bounding of the functions in order to isolate a desirable design set. 

• A split-window feature which allows multiple windows to be displayed in the same frame. 
• Multiple ways of adding windows: replacing, splitting. Windows are detachable. 
• Multiple simulation or predicted points can be selected and displayed in a spreadsheet format. 
• The export and printing features have been significantly improved with the availability of most 

popular file formats. 
• Integrated point selection, e.g. selected points are highlighted across multiple plot types. 
• Zooming, which is useful for plots with high point density. 
 

Other major features available in Version 4 is: 
 

• a Post-processor capability which features the META post-processor [3] (Beta CAE Systems) 
for result extraction and  

• the LS-OPT®/Topology optimization module featuring a linear/non-linear topology optimization 
capability integrated with LS-DYNA [4]. 

  
The current study employs a full vehicle finite element model to demonstrate the use of LS-OPT for 
multi-objective crashworthiness design in a probabilistic setting. The capabilities for visualizing the 
Pareto Optimal Frontier are demonstrated using this example. 
 

2 Theoretical background 
 
The purpose of multi-objective design is to compute an optimal hyper-surface representing the optimal 
designs for the case which has more than one design objective. Design conflicts between 
performance quantities are common in practical designs, e.g. Mass vs. durability in aerospace design 
or deceleration vs. mass vs. intrusion in automotive design. The multi-objective optimization capability 
in LS-OPT has been available since Version 3 when the NSGA-II [5] algorithm was implemented. The 
algorithm consists of a genetic algorithm which minimizes the objectives for a design population while 
maximizing the diversity of the population. This process eventually leads to points spanning the so 
called Pareto Optimal Frontier (POF). In general, the POF is a disjoint surface usually displayed in the 
objective function space as in Figure 2-1 (Feasible Objective Space). The optimization procedure 
yields the POF represented by a number of points (a non-dominated set). This set of points is 
represented by the thick red line in Figure 2-1. Since the designer is interested in the design variables 
associated with these designs, design exploration of the Pareto set is necessary to find suitable 
designs. This means that explorative tools are crucial to finding suitable designs. For this purpose, LS-
OPT provides 3 features with a fourth under development. The three current features are: 
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1. 4-Dimensional scatter plot: This is the most conventional tool with the fourth dimension 
represented by color. It works well for low dimensionality, i.e. with problems having only 2 or 3 
objectives. 

2. Parallel Coordinate plot [6]: This tool allows the plotting of all the objectives and variables on 
parallel axes with the point represented by the lines connecting all the axes. It works well for a 
small number of points since larger numbers of points tend to congest the display so that the 
lines are no longer distinguishable. To explore the design space, interactive tools are available 
to move the bounds on any function or variable in order to isolate a desirable set of optimal 
points. A typical usage is to bound the interesting points in the function space in order to 
obtain a set of desirable designs. 

3. Hyper-Radial Visualization [7,8]: This methodology maps any number of objectives to a 2-
dimensional space by allocating them to two groups and computing the distance in these 
group-based subspaces with respect to the Utopian design. The Utopian design is a 
hypothetical design (represented only in the objective space) obtained by minimizing each 
objective in isolation. A point in the 2D space is represented by these two distances. The 
advantage of the methodology is that the optimal points can be moved in the 2D space by 
adjusting the importance (represented by a weight) of each of the objectives. Thus the "best" 
point(s), i.e. the point(s) closest to the Utopian point can be obtained for any set of weights 
and used for the design. 

 
Integrated display: LS-OPT integrates the above three methods by allowing the simultaneous display 
of all three while highlighting the user-selected points on all three plots. This feature is illustrated by 
the crashworthiness example presented in the next section. 
 
An additional method, namely Self-Organizing Maps is also under development. That development is 
discussed in Reference [9].  
 

 
 
Figure 2-1: Pareto Optimality: Schematic diagram of the spaces of the independent design variables 
and dependent objective functions. The upper green arrow represents function evaluations at all the 
feasible points in the design space to create the feasible objective space (e.g.using metamodels of the 
design). The green-red arrow in the FOS represents the multi-objective optimization procedure (e.g. 
using NSGA-II). The lower red arrow represents the representation (through interactive visualization) 
of the Pareto Optimal Frontier to the design space for practical use in design. The straight white arrow 
(user interactivity) represents the selection of a desirable subset of Pareto Optimal points in the 
objective space. 
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The example is also used to illustrate the capabilities of the new Viewer features. 
 
   

3 Example: Truck crashworthiness optimization 
The example is a crashworthiness optimization problem that involves simulation of a National Highway 
Transportation and Safety Association (NHTSA) vehicle undergoing a full frontal impact. The finite 
element model for the full vehicle (obtained from NCAC website [10]), shown in Figure 3-1, has 
approximately 55K elements. Nine gauge thicknesses affecting the members listed in Table 1, are 
taken as design variables and affected parts are shown in Figure 3-1. Uncertainty of the exact 
thicknesses is quantified using a statistical distribution of the thickness (see Table 1). 
 
