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The performance of radial basis function networks largely depends on the choice 

of topology i.e., location and number of centers, radius of influence. Thus finding 

the best network is a multi-level optimization problem. It is obvious that different 

criteria for optimization would result in different network topologies. A systematic 

study is carried out to compare the most widely used root mean square error 

criterion for topology selection with cross-validation based methods like PRESS or 

PRESS-ratio. The main focus here is to find the criterion that best approximates the 

response typically encountered in crashworthiness simulations. Based on a suite of 

analytical examples and crashworthiness simulation problems, it was concluded that 

the PRESS-based selection criterion performs the best and offers the least variation 

with the choice of experimental design, sampling density, and the nature of the 

problem.  

I. Introduction 

Most engineering problems of practical significance are computationally expensive. This phenomenon 

is common in crashworthiness optimization due to the high cost of the finite element simulations. To 

alleviate high computational cost, the use of meta-models has become increasingly popular. In this 

approach, meta-models are developed using the limited data and optimization is carried out using these 

computationally inexpensive surrogate models. There are many types of meta-models available in literature 

with polynomial response surfaces being the most popular due to their simplicity. Radial basis function 

networks (RBFs) have been gaining popularity for approximation because of their ability to model highly 

non-linear responses with low fitting cost. 

Numerous instances have been reported of the use of radial basis functions in engineering applications. 

A small representative sample of some engineering applications is given as follows. Kurdila and Peterson 

[1], Li et al., [2] and Young et al. [3] used radial basis functions to approximate control conditions of 

nonlinear systems applied to aircraft and rockets. Wheeler et al. [4] used radial basis functions to model 

high pressure oxidizer discharge temperature for a space shuttle main engine. Papila et al. [5], Shyy et al. 

[6], Karakasis and Giannakoglou [7] used radial basis functions to design turbo-machinery and propulsion 

components. Meckesheimer et al. [8] used radial basis functions to approximate discrete/continuous 

responses in the design of a desk lamp. Rocha et al. [9] found RBFs to perform the best to approximate 

wing weight of subsonic transport vehicle.  Zhang et al. [22] used radial basis functions to optimize a 

microelectronic packaging system. Reddy and Ganguli [11] used radial basis functions to assess structural 

damage in helicopter rotor blades. Glaz et al. [12] used RBFs to approximate vibration loads while 

designing the helicopter rotor blades. Panda et al. [13] used RBFs to predict flank wear in drills. Lanzi et al. 

[14] used RBFs to approximate crash capabilities of composite absorbers. Fang et al. [15] found that RBFs 

approximate different responses in crashworthiness simulations very well.  

Though RBFs have been gaining popularity, the quality of approximation depends heavily on the 

topology of the network i.e., the number of radial basis functions, location of centers of neurons, radius of 

influence. Orr [16-20] and the references within discusses different issues in the selection of the number 

and location of centers and the radius of influence of neurons. To date, there is no consensus on the best 
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method of selecting network topology though it is agreed that network topology has a large bearing on the 

output.  

While generalized cross-validation error (also known as PRESS) has been demonstrated for selecting 

neural network topology [21-25], radial basis function network typically minimizes the root mean square 

error criterion [16-20, 26]. The influence of different criteria on the selection of RBF network topology is 

studied in this paper. Specifically, the most popular PRESS error criterion is compared with other criteria 

like root mean square error, and integrated pointwise ratio of generalization error that is defined as PRESS-

ratio in a subsequent Section. A few analytical test examples and engineering application problems from 

crashworthiness simulations are used to compare the different methods.  

The paper is arranged as follows. The theoretical model and stepwise procedure of RBF model 

construction is described in the next section. Test problems used to validate the proposed approach and 

performance metrics to appraise different criteria are described in Section 3. Test procedure and numerical 

setup for each example are detailed in Section 4. Results obtained for different examples are given in 

Section 5. Finally, the main conclusions are derived from this study are summarized in Section 6. 

II. Radial Basis Function Theoretical Model 

A response function )(xf is approximated using a metamodel of the response )(ˆ xf  as, 
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where ε  is the error in approximation.  

