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Preface to Version 1 

LS-OPT originated in 1995 from research done within the Department of Mechanical Engineering, 
University of Pretoria, South Africa. The original development was done in collaboration with colleagues in 
the Department of Aerospace Engineering, Mechanics and Engineering Science at the University of Florida 
in Gainesville. 
 
Much of the later development at LSTC was influenced by industrial partners, particularly in the automotive 
industry. Thanks are due to these partners for their cooperation and also for providing access to high-end 
computing hardware. 
 
At LSTC, the author wishes to give special thanks to colleague and co-developer Dr. Trent Eggleston. 
Thanks are due to Mr. Mike Burger for setting up the examples. 
 
Nielen Stander 
Livermore, CA 
August, 1999 
 

Preface to Version 2 

Version 2 of LS-OPT evolved from Version 1 and differs in many significant regards. These can be 
summarized as follows: 
 

1. The addition of a mathematical library of expressions for composite functions. 
2. The addition of variable screening through the analysis of variance. 
3. The expansion of the multidisciplinary design optimization capability of LS-OPT. 
4. The expansion of the set of point selection schemes available to the user. 
5. The interface to the LS-DYNA binary database. 
6. Additional features to facilitate the distribution of simulation runs on a network. 
7. The addition of Neural Nets and Kriging as metamodeling techniques. 
8. Probabilistic modeling and Monte Carlo simulation. A sequential search method. 
 

As in the past, these developments have been influenced by industrial partners, particularly in the 
automotive industry. Several developments were also contributed by Nely Fedorova and Serge Terekhoff of 
SFTI. Invaluable research contributions have been made by Professor Larsgunnar Nilsson and his group in 
the Mechanical Engineering Department at Linköping University, Sweden and by Professor Ken Craig’s 
group in the Department of Mechanical Engineering at the University of Pretoria, South Africa. The authors 
also wish to give special thanks to Mike Burger at LSTC for setting up further examples for Version 2.  
 
Nielen Stander, Ken Craig, Trent Eggleston and Willem Roux 
Livermore, CA 
January, 2003 
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Preface to Version 3 

The development of LS-OPT has continued with an emphasis on the integration with LS-DYNA and LS-
PREPOST and differs from the previous version in the following significant regards: 
 

1. LS-OPT is now available for Microsoft Windows. 
2. Commands have been added to simplify parameter identification using continuous curves of 

measured data. 
3. Stochastic fields have been added to LS-DYNA (Version 971) to provide the capability of modeling 

geometric and shell thickness variability. 
4. Extended visualization of statistical quantities based on multiple runs were implemented by further 

integrating LS-PREPOST. 
5. An internal d3plot interface was developed. 
6. Reliability-Based Design Optimization (RBDO) is now possible using the probability of failure in 

the design constraints. 
7. Neural network committees were introduced as a means to quantify and generalize response 

variability. 
8. Mixed discrete-continuous optimization is now possible. 
9. Parameter identification is enhanced by providing the necessary graphical pre- and postprocessing 

features. Confidence intervals are introduced to quantify the uncertainty of the optimal parameters. 
10. The importation of user-defined sampling schemes has been refined. 
11. Matrix operations have been introduced. 
12. Data extraction can be done by specifying a coordinate (as an alternative to a node, element or part) 

to identify the spatial location. The coordinate can be referred to a selected state. 
13. A simple feature is provided to gather and compress the database for portability. 
14. A utility is provide to both reduce the d3plot file sizes by deleting results and to transform the d3plot 

results to a moving coordinate system. 
15. Checking of LS-DYNA keyword files is introduced as a means to avoid common output request 

problems. 
16. Statistical distributions can be plotted in the distribution panel in the GUI. 
17. A feature is introduced to retry aborted runs on queuing systems. 
18. 3-Dimensional point plotting of results is introduced as an enhancement of metamodel plotting. 
19. Radial basis function networks as surrogate models. 
20. Multi-objective optimization for converging to the Pareto optimal front (direct & metamodel-based). 
21. Robust parameter (Taguchi) design is supported. The variation of a response can be used as an 

objective or a constraint in the optimization process. 
22. Mapping of results to the FE mesh of the base design: the results are considered at fixed coordinates. 

