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A study is conducted to determine the sensitivity of 2 topologically distinct metamodel types to 
variations in the experimental design brought about by sequential adaptive sampling strategies. The 
study focuses on examples encountered in crashworthiness design. Three sampling strategies are 
considered for updating the experimental designs, namely (i) a single stage approach, (ii) a sequential 
approach and (iii) a sequential domain reduction approach with higher densities in local regions. The 
experimental design type is the Space Filling Method based on maximizing the minimum distance 
between any two design points within a subdomain. Feedforward Neural Networks (NN) and Radial 
Basis Function Networks (RBF) are compared with respect to their sensitivity when applied to these 
strategies. A large set of independent checkpoints, constructed using a Latin Hypercube Sampling 
method is used to evaluate the accuracy of the various strategies. Five examples are used in the 
evaluation, namely (i) simple two-variable two-bar truss, (ii) the 21 variable Svanberg problem, (iii) a 
7 variable full vehicle crash example, (iv) a 11 variable knee impact crash example and (v) a 5 
variable head impact example. The examples reveal two main characteristics, namely that, while 
expensive to construct, NN committees tend to be superior in predictability whereas RBF networks, 
although much cheaper to construct can, in some cases, be highly sensitive to irregularity of 
experimental designs caused by subdomain updating. However, this conclusion cannot be extended to 
the three crash problems tested, since the RBF networks performed consistently well for these 
examples. 

Introduction 
Along with experimental design, metamodels play a crucially important role in simulation-based 
optimization. Due to (i) the presence of noise in the response, (ii) the typical unavailability of analytical 
gradients and (iii) the requirement of obtaining a global surrogate model for design exploration, 
crashworthiness analysis requires the use of metamodeling techniques for design. FE models for 
crashworthiness analysis are highly complex and include highly non-linear phenomena such as contact, 
buckling, frictional sliding and material nonlinearity. Hence, nonlinear dynamic analysis is used and will 
always produce a displacement, velocity or acceleration response which is noisy to some degree. Factors 
such as mesh adaptivity, rounding and platform dependency are additional contributors to noisy behavior. 
To enable optimization or probabilistic analysis of the response, an accurate metamodel is imperative. After 
doing the initial expensive simulations, the subsequent metamodel becomes the surrogate design and will 
represent the mechanical design for the remainder of the design process. 
 
The most basic approach to metamodeling, and the earliest to be used, is response surface methodology 
(RSM)1. RSM is polynomial-based, typically uses a full or fractional factorial or D-optimal experimental 
design as sampling scheme and relies only on linear regression to solve for the function coefficients. 
Because of the highly nonlinear nature of crash analysis, other metamodel types have been introduced to 
deal with the complexity of the response functions. Two well-established methods are Feedforward Neural 
Networks (FFNN)2,3 and Radial Basis Function Networks (RBFN)4,5. These methods have some 
similarities, but differ greatly in their choice of basis functions and solution approach. While FFNN’s 
require nonlinear regression, RBFN’s allow the regression process to be split into multiple levels, the 
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innermost being linear while multiple outer line search loops deal with the nonlinearity induced by some of 
the parameters notably the spread and regularization factors and the topology (number of basis functions). 
 
Metamodel comparisons have been made by several researchers. Jin et al 6 investigated the effect of various 
sequential schemes (Entropy approach, the Integrated Mean Squared Error (IMSE) approach, and the 
Maximin Distance approach) on the relative merits of Kriging and RBF metamodels. They came to the 
conclusion that Kriging tended to be better for smooth functions whereas if the unknown function is 
irregular or unpredictable, RBF networks performed better. An earlier study by Jin et al 7 included a 
comparative study of Polynomial Regression, Multivariate Adaptive Regression Splines (MARS), Radial 
Basis Functions and Kriging. In this study it was concluded that RBF excels in most categories of degree of 
nonlinearity and problem scale. Hence the RBF Networks were also chosen as a suitable component of the 
current study. 
 