A. Regression Problem 

Radial basis functions (RBFs) were introduced as approximation functions by Hardy [27] in 1971 for 

approximation of the topographical data. This is a non-parametric approximation technique because no 

global form of the approximation function is assumed a priori. Instead, the approximation )(ˆ xf  is 

represented as a linear combination of �RBF radially symmetric functions (radial basis functions) )(xh  as, 
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where wi is the weight associated with the i
th
 radial basis function.  

While many monotonically radially varying functions have been used as RBFs, the Gaussian function is 

the most commonly used radial basis function. A typical Gaussian function is given as follows 
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where c is the center of the radial basis function, cr  is the radius of the (radial basis function) neuron, and s 

is a spread constant. The behavior of a Gaussian function is shown in Figure 1. This is a radially decaying 

function i.e., the function value decays with increase in distance from the center. The Gaussian function 

assumes its peak value at the center and gradually decays to zero as ∞→r . The rate of decay is 

controlled by cδ , often known as the radius of influence. If the radius of influence is large, the rate of 

decay is slow; and if the radius of influence is small, the rate of decay of the function is high. 

Typically, a radial basis function approximation is a two-level optimization. Firstly, one needs to 

determine the topology of the network i.e., the number of radial basis functions, corresponding center 

locations, radii, and spread constant. Subsequently, the weights associated with each RBF are estimated. 

Mostly, weights are estimated by minimizing a quadratic loss function L that is the sum of the square of 

errors of the approximation. 
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This choice of the quadratic loss function allows the use of linear regression to estimate the weights 

vector. However, this may lead to overfitting of the data and may result in very large weights. Mullur and 

Messac [26] proposed the use of an extended RBF to avoid overfitting. However, a more conventional 

approach is to add a weight penalty to the loss function (Tikhonov and Arsenin, [28]), 
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where iλ  is the regularization parameter associated with the i
th
 weight. This formulation attempts to find 

parsimonious networks, thus reducing the sensitivity of the network to small changes. 

Using ridge regression [18] to solve Equation (5), weights are estimated analytically as, 
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where f is the vector of responses at design points, Λ  is a diagonal matrix such that 

RBFiii �i ,...,1,0, ==Λ λ , and H is the design matrix constructed using the response of radial basis 

functions at design points such that 
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The predicted response at any point is 
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It is obvious from the above description that the performance of the network depends on the choice of 

the regularization parameters. Large iλ  might result in a large deviation from the data and very small iλ  
may lead to overfitting. To reduce computational complexity involved in finding optimal regularization 

parameters, often a single regularization parameter is used .,...,1,0, RBFi �i == λλ  The most common 

methods to select an optimal value for λ  are based on generalized cross-validation [29, 30], or the 
expectation maximization method [20]. Nevertheless, the computational cost of determining optimal 

regularization parameters is high for even moderate size problems, and increases with the number of 

samples. So a computationally efficient iterative procedure is implemented to select a ‘good’ regularization 

parameter in this study [31]. 

B. Error Metrics for RBFs 

The quality of above approximation is assessed by using different error metrics. The most common 

error metrics are described as follows. 

1. Root mean square error (�oiseVar) 

The approximation error at the design points is, 
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where I is an identity matrix of size �pt and 
TT HHHHIP 1)( −Λ+−= . P is known as the projection 

matrix. The root mean square error (also an estimate of square root of noise variance) [18] is, 
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2. Predicted residual sum of squares (PRESS) 

Leave-one-out cross-validation error or PRESS is another popular and effective error measure [32, 33]. 

To compute PRESS, the response is approximated using the data at �pt  - 1 points and this approximation is 

used to compute the actual error at the left out point. This procedure is repeated for all �pt points by leaving 

out each point exactly once. The expression for PRESS is  
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where )(ˆ )(iif x−
 is the predicted response at design point x

(i)
 which was not used to construct the 

approximation 
if −ˆ . The need to fit many networks to estimate PRESS can be obviated by using the 

projection matrix [18] and the vector of cross-validation error is computed as follows. 
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The root mean square of the PRESS which is compared to other error measures is 
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3. Mean pointwise cross-validation error ratio (PRESS-ratio) 

While the leave-one-out cross-validation error is a good measure of actual error, it might be susceptible 

to the large magnitude of error values. To avoid contamination of prediction error, an error ratio based 

criterion is given as follows: 

 

.1)(ˆ)(
1

ˆ
1

)()(∑
=

− −=
pts�

i

iii

pts

ratio ff
�

xxσ       (13) 

 

This criterion scales the magnitude of the errors thus eliminating the influence of a few large errors on 

the predictions but assigns more importance to the errors in the prediction of small values. 