 

 
Figure 3-1: Finite element model, and thickness design variables for crashworthiness example. 

The crash performance of the vehicle is characterized by considering the maximum acceleration, 
maximum displacement that links to intrusion, time taken by the vehicle to reach zero velocity state, 
and different stage pulses. These responses are taken at the accelerometer mounted in the middle of 
the front seat. To reduce the influence of numerical noise, SAE filtered acceleration (filter frequency 
60Hz) is used and different entities are averaged over two accelerometer nodes. While constraints are 
imposed on some of these crash performance criteria (stage pulses), it is desirable to optimize the 
performance with respect to other criteria. 
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Table 1: Design variables for crash example 

Variable description Name Lower bound Baseline design Upper bound Distribution 
Rail front-right-inner t1 2.500 3.137 3.765 Uniform 
Rail front-right-outer t2 2.480 3.112 3.750 Uniform 
Rail front-left-inner t3 2.400 2.997 3.600 Uniform 
Rail front-left-outer t4 2.400 3.072 3.600 Uniform 
Rail right-back  t5 2.720 3.400 4.080 Uniform 
Rail left-back t6 2.850 3.561 4.270 Trunc. Normal 
Bumper t10 2.160 2.700 3.240 Trunc. Normal 
Radiator bottom t64 1.000 1.262 1.510 Trunc. Normal 
Cabin bottom t73 1.600 1.990 2.400 Trunc. Normal 

 
Thus a multi-objective optimization problem can be formulated as follows: 
 
Minimize: 
  

Mass and peak acceleration; 
  

Maximize: 
  

Time-to-zero-velocity and maximum displacement; 
 

subject to constraints on variables and performance.  
 
Table 2: Design constraints 

 Upper bound Probability of 
exceeding the 
upper bound 

Maximum displacement ( x crash) 721 mm 0.15 
Stage 1 pulse(SP1) 7.48 g  0.15 
Stage 2 pulse(SP2) 20.20 g 0.15 
Stage 3 pulse(SP3) 24.50 g 0.15 

 
The design variable bounds and input distribution are given in Table 1 and the performance 
constraints, namely maximum displacements and stage pulses, are specified in Table 2. The three 
stage pulses are calculated from the averaged SAE filtered (60Hz) acceleration x&& and displacement x 
of the accelerometer nodes in the following fashion: 
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The integration limits (d1:d2) = (0:200); (200:400); (400:Max(xcrash)) for j = 1, 2, 3 respectively, 
represent different structural crash events. All displacement units are mm and the minus sign is used 
to convert acceleration to deceleration. During optimization, all objectives and constraints are scaled 
to avoid dimensionality issues. 
 
The LS-DYNA® [2] explicit solver was used to simulate the crash. Each crashworthiness simulation 
takes approximately 5 hours using one core of a fully loaded quadcore Intel Xeon 5365 processor and 
generates an output of 225 MB. A 640-core HP XC cluster, comprising 80 ProLiant server nodes of 
two Intel Xeon 5365 quad-core processors (also known as Clovertown, with 2 processors/8 cores), 
with a 3.0 GHz clock rate, was used to run the required 1000 simulations. More details about running 
the simulation appear in Reference [5]. 
 

4 Input specification 
 
The input data is prepared in the LS-OPT GUI by specifying the solver data (input files, executables, 
queuing interface) as well as the variable data (starting values, bounds and distribution) (Figure 4-1). 
The desired responses available from the LS-DYNA database are selected in the Histories and 
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Responses pages of the GUI. The constraints and objectives are also defined in the respective GUI 
pages (Figure 4-2). Note that all the objectives are maximized, and that the Mass and acceleration 
quantities are pre-multiplied by -1 because of the requirement to minimize them. The four constraints 
are defined in terms of their probability of failure on the upper bound, namely 0.15.  
 
In the Sampling page (not shown here) the Radial Basis Function networks are chosen as 
metamodels with 1000 Space Filling simulation points. These are presently the fastest and most 
accurate surrogate models available in LS-OPT. The points are all run in a Single Stage as selected 
on the Strategy page (2nd main tab) which means that they will all be created as part of a single large 
run instead of sequentially. A sequential run can also be scheduled for which similar results can be 
expected (see e.g. Reference [11]). 
 

 
 
Figure 4-1: Definition of design variables with upper and lower bounds as well as noise properties of 
the uniform and truncated normal distributions. 
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Figure 4-2: Definition of Objectives and Constraints.  