The design environment often requires the application of a non-standard, irregular experimental design. 
While an optimization run is ideally based on a single stage of runs, i.e. a series of runs based on a standard 
experimental design method the user is sometimes obliged to use a sequential method because of the 
flexibility it provides to run simulations until the metamodel converges. These sequential adaptive schemes 
can augment the set of designs locally or globally, possibly resulting in irregular experimental designs with 
higher point densities in a certain area or areas. Apart from sequential adaptive schemes, poor experimental 
designs may also arise when a number of runs fail due to finite element modeling deficiencies. In this case 
it is important to construct a surrogate with good predictive capability using the available points. 
 
This study investigates the robustness of the two afore-mentioned metamodeling types: FFNN’s and 
RBFN’s to variations in the experimental design method. A sequential adaptive domain reduction scheme 8 
is used as a realistic irregular experimental design for detecting sensitivity of the sampling scheme. As 
reference cases, the Max-Min distance designs 9 are used. Five examples are used to investigate the relevant 
metamodel properties. Two of these are analytical namely (i) the two-bar truss, (ii) the 21 variable 
Svanberg problem. The crash examples are (iii) a 7 variable full vehicle crash and vibration 
multidisciplinary example, (iv) an 11 variable knee impact example and (v) a 5 variable head impact 
example. 
 

Theory 

A. Feedforward Neural Networks 
 
Feedforward (FF) neural networks have a distinct layered topology. Each unit performs a biased weighted 
sum of their inputs and passes this value through a transfer (activation) function to produce the output. The 
outputs of each layer of neurons are the inputs to the next layer. In a feedforward network, the activation 
function of intermediate (’hidden’) layers is generally a sigmoidal function, network input and output layers 
being linear. Consider a FF network with K inputs, one hidden layer with H sigmoid units and a linear 
output unit. For a given input vector ),,( 1 Kxx K=x  and network weights 
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Standard non-linear optimization techniques including a variety of gradient algorithms (the steepest 
descent, RPROP, Levenberg-Marquardt, etc.) can be applied to obtain the FF network’s weights and biases. 
The second-order Levenberg-Marquardt algorithm appears to be the fastest method for training moderate-
sized FF neural networks (up to several hundred adjustable weights)2. However, when training larger 
networks, the first-order RPROP algorithm becomes preferable for computational reasons10.  
 
Regularization: For FF networks, regularization may be done by controlling the number of network weights 
(’model selection’), by imposing penalties on the weights (’ridge regression’), or by various combinations 
of these strategies 11,12. Model selection requires choosing the number of hidden units and, sometimes, the 
number of network hidden layers. Most straightforward is to search for an ’optimal’ network architecture 
that minimizes the PRESS (Prediction Sum of Squares computed using a leave-one-out approach). For FF 
networks, this procedure is usually too expensive and an approximate quantity: GCV = 

( )21 PMSE ν− , where ν  is the effective number of model parameters. A common scheme is to loop 
over 1,2,... hidden units and finally select the network with the smallest GCV error. In any event, in order 
for the GCV measure to be applicable, the number of training points P should not be too small compared to 
the required network size M. 
 
Over-fitting: To prevent over-fitting, it is desirable to find neural solutions with the smallest number of 
parameters. In practice, however, networks with a very parsimonious number of weights are often hard to 
train. The addition of extra parameters (i.e. degrees of freedom) can aid convergence and decrease the 
chance of becoming stuck in local minima or on plateaus13. Weight decay regularization involves 
modifying the performance function F, which is normally chosen to be the mean sum of squares of the 
network errors on the training set MSE. When minimizing MSE the weight estimates tend to be 
exaggerated. A penalty is imposed for this reason by adding a term that consists of the sum of squares of 
the network weights (see also (1)): 
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where M is the number of weights and P the number of points in the training set. 
 