C. RBF *etwork Topology Selection 

As discussed earlier, RBF network selection is a two-level optimization. The theoretical model for the 

second step, that is, the selection of weights for a given topology is well developed but there is no 

computationally efficient method available for the optimal selection of network topology (first step). 

Consequently, a trial and error procedure is used to select the suitable RBF network topology and optimal 

weights are selected for the best topology.  

A stepwise procedure to construct a radial basis function network that is adopted in LS-OPT
®
 [31] is 

given as follows. 

1. Sample design points 

2. Evaluate responses at design points 

3. Select the criterion to select network topology 

4. Identify the number of neurons 

a. Determine the spread constant 

i. Determine the location of centers and corresponding radii [31] 
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ii. Estimate the best regularization parameter(s) using the chosen topology 

selection criterion 

iii. Estimate different error measures  

b. Repeat the loop over different spread constants 

5. Estimate the best spread using the chosen topology selection criterion 

6. Repeat the loop (Step 4) for different number of neurons 

7. Select the network topology that results in the best performance over the chosen topology 

selection criterion. 

There are three optimization steps in selection of the RBF network topology, i) estimation of  the 

regularization parameter, ii) estimation of the spread constant, and iii) choice of the number of neurons. 

While the choice of selection criterion can be different at each step, a consistent choice is maintained here. 

A different criterion can be used as objective function of the optimization process, e.g., minimization of the 

root mean square error, PRESS error, or PRESS-ratio.  

In this paper, the influence of the three above-mentioned error criteria on the selection of network 

topology is studied. To isolate the influence of the error criterion on the prediction performance, the 

location of centers and radii is fixed across all networks for the chosen experimental design [31]. For the 

sake of simplicity, a single regularization parameter is used for all weights ii ∀= ,λλ .  

III. Test Problems and Performance Metrics 

The performance of different RBF networks obtained by using different topology selection criteria is 

studied using a suite of analytical and crashworthiness test problems on a few error metrics. These 

examples and relevant error metrics are given as follows. 

A. Test Problems 

Two types of test problems are used in this study,  

1. Analytical examples 

2. Engineering problems from crashworthiness simulations 

1. Branin-Hoo function [35] 
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2. Camelback function [35] 
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3. Goldstein-Price [35] 

 

[ ]
[ ]

.22,22

,)273648123218()32(30

)36143419()1(1),(

21

2

2212

2

11

2

21

2

2212

2

11

2

2121

≤≤−≤≤−

+−++−−+×

++−+−+++=

xx

xxxxxxxx

xxxxxxxxxxf

  (17) 

 

 



 6 

4. Hartman [35] 
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1. Three variables: �v = 3, The parameters are given in Table 1. 

2. Six variables: �v = 6, The parameters are given in Table 2. For this example, all variables 

were allowed to vary between 0 and 0.5.  

5. Jin et al. [36] – two variables JI�2 

 

( )( )
.60,100

,)exp(4)sin(30),(

21

2

21121

≤≤≤≤

−++=

xx

xxxxxf
      (19) 

 

6. Jin et al. [36] – ten variables J10a 
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The parameters used in this function are given in  

Table 3. This problem is not really non-linear. 

 

7. Giunta and Watson [37]  
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This problem is studied for two instances of five and ten variables.  

8. Multi-disciplinary analysis of a �HTSA vehicle undergoing full-frontal crash 

Next, a multi-objective optimization problem of the crashworthiness simulation of a National Highway 

Transportation and Safety Association (NHTSA) vehicle undergoing full-frontal impact was analyzed. The 

goal of the optimization was to simultaneously reduce mass and intrusion, while satisfying the constraints 

on the torsional frequency, maximum intrusion, and different stage pulses [38]. For this multi-disciplinary 

analysis, the finite element model, containing approximately 30000 elements, was obtained from the 

National Crash Analysis Center (NCAC website) [39]. A modal analysis of the vehicle was conducted on 

the so-called ‘body-in-white’ model with approximately 18000 elements. The crash and vibration finite 

element models are shown in Figure 2 and the crash is simulated for 90ms. 