These capabilities allow the viewing of metalforming robustness measures in LS-PREPOST. 
23. The ANSA morpher is supported as a preprocessor. 
24. The truncated normal distribution is supported. 
25. Extra input files can be provided for variable parsing. 
26. A library-based user-defined metamodel is supported. 
27. User-defined analysis results can be imported. 
28. PRESS predictions can be plotted as a function of the computed values. 
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29. The DynaStats panel has been redesigned completely (Version 3.4) 
30. Strategies for metamodel-based optimization are provided as GUI options 
31. An algorithm panel has been added for setting optimization algorithm parameters. 
32. User-defined sampling points can be evaluated using an existing metamodel. 
33. The Adaptive Simulated Annealing algorithm has been added as a core optimization solver. Hybrid 

algorithms such as the Hybrid SA and Hybrid GA have also been added. 
34. Kriging has been updated and accelerated. 
35. Enhancements were made to the Accuracy selection in the viewer by allowing color-coded point 

attributes such as feasibility and iteration number. 
36. The Tradeoff selection has also been enhanced by converting it to a 3-D application with color 

coding for the 4th dimension as well as color status of points for feasibility and iteration number. 
 
As in the past, these developments were strongly influenced by industrial partners, particularly in the 
automotive industry. LS-OPT is also being applied, among others, in metal forming and the identification of 
system and material parameters. In addition to long-time participants: Professor Larsgunnar Nilsson 
(Mechanical Engineering Department, Linköping University, Sweden) and Professor Ken Craig 
(Department of Mechanical Engineering, University of Pretoria, South Africa), significant contributions 
have been made by Dr. Daniel Hilding, Mr. David Björkevik and Mr. Christoffer Belestam of Engineering 
Research AB (Linköping) as well as Dr.-Ing. Heiner Müllerschön, Dipl.-Ing. Marko Thiele and Dipl.-Math. 
Katharina Witowski of DYNAmore GmbH, Stuttgart, Germany. 
 
Nielen Stander, Willem Roux and Tushar Goel 
Livermore, CA 
January, 2009 
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Preface to Version 4 

The development of LS-OPT has continued with an emphasis on the integration with LS-DYNA and LS-
PREPOST. The main focus of Version 4 has been the development of a new graphical postprocessor. The 
following features have been added: 
 
1. The Viewer has been redesigned completely to accommodate a multi-window format using a split-

window and detachable window feature. 
2. The Correlation matrix for simulation variables and results has been added.  
3. For visualizing the Pareto Optimal Frontier, Hyper-Radial Visualization and Parallel Coordinate plots 

have been added to the more traditional scatter plot.  Multiple points can be selected to create a table of 
response values. Point highlighting is cross-connected between plot types. 

4. An interface for the METAPost postprocessor has been added. 
5. Topology optimization LS-OPT®/Topology has been added as a separate module. Please refer to the LS-

OPT/Topology User's Manual. 
6. Many of the features such as the Reliability-Based Design Optimization have been significantly 

accelerated. 
7. The Blackbox queuing system has been streamlined in terms of providing better diagnostics and a 

special queuing system Honda has been added. 
8. The NASTRAN®  interface for frequency extraction and mode tracking has been added. 
 
The automotive and other industries have again made significant contributions to the development of new 
features in LS-OPT. In addition to long-time participant Professor Larsgunnar Nilsson (Mechanical 
Engineering Department, Linköping University, Sweden), Dr. Daniel Hilding, Mr. David Björkevik and Mr. 
Christoffer Belestam of Engineering Research AB (Linköping) as well as Dr.-Ing. Heiner Müllerschön, 
Dipl.-Ing. Marko Thiele and Dipl.-Math. Katharina Witowski of DYNAmore GmbH, Stuttgart, Germany 
have made major contributions as developers. 
 