Notice that network biases are usually excluded from the penalty term EW. Using the modified performance 
function F will cause the network to have smaller weights, and this will force the network response to be 
smoother and less likely to overfit thus eliminating the guesswork required in determining the optimum 
network size. A description of how to determine α and β can be found in 14.  
 
Neural networks have a natural variability for the following reasons15: 
 

1. Local behavior of the neural network training algorithms 
2. Uncertainty (noise) in the training data 

 
The neural network training error function usually has multiple local and global minima. With different 
initial weights, the training algorithm typically ends up in different (but usually almost equally good/bad) 
local minima. The larger the amount of noise in the data, the larger the difference between these NN 
solutions. In this study, NN committees consisting of a membership on 9 neural nets were used to find the 
average NN 2. Each member of the committee is constructed by starting the nonlinear regression procedure 
at a different starting point of the weight values )0(

mW . 



B. Radial Basis Function Networks 
 

A radial basis function neural network has a distinct 3-layer topology. The input layer is linear 
(transparent). The hidden layer consists of non-linear radial units, each responding to only a local region of 
input space. The output layer performs a biased weighted sum of these units and creates an approximation 
of the input-output mapping over the entire space. The most common basis functions are Hardy’s multi-
quadrics functions and the Gaussian function. These are given as: 
 
Hardy’s multi-quadric:  

2

2

1 1),...,(
h

kh
rxxg

σ
+=  

Gaussian:  
( )[ ]22

1 2/exp),...,( hkh rxxg σ−=  
 
The activation of the hth radial basis function is determined by the Euclidean distance 
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),...,( 1 hkhh WW=W   in K-dimensional space. The Gaussian basis function is a localized function (peaked 

at the center and descending outwards) with the property that 0→hg  as ∞→r . Parameter hσ  
controls the smoothness properties of the RBF unit.  
 
For a given input vector ),...,( 1 Kxxx =  the output of RBF network with K inputs and a hidden layer with 
H basis function units is given by:  
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Notice that hidden layer parameters hkh WW ,...,1  represent the center of hth radial unit, while 0hW  

corresponds to its deviation. Parameters 0W and HWW ,...,1 are the output layer's bias and weights, 
respectively. 
 
A key aspect of RBF networks, as distinct from feedforward neural networks, is that they can be interpreted 
in a way which allows the hidden layer parameters (i.e. the parameters governing the radial functions) to be 
determined by semi-empirical, unsupervised training techniques. Accordingly, although a radial basis 
function network may require more hidden units than a comparable feedforward network, RBF networks 
can be trained extremely quickly, orders of magnitude faster than FF networks. 
 
All the metamodels include the linear approximation as the most basic topology. 

C. Sequential domain reduction 
 

The purpose of sequential domain reduction is to allow convergence of the solution to a prescribed 
tolerance. The SRSM (Sequential Response Surface Method)8 uses a region of interest, a subspace of the 
design space, to determine an approximate optimum. A range is chosen for each variable to determine its 
initial size. A new region of interest centers on each successive optimum. Progress is made by moving the 



center of the region of interest as well as reducing its size. Figure 1 shows the possible adaptation of the 
subregion. The nominal reduction of the region of interest is 0.25 (i.e. the range of each variable reduces to 
0.75 of its former range) for each iteration. However, heuristic rules dependent on the amount of oscillation 
and the proximity of the new optimal design with respect to the previous one are used to determine a 
reduction factor between 0 and 0.25. The experimental design is augmented within this new region of 
interest, maintaining the maximin distance with respect to all existing points as well as new points. The 
maximin distance is obtained using simulated annealing. 
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Figure 1. Adaptation of subregion in SRSM: (a) pure panning, (b) pure zooming and (c) a combination of 
panning and zooming 

 
The sequential sampling method without domain reduction simply adds new points to the full design space 
by using the criterion of maximizing the minimum distance between any of the new points as well as 
between new and existing points. 