 The design variables were the gauges of different structural members that were affected. These 

members included aprons, outer and inner rails, inner and outer shotguns, cradle rail, and cradle cross-

members (Figure 3). The description and ranges of these seven design variables is given in Table 4. The 

mathematical formulation of the optimization problem is as follows: 
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Minimize 

 Mass 

 Intrusion (xcrash) 

Subject to: 

 Maximum intrusion  <= 551.27 mm 

 Stage 1 pulse >= 14.512g 

 Stage 2 pulse  >= 17.586g 

 Stage 3 pulse >= 20.745g 

 41.385 Hz <= Torsional mode frequency <= 42.38 Hz 

 

The stage pulses are calculated from the SAE filtered (60 Hz) acceleration x&&  and displacement x of a 
left rear sill node as 

,/
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where k=0.5 for i=1, otherwise k=1. The minus sign was used to convert acceleration to deceleration. The 

limits on the integration for different stage pulse were (0:184) for i=1, (184:334) for i=2, and (334: 

maximum displacement) for i=3. LS-DYNA
®
 [40] was used to simulate different designs. It took 

approximately 50 minutes to run a single crashworthiness simulation on a dual-core Intel Xeon (2.66 GHz) 

processor with 4 GB memory. 

 

9. Automotive instrument panel structure (Knee-impact) simulation 

The second crashworthiness example employs a finite element simulation of a typical automotive 

instrument panel (shown in Figure 4) impacting the knees [41]. The spherical object that represents knee 

moves in the direction determined from prior physical tests. The instrument panel (IP) comprises of a knee 

bolster that also serves as a steering column cover with a styled surface, and two energy absorption 

brackets attached to the cross vehicle IP structure. A significant portion of the lower torso energy of the 

occupant is absorbed by appropriate deformation of these brackets. The wrap-around of the knee around the 

steering column is delayed by adding a device, known as the yoke, to the knee bolster system. The shape of 

the brackets and yoke are optimized without interfering with the styled elements. The eleven design 

variables are shown in Figure 5 and the ranges are given in Table 5. To keep the computational expense 

low, only the driver side instrument panel was modeled using 25000 elements and the crash was simulated 

for 40ms, by which time the knees have been brought to rest. The design optimization problem accounting 

for the optimal occupant kinematics is formulated as follows: 

 

Minimize 

 Mass 

  

Subject to: 

 Left knee force  <= 3250 

 Right knee force  <= 3250 

 Left knee displacement <= 115 

 Right knee displacement <= 115 

 Yoke displacement <= 85 

 Kinetic energy  <= 154000 

  

All responses are scaled. Knee forces are the peak SAE filtered (60 Hz) forces whereas all the 

displacements are represented by the maximum intrusion. LS-DYNA [40] was used to simulate the 

different designs. Each simulation requires approximately 60 minutes on a dual-core Intel Xeon (2.66 GHz) 

processor with 4 GB memory. 

 

10. Head-impact analysis  

Finally, the impact of an occupant head form against an A-pillar of a vehicle was analyzed. An interior trim 

cover with interior ribs was provided to soften the impact (Figure 6). The design was required to minimize 

a head injury criterion (HIC-d) that was obtained from the head injury coefficient obtained at 15ms (HIC). 
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The design variables for this example are given in Table 6. A single analysis was completed in 

approximately 20 minutes on a dual-core Intel Xeon (2.66 GHz) processor with 4 GB memory. 

B. Performance Metrics 

The performance of the predictions is compared using the following three metrics 

1. Correlation between predicted and observed responses 

The correlation coefficient is calculated as 
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where f  and )( fσ  are the mean and standard deviation of actual responses, f̂  and )ˆ( fσ  are the mean 

and standard deviation of the predicted responses, and V is the volume of the domain. The mean and 

standard deviations are computed as 
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A high correlation coefficient is desired for a good quality of approximation. 

The above equations are numerically evaluated using the data at test points by implementing quadrature 

for integration [42] as follows. 
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In the above equations, iγ  represents the weight associated with the i
th
 test point, as determined by the 

quadrature for integration. For uniform grid of points, the Simpson’s integration rule is used whereas for 

non-uniform grids, the Monte Carlo integration method is used. 