 

5 Results and observations 
Figure 5-1 displays the correlation matrix of the 1000 simulation points. To be noted in the upper 
triangle is the low cross-correlation of the input variables as well as some negative (shades of blue) or 
positive (shades of red) correlations with respect to the performance variables. The lower triangle 
displays the corresponding scatter plots while the diagonal displays the distribution of the input 
variables and responses obtained from the simulations.  

l  
 
 
Figure 5-1: Correlation plot of simulation points 
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Figure 5-2 represents the accuracy of the RBF metamodels (in this case composite functions of the 
basic responses) as depicted by Predicted vs. Computed plots. Error measure information about the 
basic responses (e.g. RMS error, PRESS error and R2 error) can be found in the accuracy plots for 
responses or report files (not shown here). The points in the Accuracy plot are color coded (red/green) 
according to feasibility. Note the extremely small degree of feasibility of the design space: only five 
points out of approximately 1000 are feasible. 
 
The initial feasibility status of the response in terms of the output distribution and probability of failure 
can be found in Figure 5-3. Note that the starting design is infeasible, i.e. three of the four constraints 
are violated since the probabilities of failure of these three constraints exceed the upper bound of 0.15 
being 1, 1 and 0.745 for the Stage 1, 2 and 3 pulses respectively. 
 
Figure 5-4 displays the stochastic contribution of each of the design variables to each of the selected 
performance variables (responses). The stochastic contribution represents the contribution of the 
noise (in terms of the standard deviation of the noise distribution) of each of the variables to the total 
response variation. Note how for instance t10 has a very significant contribution to the Stage 1 Pulse 
and t3 has a significant contribution to the Stage 3 Pulse. 
 
 
 

 
 
Figure 5-2: Metamodel accuracy 
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Figure 5-3: Distribution of the constraint functions at the initial design point (baseline design). The 
probability of failure is represented by the horizontal bar charts. Note that only the upper bound value 
is bounded at 0.15 probability of failure. 

 
 

 
Figure 5-4: The stochastic contribution of the variables to the output variation (baseline design). 

 
 
The optimization procedure using NSGA-II yields an often large set of non-dominated points which is 
reduced to an evenly distributed smaller set of 100 for greater clarity of visualization. Figure 5-5 
displays this subset of the original Pareto Optimal set determined by the GA algorithm. Three different 
plots are shown namely (i) a three-dimensional scatter plot (top left), (ii) Hyper-Radial Visualization 
(top right) and (iii) the Parallel Coordinate plot (bottom). A thickness value of t5 as a function of each 
point is depicted in color on the upper plots. The parallel coordinate plot was used to select and print a 
smaller subset of optimal points (a second level of reduction, see Figure 5-6). The smaller set was 
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obtained by bounding the objective functions as shown in Figure 5-5. The points in the HRV diagram 
are the result of equal weighting of the objective functions. The user can also adjust the weights for 
finding interesting points for different scenario's of objective weights. 
 
Figure 5-7 depicts the optimization history of the four objective functions for a single Pareto optimal 
point namely the one with equal weights of all the objective functions (not shown here). The final point 
shown in Figure 5-7, obtained through equal weighting of the objectives, was chosen as an optimum 
to analyze further in terms of the feasibility of the different constraints. Figure 5-8 depicts the final 
estimates of the constraint distributions. Note that the design is now feasible, i.e. the probability of 
failure < 0.15 with the Disp constraint the critical one. The Stage 1 Pulse also plays a significant role 
while the other stage pulses have almost zero probability of failure. 
 
 
 

 
 
Figure 5-5: Interface showing Reduced Pareto Set using three different plot types: Three-dimensional 
scatter plot (top left), Hyper-Radial Visualization (top right) and Parallel Coordinate plot (bottom) of a 
few points selected by the user in the Parallel Coordinate plot. The grey lines in the Parallel 
Coordinate plot represent points excluded by the interactive bounding of the constraints using the 
sliders (the 4 values on the extreme right of the PC plot are maximized as far as possible). The 
statistics of the 8 selected points are displayed in the spreadsheet shown in Figure 5-6. Note cross-
highlighting of selected points (circled in red). The point closest to the Utopian point is also highlighted 
in purple on the HRV diagram. 

 
 
 

 
 
 
Figure 5-6: Spread sheet format of Pareto Optimal points selected interactively (Figure 5-5). 
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Figure 5-7:  Optimization history of maximization problem of the equally weighted design (one of the 
Pareto Optimal designs).The baseline design results are shown as red points. 

 
 

 
 
Figure 5-8: Distribution of the constraint functions at an optimal design point, the equally weighted 
design from Figure 5-7. The probability of failure is represented by the horizontal bar charts. Note that 
only the upper value is bounded at 0.15 probability of failure. Only the Disp, an intrusion constraint is 
active (top left). 
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6 Conclusions 
This study briefly describes the solution of a multi-objective reliability-based design optimization 
problem using LS-OPT. It is shown that Version 4 provides a significantly enhanced Viewer for flexible 
visualization and reporting of optimization results. New features to visualize the Pareto Optimal Front 
have been added. The new architecture provides greater flexibility for further development and 
refinement of the LS-OPT visualization features. 
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