Examples 
A number of examples are provided to compare the different metamodels. There are two analytical 
examples, the 3 variable 2-bar truss problem and the Svanberg 21 variable problem. The remaining three 
examples are: (i) a full vehicle crash and vibration analysis with 7 sizing variables, (ii) a knee impact 
analysis with 11 sizing and shape variables and (iii) a head impact analysis with 5 shape and sizing 
variables, one of them discrete. Two metamodel types are compared: (i) Feedforward Neural Networks 
(NN) and (ii) Radial Basis Function Networks (RBF). Both 9- and single member committees are used for 
the NN’s and denoted NN-9 and NN-1 respectively. The RBF networks use Hardy’s Multi-quadric basis 
functions. LS-OPT®

 
14

 was used to build the respective metamodels while LS-DYNA® 16 was used to 
conduct the crash and vibration simulations. 
  
The single stage global approximation is an approximation based on a single stage maximin experimental 
design constructed by maximizing the minimum distance between any two points. The sequential 
subdomain updating is conducted as follows: The first iteration uses a D-optimal experimental design with 
linear approximation. From the second iteration onwards, the region of interest is reduced to a sub-domain 
(see Reference 8). This results in an increasingly dense sampling as the sub-domain continues to reduce in 
size. 10 Iterations are used for all the examples. The number of simulations per iteration is represented by 
the thumb rule 1)1(5.1 ++n where n is the number of design variables. For the single stage method, the 
total number of points is the same as for the iterative method. This thumb rule ensures that the number of 
sampling points in the first iteration represents a slight oversampling for a linear approximation. 
 
The metamodel types and sampling schemes are compared by means of a large set of independent 
checkpoints constructed using the Latin Hypercube Sampling scheme. An RMS error value is computed for 
each function as follows: 
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Where P is the number of checkpoints, py  is the function value at the checkpoint and pŷ is the function 
value predicted using the metamodel. The reported RMSE values are also normalized with respect to the 
mean value: 
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D. 2-Bar truss with 3 variables 
The first problem is of a simple two-bar truss. A linear analysis is conducted using simple user defined 
formulas The height of the structure = 1. The force components are: Fx = +24.8kN, Fy=198.4kN. The 
criteria are weight and stress in each of the bars. Three design variables are chosen, namely the cross-
sectional area of the bars and the base measurement between the supports. It should be noted that the 
StressL and StressR functions are highly nonlinear functions of the cross-sectional areas AreaL and AreaR 
respectively. 
 

 
 
 
The results are presented in Table 1 and Table 2.  Table 1 represents the RMSE while Table 2 represents 
the Maximum errors. 
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Figure 2. Two bar truss 



Table 1. 2-Bar truss. 70 Space Filling Simulation points. RMSE of a set of 100 LHS checkpoints as a 
percentage of the mean value for NN-9: Feedforward Neural Net with 9 member committee, NN1: 
Feedforward Neural Net with 1 member, RBF: Radial Basis Function Network. Best fits are shown in bold. 
 

 RMSE (% of mean) 

Sampling: Single Stage Sequential Sequential Subdomain 

Metamodel NN-9 NN-1 RBF NN-9 NN-1 RBF NN-9 NN-1 RBF 

Weight 0.0891 0.0985 0.522 0.0648 0.106 0.0966 0.356 0.332 1.12 

StressL 9.86 8.56 35.8 6.01 7.49 24.2 11.2 22.3 57.2 

StressR 8.46 9.24 43.6 8.04 5.89 42 17.2 22.6 86.3 

 
 
Table 2. 2-Bar truss. 70 Space Filling Simulation points. Maximum error of 100 LHS checkpoints as a 
percentage of the mean value for NN-9: Feedforward Neural Net with 9 member committee, NN1: 
Feedforward Neural Net with 1 member, RBF: Radial Basis Function. Best fits are shown in bold. 
 