The correlation coefficient captures the prediction trends but yields no information about the actual 

errors of approximation, which can be high despite a high correlation. So the approximation errors are 

quantified using two error-based criteria. 

2. Root mean square error in the predictions 

The root mean square error at the test points is given as  

 

.)ˆ(
1 2∫ −=

V

dVff
V

RMSE         (27) 

 

Using the quadrature, the RMSE is estimated as 
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3. Maximum absolute error in the predictions 

Another measure of the quality of any approximation is the maximum absolute error: 
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A good approximation yields low errors and high correlation. 

IV. Test Procedure and *umerical Setup 

A. Test Procedure 

For each test example, the stepwise test procedure to identify the best topology selection criterion is 

outlined as follows: 

1. Identify an experimental design. 

2. Conduct function evaluations at the design points. 

3. Identify the different RBF network topologies using the following criteria, 

a. Minimize the square root of the error in prediction  

b. Minimize the root mean square of the PRESS error 

c. Minimize the mean PRESS-ratio. 

4. For each RBF network, estimate the predicted responses and errors at the test points. 

5. For each network, compute the test metrics. 

6. Repeat the procedure starting from Step 1, 1000 times for each example to minimize the 

influence of randomness in experimental designs. 

7. Summarize the results using mean and coefficient of variation of test metrics. 

B. *umerical Setup 

The numerical setup used to analyze the different examples is summarized in Table 7. The number of 

sampling points was taken such that a reasonable approximation of the underlying function could be 

obtained. For all the analytical examples, the experimental designs were selected in two steps. Firstly, a 

large set with �LHS points was generated using a Latin hypercube sampling (LHS)
3
 criterion. This set was 

used as the basis set to select �S points using the D-optimality criterion
4
 [43]. 1000 such experimental 

designs were used to minimize the sensitivity of the results due to the random selection of experimental 

designs. To compare different approximations, �test independent test points, selected using the Latin 

hypercube sampling criterion, were used.  

For the multi-disciplinary crashworthiness example, 4800+ designs were analyzed during a multi-

objective optimization using a genetic algorithm [44]. This data set was used as a basis set to select �S 

experimental designs randomly. 1000 experimental designs were used to study the influence of the 

experimental designs. All the points were used as test points. For the instrument panel knee-impact 

simulation, the data for a total of 851 unique simulations was available. This set was used to randomly 

select experimental designs and test points. Similarly, for the head impact analysis, the experimental 

designs and test points were selected from a pool of 1289 unique points.  

V. Results 

In this section, the results of comparison of the different criteria for network selection are summarized. 

Results for analytical examples and crashworthiness simulations are summarized in Figure 7–Figure 12. 

A. Correlation Coefficient 

The correlation between actual and predicted responses using different RBF networks for analytical 

examples and responses of crashworthiness simulations are shown in Figure 7–Figure 10 (A/B). The mean 

values and coefficient of variation were estimated using 1000 experimental designs. It was observed that no 

single criterion performed the best for all examples. The network topologies selected using the RMS error 

(�oiseVar) based criterion performed well in predicting the analytical functions and responses from the 

head-impact analysis and knee-impact analysis, however, the performance in approximating the responses 

                                                           
3
 The Matlab® routine ‘lhsdesign’ with ‘maximin’ criterion that maximizes the minimum distance between points is used to generate 

LHS designs. 500 iterations were used to find an optimum design.  
4
 The order of the polynomial to estimate D-optimality is chosen such that the number of points is approximately twice the number of 

coefficients. Duplicate points were not allowed. The Matlab® routine ‘candexch’ with a maximum of 100 iterations were used to find 
the optimal experimental design. 
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for multi-disciplinary crash simulation was very poor. Also, as depicted by the high coefficient of variation, 

the RMS error (�oiseVar) based criterion showed high sensitivity to the choice of experimental design.  

The RBF networks selected using the PRESS-ratio based criterion performed well for most problems 

though it showed large variability with the choice of experimental design for analytical examples. On the 

other hand, the PRESS-based topology selection criterion showed robust performance in approximating all 

analytical and crashworthiness examples. This criterion also resulted in the least variability with the choice 

of experimental designs. For most responses, the PRESS-based criterion outperformed the PRESS-ratio 

based criterion. The influence of dimensionality was not significant as all RBF topology selection criteria 

showed similar trends.  