Nielen Stander, Willem Roux and Tushar Goel 
Livermore, CA 
August, 2009 
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1. Introduction 

In the conventional design approach, a design is improved by evaluating its response and making design 
changes based on experience or intuition. This approach does not always lead to the desired result, that of a 
‘best’ design, since design objectives are sometimes in conflict, and it is not always clear how to change the 
design to achieve the best compromise of these objectives. A more systematic approach can be obtained by 
using an inverse process of first specifying the criteria and then computing the ‘best’ design. The procedure 
by which design criteria are incorporated as objectives and constraints into an optimization problem that is 
then solved, is referred to as optimal design. 
 
The state of computational methods and computer hardware has only recently advanced to the level where 
complex nonlinear problems can be analyzed routinely. Many examples can be found in the simulation of 
impact problems and manufacturing processes. The responses resulting from these time-dependent 
processes are, as a result of behavioral instability, often highly sensitive to design changes. Program logic, 
as for instance encountered in parallel programming or adaptivity, may cause spurious sensitivity. Roundoff 
error may further aggravate these effects, which, if not properly addressed in an optimization method, could 
obstruct the improvement of the design by corrupting the function gradients. 
 
Among several methodologies available to address optimization in this design environment, response 
surface methodology (RSM), a statistical method for constructing smooth approximations to functions in a 
multi-dimensional space, has achieved prominence in recent years. Rather than relying on local information 
such as a gradient only, RSM selects designs that are optimally distributed throughout the design space to 
construct approximate surfaces or ‘design formulae’. Thus, the local effect caused by ‘noise’ is alleviated 
and the method attempts to find a representation of the design response within a bounded design space or 
smaller region of interest. This extraction of global information allows the designer to explore the design 
space, using alternative design formulations. For instance, in vehicle design, the designer may decide to 
investigate the effect of varying a mass constraint, while monitoring the crashworthiness responses of a 
vehicle. The designer might also decide to constrain the crashworthiness response while minimizing or 
maximizing any other criteria such as mass, ride comfort criteria, etc. These criteria can be weighted 
differently according to importance and therefore the design space needs to be explored more widely. 
 
Part of the challenge of developing a design program is that designers are not always able to clearly define 
their design problem. In some cases, design criteria may be regulated by safety or other considerations and 
therefore a response has to be constrained to a specific value. These can be easily defined as mathematical 
constraint equations. In other cases, fixed criteria are not available but the designer knows whether the 
responses must be minimized or maximized. In vehicle design, for instance, crashworthiness can be 
constrained because of regulation, while other parameters such as mass, cost and ride comfort can be treated 
as objectives to be incorporated in a multi-objective optimization problem. Because the relative importance 
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of various criteria can be subjective, the ability to visualize the trade-off properties of one response vs. 
another becomes important. 
 
Trade-off curves are visual tools used to depict compromise properties where several important response 
parameters are involved in the same design. They play an extremely important role in modern design where 
design adjustments must be made accurately and rapidly. Design trade-off curves are constructed using the 
principle of Pareto optimality. This implies that only those designs of which the improvement of one 
response will necessarily result in the deterioration of any other response are represented. In this sense no 
further improvement of a Pareto optimal design can be made: it is the best compromise. The designer still 
has a choice of designs but the factor remaining is the subjective choice of which feature or criterion is more 
important than another. Although this choice must ultimately be made by the designer, these curves can be 
helpful by limiting the number of possible solutions. An example in vehicle design is the trade-off between 
mass (or energy efficiency) and safety. 
 
Adding to the complexity, is the fact that mechanical design is really an interdisciplinary process involving 
a variety of modeling and analysis tools. To facilitate this process, and allow the designer to focus on 
creativity and refinement, it is important to provide suitable interfacing utilities to integrate these design 
tools. Designs are bound to become more complex due to the legislation of safety and energy efficiency as 
well as commercial competition. It is therefore likely that in future an increasing number of disciplines will 
have be integrated into a particular design. This approach of multidisciplinary design requires the designer 
to run more than one case, often using more than one type of solver. For example, the design of a vehicle 
may require the consideration of crashworthiness, ride comfort, noise level as well as durability. Moreover, 
the crashworthiness analysis may require more than one analysis case, e.g. frontal and side impact. It is 
therefore likely that as computers become more powerful, the integration of design tools will become more 
commonplace, requiring a multidisciplinary design interface. 
 