 Maximum error (% of mean) 

Sampling: Single Stage Sequential Sequential Subdomain 

Metamodel NN-9 NN-1 RBF NN-9 NN-1 RBF NN-9 NN-1 RBF 

Weight 0.774 0.763 3.54 0.506 0.641 0.651 1.68 2.19 5.34 

StressL 135 119 343 36.9 55.8 158 100 264 269 

StressR 108 115 390 79.2 57.4 344 110 129 439 

 
 
The most obvious and unexpected result for the two-bar truss is the poor performance of the RBF’s, even 
when using a single stage experimental design. It is suspected that the cross-validation (used only for RBF) 
of the highly nonlinear functions (StressL and StressR) of outlying points in sparse regions is the cause of 
the discrepancy between RBF and NN results. A metamodel such as NN that merely tries to interpolate 
seems to do better under these conditions. 

E. Svanberg problem with 21 variables 
 
This example has 21 design variables and was proposed by Svanberg in 199517. The formulation is as 
follows: 
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Table 3 and Table 4 represent the results for the Svanberg problem. In contrast to the previous example, the 
RBF performs significantly better than the neural network. Table 3 represents the RMSE while Table 4 
represents the Maximum errors. 



 
 
Table 3. Svanberg problem: 340 Space Filling Simulation points. RMS error of a set of 1000 LHS 
checkpoints as a percentage of the mean value. NN-9: Feedforward Neural Net with 9 member committee, 
NN1: Feedforward Neural Net with 1 member, RBF: Radial Basis Function Network. Best fits are shown in 
bold 
 

 RMSE (% of mean) 

Sampling: Single Stage Sequential Sequential Subdomain 

Metamodel NN-9 NN-1 RBF NN-9 NN-1 RBF NN-9 NN-1 RBF 

f 12.6 16.9 9.24 14.3 17.8 8.66 17.3 26.3 15.6 

g1 10.7 15.1 5.86 12.6 14.9 6.11 14.5 17 9.67 

 
 
Table 4. Svanberg problem: 340 Space Filling Simulation points. Maximum error of a set of 1000 LHS 
checkpoints as a percentage of the mean value. NN9: Feedforward Neural Net with 9 member committee, 
NN-1: Feedforward Neural Net with 1 member, RBF: Radial Basis Function Network 
 

 Maximum error (% of mean) 

Sampling: Single Stage Sequential Sequential Subdomain 

Metamodel NN-9 NN-1 RBF NN-9 NN-1 RBF NN-9 NN-1 RBF 

f 47.6 63.8 37.2 64.1 77.9 43.5 65.2 137 58.4 

g1 48.8 54 20.1 44.6 52.7 26.5 52.9 71.3 41.7 

 
In this example, the RBF’s perform better than the FFNN’s. The example also demonstrates the 
considerably better performance achieved when using committees. This is especially true for subdomain 
updating. 
 

F. Vehicle crash and vibration (7 variables) 
 
The crashworthiness simulation considers a model containing approximately 30,000 elements of a National 
Highway Transportation and Safety Association (NHTSA) Ford Taurus vehicle17 undergoing a full frontal 
impact. A modal analysis is performed on a so-called ‘body-in-white’ model containing approximately 
18,000 elements. The crash model for the full vehicle is shown in Figure 3 for the undeformed and 
deformed (time = 78ms) states, and with only the structural components affected by the design variables, 
both in the undeformed and deformed (time = 72ms) states, in Figure 3. The NVH model used to compute 
the first torsion vibration mode is not shown here. Only body parts that are crucial to the vibrational mode 
shapes are retained in this model. The design variables are all thicknesses or gages of structural components 
in the engine compartment of the vehicle (Figure 4), parameterized directly in the LS-DYNA16  input file. 
Twelve parts are affected, comprising aprons, rails, shotguns, cradle rails and the cradle cross member 
(Figure 4). LS-DYNA Version 97116 is used for both the crash and NVH simulations, in explicit and 
implicit modes respectively. 
 