B. Root Mean Square Error 

The mean and coefficient of variation of root mean squared error at test points based on 1000 

experimental designs obtained for different problems are shown in Figure 7–Figure 10 (C/D). It was 

observed that the RMS error (�oiseVar) based criterion typically yielded high mean root mean squared 

errors at the test points. Besides, the high coefficient of variation for the RMS error based criterion 

suggested high sensitivity to the choice of experimental design for both the analytical examples and the 

crashworthiness simulation responses. The PRESS-ratio based criterion performed better than the RMS 

error (�oiseVar) based criterion but in general this criterion was inferior to the PRESS-based selection 

criterion. The PRESS-based criterion provided the lowest root mean squared errors in approximation and a 

low coefficient of variation. It is interesting to note that for the head-impact analysis, while the RMS error 

(�oiseVar) based criterion resulted in the best correlation, the errors in approximation using this network 

were the highest. 

C. Maximum Absolute Error 

The results obtained for root mean square approximation errors were also valid for the maximum 

absolute error test metric.  

It can be concluded that the PRESS criterion to select network topology yielded robust and the best 

performance for all analytical and crashworthiness simulation responses. Other criteria (PRESS-ratio and 

RMS error based criteria) performed well for selected responses only and were more susceptible to the 

nature of the underlying response and the choice of experimental designs. 

D. Influence of sampling density 

Since crashworthiness computations are expensive, most approximations are carried out using data from 

a few simulations. It is important to compare the three RBF topology selection criteria for a small number 

of data points.  

The analytical example GW5 was approximated with 42 points and predictions were carried out at the 

same set of test points. The mean and coefficient of variation of correlation, RMS error and maximum 

absolute errors based on 1000 experimental designs were compared with the approximations based on 100 

points in Table 8. As expected, low point density resulted in higher RMS and maximum errors, and lower 

correlation compared to the approximation based on 100 points. Nevertheless, the PRESS-based criterion 

performed significantly better (higher correlation, lower errors, lower coefficient of variations) than the 

PRESS-ratio based criterion and RMS error (�oiseVar) based criterion among all RBF networks 

constructed using the same number of design points.  

To assess the influence of low sampling density on crashworthiness simulations, the multi-disciplinary 

crashworthiness example was approximated with 100 points and the IP structure knee impact problem was 

modeled using 50 points. The correlation, RMS, and maximum errors for the two examples with reduced 

sampling density are shown in Figure 11 and Figure 12, respectively. Comparing the MDO crashworthiness 

example results from Figure 8 (250 points experimental design) and Figure 11 (100 points experimental 

design), and the knee-impact example results from Figure 9 (100 points experimental design) and Figure 12 

(50 points experimental design), it can be concluded that the PRESS based criterion was the best and the 

RMS error (�oiseVar) based criterion was the worst even when a smaller number of points was available. 

As expected, the approximations based on higher sampling density were better (higher correlation, lower 

errors, lower coefficient of variations) when the network topologies were selected using PRESS/PRESS-

ratio based criteria. However, the quality of the approximations deteriorated with sampling density when 

the RMS error (�oiseVar) criterion was used to optimize RBF topology. This result indicates the danger of 

over-fitting by using the RMS error based criterion. 
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VI. Conclusions 

In this study, three criteria to select optimal RBF network topology for crashworthiness response 

approximation were compared using a number of analytical and crashworthiness simulation problems 

ranging from two to eleven variables. The influence of sampling density and choice of experimental 

designs were assessed simultaneously. The results indicated that the choice of best network topology 

selection criterion depends on the problem and experimental design. However, the PRESS-based criterion 

to select RBF network topology resulted in the robust performance for all examples, experimental designs, 

and sampling densities. The PRESS-ratio based selection criterion also performed reasonably well, but it 

had high sensitivity to the choice of experimental design for the analytical examples. Often the network 

selected using the PRESS criterion, outperformed the network selected using the PRESS-ratio based 

criterion. It was observed that the RMS error (�oiseVar) based criterion was the worst of the three criteria 

for crashworthiness response approximation. The performance of the RMS error based criterion was very 

sensitive to the choice of experimental design and sampling density. Also with the increase in the number 

of points used for approximation, the RMS error selection criterion resulted in networks that over-fitted the 

data. In summary, the PRESS-based selection criterion is recommended for the selection of network 

topologies. This criterion has therefore been chosen as the default criterion for RBF topology selection in 