 



 
Figure 3. Deformed crash model of Taurus showing floor and wall (78ms) 

 

(a) (b) 
 

Figure 4. Structural components affected by design variables – 
(a) Undeformed and (b) deformed (time = 72ms) 

 
The response functions are defined as follows: 
 
 Maximum intrusion(x) 

Stage 1 pulse(x)  
Stage 2 pulse(x)  
Stage 3 pulse(x)  
Torsional mode frequency(x) 

 
with x = [rail_inner, rail_outer, cradle_rails, aprons, shotgun_inner, shotgun_outer, 
cradle_crossmember]T  
 
The three stage pulses are calculated from the SAE filtered (60Hz) acceleration and displacement of a left 
rear sill node in the following fashion: 
 

 Stage i pulse = 
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with the limits (d1;d2) = (0;184); (184;334); (334;Max(displacement)) for i = 1,2,3 respectively, all 
displacement units in mm. The Stage 1 pulse is represented by a triangle with the peak value being the 
value used. 
 
Table 5 and Table 6 represent the RMS errors and Maximum errors respectively of the checkpoints. 300 
Checkpoints are used on the metamodels built using 130 training points. 
 
 
Table 5. Taurus MDO problem: 130 Space Filling Simulation points. RMS error of a set of 300 LHS 
checkpoints as a percentage of the mean value. NN9: Feedforward Neural Net with 9 member committee, 
NN-1: Feedforward Neural Net with 1 member, RBF: Radial Basis Function Network. Best fits are shown 
in bold. 
 
 RMSE (% of mean) 

Sampling: Single Stage Sequential Sequential Subdomain 

Metamodel NN-9 NN-1 RBF NN-9 NN-1 RBF NN-9 NN-1 RBF 

Intrusion 0.680 0.735 0.729 0.796 0.890 0.902 1.14 1.7 0.963 

Pulse (Stage 1) 0.637 0.691 0.704 0.695 0.756 0.758 1.52 1.62 1.60 

Pulse (Stage 2) 1.31 1.46 1.44 1.38 1.82 1.40 2.33 4.52 2.21 

Pulse (Stage 3) 1.94 2.26 1.90 2.04 2.32 2.26 3.43 3.54 2.5 

Frequency (twisting 
mode) 0.202 0.200 0.188 0.179 0.244 0.236 0.521 0.552 0.461 

 
 
Table 6. Taurus MDO problem: 130 Space Filling Simulation points. Maximum  error of a set of 300 LHS 
checkpoints as a percentage of the mean value. NN9: Feedforward Neural Net with 9 member committee, 
NN-1: Feedforward Neural Net with 1 member, RBF: Radial Basis Function Network. Best fits are shown 
in bold. 
 
 Maximum error (% of mean) 

Sampling: Single Stage Sequential Sequential Subdomain 

Metamodel NN-9 NN-1 RBF NN-9 NN-1 RBF NN-9 NN-1 RBF 

Intrusion 2.34 2.57 2.12 2.59 2.87 2.95 3.18 6.33 2.86 

Pulse (Stage 1) 1.67 1.78 2.66 3.72 3.96 2.43 4.99 4.52 4.75 

Pulse (Stage 2) 4.02 5.71 5.39 3.97 6.47 4.16 8.59 18.8 7.1 

Pulse (Stage 3) 6.44 7.95 5.93 5.78 6.61 6.34 9.93 12.7 6.78 

Frequency (twisting 
mode) 0.905 0.861 0.755 0.943 1.03 0.981 1.76 1.66 1.61 

 
 
For this crash problem NN-9 networks perform the best for the single stage methods while the RBF 
networks perform better on the subdomain method.  