LS-OPT
®
. 
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Table 1. Parameters in the Hartman problem with three design variables. 

i aij ci pij 

1 3.0 10.0 30.0 1.0 0.3689 0.1170 0.2673 

2 0.1 10.0 35.0 1.2 0.4699 0.4387 0.7470 

3 3.0 10.0 30.0 3.0 0.1091 0.8732 0.5547 

4 0.1 10.0 35.0 3.2 0.03815 0.5743 0.8828 

 

Table 2.  Parameters in the Hartman problem with six design variables. 

i aij ci 

1 10.0 3.0 17.0 3.5 1.7 8.0 1.0 

2 0.05 10.0 17.0 0.1 8.0 14.0 1.2 

3 3.0 3.5 1.7 10.0 17.0 8.0 3.0 

4 17.0 8.0 0.05 10.0 0.1 14.0 3.2 

i pij 

1 0.1312 0.1696 0.5569 0.0124 0.8283 0.5886  

2 0.2329 0.4135 0.8307 0.3736 0.1004 0.9991  

3 0.2348 0.1451 0.3522 0.2883 0.3047 0.6650  

4 0.4047 0.8828 0.8732 0.5743 0.1091 0.0381  

 

Table 3.  Parameters used in the JI�-10 function. 

 Value  Value 

t1 -6.089 t6 -14.986 

t2 -17.164 t7 -24.100 

t3 -34.054 t8 -10.708 

t4 -5.914 t9 -26.662 

t5 -24.721 t10 -22.179 

 

Table 4. Design variables used for the multi-disciplinary crashworthiness simulation of �ational 

Highway Transport and Safety Association (�HTSA) vehicle. 

Variable name Lower bound Baseline design Upper bound 

Rail inner 1.0 2.0 3.0 

Rail outer 1.0 1.5 3.0 

Cradle rails 1.0 1.93 3.0 

Aprons 1.0 1.3 2.5 

Shotgun inner 1.0 1.3 2.5 

Shotgun outer 1.0 1.3 2.5 

Cradle cross member  1.0 1.93 3.0 
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Table 5.  Design variables used for the simulation of automotive instrument panel structure (knee-

impact) analysis. 

Variable name Lower bound Baseline design Upper bound 

L-Bracket gauge 0.7 1.1 3.0 

T-Flange depth 20.0 28.3 50.0 

F-Flange depth 20.0 27.5 50.0 

B-Flange depth 15.0 22.3 50.0 

I-Flange width 5.0 7.0 25.0 

L-Flange width 20.0 32.0 50.0 

R-Bracket gauge 0.7 1.1 3.0 

R-Flange width 20.0 32.0 50.0 

R-Bracket radius 10.0 15.0 25.0 

Bolster gauge 1.0 3.5 6.0 

Yolk radius 2.0 4.0 8.0 

 

Table 6.  Design variables in head-impact analysis simulation. 

Variable name Lower bound Baseline design Upper bound 

Trim thickness 2.0 2.0 3.5 

�umber of ribs 3 3 15 

Rib thickness 0.8 1.0 2.0 

Rib height 5.0 6.0 20.0 

Span 130.0 180 180 

 

Table 7.  �umerical setup for different examples. *v is the number of variables, *pts is the number of 

samples used for approximation, *LHS is the number of basis points used for the D-optimality criterion, 

�poly is the order of polynomial used for estimating D-optimality, and *test is the number of test points.  

Example �v �pts �LHS �poly �test 

Branin-Hoo 2 20 100 3 150 

Camelback 2 30 150 4 150 

Goldstein-Price 2 42 200 5 150 

Jin-2 2 30 150 4 150 

Hartman-3 3 70 250 3 500 

GW5 5 100 400 3 2000 

Hartman-6 6 56 200 2 2000 

Jin-10a 10 150 450 2 5000 

GW10 10 150 450 2 5000 

�HTSA
*
 7 250 4847 - 4847 

Knee-impact
*
 11 100 851 - 851 

Head-impact
*
 5 42 1289 - 1289 

*
Experimental points are selected randomly from all the data points. 

 

Table 8.  Influence of sampling density on the approximation of the GW5 example. 

  PRESS GCV-ratio *oise Variance   

  # of points Mean COV Mean COV Mean COV 

42 0.336 (0.572) 0.324 (0.603) 0.317 (0.482) 
Correlation 

100 0.966 (0.014) 0.966 (0.013) 0.969 (0.011) 

42 0.207 (0.106) 0.220 (0.321) 0.262 (0.473) 
RMSE 

100 0.055 (0.178) 0.055 (0.176) 0.053 (0.166) 

42 0.698 (0.160) 0.796 (0.585) 1.155 (0.884) 
Max Error 

100 0.308 (0.337) 0.308 (0.335) 0.303 (0.335) 
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Figure 1.  Gaussian radial basis function with center located at x=0. 

 

 
A) Crash simulation model             B) Body-in-white model for NVH simulation 

Figure 2. Finite element models of a �ational Highway Transport and Safety Association vehicle. 

 
Figure 3.  Exploded view of structural components in �HTSA vehicle influenced by design variables. 
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Figure 4. Automotive instrument panel with knee bolster system used for knee-impact analysis. 

(Courtesy: Ford Motor Company) 
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Figure 5. Design variables of the knee bolster system. 
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Figure 6. Head impact of A-pillar with trim 
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E) Mean – Maximum absolute error  F) Coefficient of variation – Maximum absolute error 

Figure 7. Analytical examples: Comparison of different RBF network topology selection criteria 

(PRESS: predicted residual sum of squares, PRESS-ratio: averaged pointwise ratio of PRESS errors, 

�oiseVar: RMS error) based on 1000 DOEs. BH – Branin-Hoo, CB – Camelback, GPR – Goldstein-

Price, JI�2, J10a – Jin et al. problem with two and ten variables, HM3,6 – Hartman problem with three 

and six variables, GW5, 10 – Giunta-Watson problems with five and ten variables. 
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Figure 8. MDO crashworthiness example: Comparison of different RBF network topology selection 

criteria for approximation of responses in multi-disciplinary crashworthiness analysis (based on 250 

points, 1000 DOEs).  (PRESS: predicted residual sum of squares, PRESS-ratio: averaged pointwise ratio 

of PRESS errors, �oiseVar: RMS error) SP-1 indicates Stage 1 pulse, SP-2 is Stage 2 pulse and SP-3 is 

Stage 3 pulse.   
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Figure 9. Instrument panel knee-impact analysis: Comparison of different RBF network topology 

selection criteria (PRESS: predicted residual sum of squares, PRESS-ratio: averaged pointwise ratio of 

PRESS errors, �oiseVar: RMS error) for approximation of responses in crashworthiness simulations of 

the automotive instrument panel structure knee impact analysis (based on 100 points, 1000 DOEs). K.E. 

– kinetic energy. 
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Figure 10. Head impact analysis: Comparison of different RBF network topology selection criteria 

(PRESS: predicted residual sum of squares, PRESS-ratio: averaged pointwise ratio of PRESS errors, 

�oiseVar: estimated variance of noise) for approximation of head-impact criteria in crashworthiness 

simulations (based on 42 points, 1000 DOEs). HIC – Head injury coefficient, HIC-d – head injury 

criterion, Corr – correlation coefficient, RMSE – root mean square error, MaxE – maximum error.  
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Figure 11. MDO crashworthiness example with reduced point density: Comparison of different RBF 

network topology selection criteria (PRESS: predicted residual sum of squares, PRESS-ratio: averaged 

pointwise ratio of PRESS errors, �oiseVar: RMS error) for approximation of responses in 

multidisciplinary crashworthiness simulation (based on 100 points, 1000 DOEs).  SP-1 indicates Stage 1 

pulse, SP-2 is Stage 2 pulse and SP-3 is Stage 3 pulse.   
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Figure 12. Instrument panel knee-impact analysis with reduced point density: Comparison of different 

RBF network topology selection criteria (PRESS: predicted residual sum of squares, PRESS-ratio: 

averaged pointwise ratio of PRESS errors, �oiseVar: RMS error) for approximation of responses in 

crashworthiness simulations of the automotive instrument panel structure knee-impact analysis (based 

on 50 points, 1000 DOEs).   

 