G. Knee impact example 
 

Figure 5 shows the finite element model of a typical automotive instrument panel 19. For model 
simplification and reduced per-iteration computational times, only the driver's side of the IP is used in the 
analysis as shown, and consists of around 25,000 shell elements. Also shown in Figure 5 are simplified 
knee forms which move in a direction as determined from prior physical tests. As shown in the figure, this 
system is composed of a knee bolster (steel, plastic or both) that also serves as a steering column cover with 
a styled surface, and two EA brackets (usually steel) attached to the cross vehicle IP structure. The brackets 
absorb a significant portion of the lower torso energy of the occupant by deforming appropriately. 
Sometimes, a steering column isolator (also known as a yoke) may be used as part of the knee bolster 
system to delay the wrap-around of the knees around the steering column. The last three components are 
non-visible and hence their shape can be optimized.  The design variables are shown in Figure 6.  The 
simulation is carried out for a 40 ms duration by which time the knees have been brought to rest.  It may be 
mentioned here that the Bendix component test is used mainly for knee bolster system development; for 
certification purposes, a different physical test representative of the full vehicle is performed. Since the 
simulation used herein is at a subsystem level, the results reported here may be used mainly for illustration 
purposes. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 5. Instrument panel with knee bolster system (highlighted) 

 

Styled surface, 
non-optimizable 

Simplified knee 
forms 

Non-visible, 
optimizable structural 
part 



 
Figure 6. Eleven design variables of the knee bolster system 

 
Table 7 represents the RMSE while Table 8 represents the Maximum checkpoint errors of 300 checkpoints. 
 
 
Table 7. Knee impact problem: 190 Space Filling Simulation points. RMSE of a set of 300 LHS 
checkpoints as a percentage of the mean value. NN9: Feedforward Neural Net with 9 member committee, 
NN-1: Feedforward Neural Net with 1 member, RBF: Radial Basis Function Network. Best fits are shown 
in bold. 
 
 RMSE (% of mean) 

Sampling: Single Stage Sequential Sequential Subdomain 

Metamodel NN-9 NN-1 RBF NN-9 NN-1 RBF NN-9 NN-1 RBF 

Left knee force 6.15 7.02 6.94 5.56 6.67 7.02 10.1 47.5 9.11 

Right knee force 3.33 3.09 3.92 2.94 3.21 3.74 6.92 26.6 5.17 

Left Knee intrusion 2.3 2.38 2.85 2.14 2.18 2.58 3.88 33.7 4.48 

Right Knee 
intrusion 2.05 2.25 2.94 2.22 2.29 2.81 3.61 39.9 5.43 

Yoke displacement 36.4 54.7 29.7 26.4 27.6 32.2 64.0 142 35.7 

Kinetic Energy 18.0 21.7 12.1 12.0 15.0 12.4 14.9 21.7 13.4 
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Table 8. Knee impact problem: 190 Space Filling Simulation points. Maximum  error of a set of 300 LHS 
checkpoints as a percentage of the mean value. NN9: Feedforward Neural Net with 9 member committee, 
NN-1: Feedforward Neural Net with 1 member, RBF: Radial Basis Function Network. Best fits are shown 
in bold. 
 
 Maximum error (% of mean) 

Sampling: Single Stage Sequential Sequential Subdomain 

Metamodel NN-9 NN-1 RBF NN-9 NN-1 RBF NN-9 NN-1 RBF 

Left knee force 19.5 24.5 29.4 20.6 22.0 24.0 31.1 105 26.4 

Right knee force 9.93 10.4 12.4 9.77 10.7 10.3 29.6 46.7 18 

Left Knee intrusion 9.9 8.49 10.8 7.09 6.44 8.6 12.5 87.7 14.1 

Right Knee 
intrusion 8.15 8.13 11.4 8.39 8.8 10.5 11.0 63.7 15.8 

Yoke displacement 199 388 115 114 147 120 403 206 121 

Kinetic Energy 143 234 47.1 40.9 64.8 50.2 53.5 79.3 53.4 

 
 
 
An obvious result is that the single member NN (NN-1) performs relatively poorly on the subdomain 
approach whereas the RBF and NN-9 perform consistently well. 
 

H. Head impact example 
 

Figure 7 shows the impact of a headform against the A-pillar of a vehicle covered on the interior with 
plastic trim. A single function namely the Head Injury Criterion (HIC) as measured at the center of gravity 
of the headform is used for the purpose of the study. The five variables used to modify the trim design are 
the trim thickness, rib height and thickness, number of ribs and rib span (distance between the first and the 
last rib). To ensure good mesh quality for all possible designs, adaptive meshing is incorporated in the 
parameterization of the mesh through the TrueGrid®  preprocessor 21. Table 9 and Table 10 show the RMSE 
and Maximum error respectively for 1000 LHS checkpoints. For this example, the NN seems to be the best 
metamodel. 

 
 
 
 
 



       

 
 
 

Figure 7: Head impact problem: Design variables and trim deformation due to impact of a headform 
 
 

 
Table 9. Head impact problem: 100 Space Filling Simulation points. RMSE of a set of 1000 LHS 
checkpoints as a percentage of the mean value. NN9: Feedforward Neural Net with 9 member committee, 
NN-1: Feedforward Neural Net with 1 member, RBF: Radial Basis Function Network. Best fits are shown 
in bold. 
 

 RMSE (% of mean) 

Sampling: Single Stage Sequential Sequential Subdomain 

Metamodel NN-9 NN-1 RBF NN-9 NN-1 RBF NN-9 NN-1 RBF 

HIC 9.1 10.5 11.3 10.3 14.7 12.9 14.3 14.2 19.8 
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Table 10. Head impact problem: 100 Space Filling Simulation points. Maximum  error of a set of 1000 
LHS checkpoints as a percentage of the mean value. NN9: Feedforward Neural Net with 9 member 
committee, NN-1: Feedforward Neural Net with 1 member, RBF: Radial Basis Function Network. Best fits 
are shown in bold. 
 

 Maximum error (% of mean) 

Sampling: Single Stage Sequential Sequential Subdomain 

Metamodel NN-9 NN-1 RBF NN-9 NN-1 RBF NN-9 NN-1 RBF 

HIC 57.7 63.0 78.4 71.7 86.5 70.4 88.5 87.9 88.7 

 

Conclusions 
Except for the fact that single stage global sampling will – as expected – always produce a more accurate 
metamodel, the comparative strengths of the metamodels are otherwise somewhat problem dependent.  
 
The NN-9 metamodel performs consistently well for all the examples and sampling strategies but is also 
the most expensive metamodel, having to rely on a non-linear regression algorithm for solution. Although it 
performs mostly better than NN-1, the single member model, the difference does not seem to be very large. 
The averaging operation using 9 independently computed nets produces a robust result, but may not be 
justified since the cost also increases by a factor of 9. A glaring exception to this observation was the knee 
impact problem with subdomain reduction in which most of the responses deteriorated significantly when 
using a single net. 
 
For the sequential methods, both the RBF and NN-9 do well for the crash problems, but RBF is 
significantly worse for the 2-bar truss problem. Since the 2-Bar truss is a highly nonlinear problem, 
involving reciprocal functions, RBF methods may perform especially poorly on such problems when using 
an iterative scheme with subdomain updating. 
 
For the examples considered, there is no obvious degradation of accuracy for subdomain updating for an 
increasing number of variables. This is true in spite of the fact that the reduction factor for each variable 
remains the same (about 0.25) irrespective of the number of design variables, thereby contributing to a 
greatly reduced volume fraction populated by new points for each new iteration e.g. the 21 variable 
Svanberg problem is less sensitive to the experimental design than the 3-variable 2-bar truss example. 
 
Due to their inherent linear property, the radial basis functions have a major speed advantage over Neural 
Networks, even when the latter method uses only one committee member. It is however of some concern 
that, for highly nonlinear (but smooth) functions, the RBF networks may perform rather poorly, affecting 
the error measures by almost an order of magnitude. This result is aggravated by the use of subdomain 
updating. 
 
Further investigation will attempt to add a greater level of confidence in the results by generating a large 
number of randomized experimental designs for each example. 
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