Modern architectures often feature multiple processors and all indications are that the demand for 
distributed computing will strengthen into the future. This is causing a revolution in computing as single 
analyses that took a number of days in the recent past can now be done within a few hours. Optimization, 
and RSM in particular, lend themselves very well to being applied in distributed computing environments 
because of the low level of message passing. Response surface methodology is efficiently handled, since 
each design can be analyzed independently during a particular iteration. Needless to say, sequential methods 
have a smaller advantage in distributed computing environments than global search methods such as RSM. 
 
The present version of LS-OPT also features Monte Carlo based point selection schemes and optimization 
methods. The respective relevance of stochastic and response surface based methods may be of interest. In a 
pure response surface based method, the effect of the variables is distinguished from chance events while 
Monte Carlo simulation is used to investigate the effect of these chance events. The two methods should be 
used in a complimentary fashion rather than substituting the one for the other. In the case of events in which 
chance plays a significant role, responses of design interest are often of a global nature (being averaged or 
integrated over time). These responses are mainly deterministic in character. The full vehicle crash example 
in this manual can attest to the deterministic qualities of intrusion and acceleration pulses. These types of 
responses may be highly nonlinear and have random components due to uncontrollable noise variables, but 
they are not random.  
 



CHAPTER 1: INTRODUCTION 

LS-OPT Version 3 3 

Stochastic methods have also been touted as design improvement methods. In a typical approach, the user 
iteratively selects the best design results of successive stochastic simulations to improve the design. These 
design methods, being dependent on chance, are generally not as efficient as response surface methods. 
However, an iterative design improvement method based on stochastic simulation is available in LS-OPT. 
 
Stochastic methods have an important purpose when conducted directly or on the surrogate (approximated) 
design response in reliability based design optimization and robustness improvement. This methodology is 
currently under development and will be available in future versions of LS-OPT. 
 
1.1 Overview of the manual 
This LS-OPT® manual consists of three parts. In the first part, the Theoretical Manual (Chapters  2 through 
 6), the theoretical background is given for the various features in LS-OPT. The next part is the User’s 
Manual (Chapters  7 through  20), which guides the user in the use of LS-OPTui, the graphical user interface. 
These chapters also describe the command language syntax. The final part of the manual is the Examples 
section (Chapter  22), where eight examples are used to illustrate the application of LS-OPT to a variety of 
practical applications. Appendices contain interface features (Appendix A and Appendix B), database file 
descriptions (Appendix C), a mathematical expression library (Appendix D), a Glossary (Appendix E) and a 
Quick Reference Manual (Appendix G). 
 
Sections containing advanced topics are indicated with an asterisk (*). 
 
How to read this manual: 
Most users will start learning LS-OPT by consulting the User’s Manual section beginning with Chapter  7 
(The design optimization process). The Theoretical Manual (Chapters  2 through  6) serves mainly as an in-
depth reference section for the underlying methods. The Examples section is included to demonstrate the 
features and capabilities and can be read together with Chapters  7 to  22 to help the user to set up a problem 
formulation. The items in the Appendices are included for reference to detail, while the Quick Reference 
Manual provides an overview of all the features and command file syntax. 
 
Links can be used for cross-referencing and will take the reader to the relevant item such as Section  12.4.5, 
Reference  [4] or Figure  3-5 (just click on any of the afore-mentioned references). 
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2. Response Surface Methodology  

2.1 Introduction 
An authoritative text on Response Surface Methodology (RSM)  [1] defines the method as “a collection of 
statistical and mathematical techniques for developing, improving, and optimizing processes.” Although an 
established statistical method for several decades  [2], it has only recently been actively applied to 
mechanical design  [3]. Due to the importance of weight as a criterion and the multidisciplinary nature of 
aerospace design, the application of optimization and RSM to design had its early beginnings in the 
aerospace industry. A large body of pioneering work on RSM was conducted in this and other mechanical 
design areas during the eighties and nineties  [3]- [6]. RSM can be categorized as a Metamodeling technique 
(see Chapter 3 for other Metamodeling techniques namely Neural Networks, and Radial Basis Functions 
available in LS-OPT). 
 
Although inherently simple, the application of response surface methods to mechanical design has been 
inhibited by the high cost of simulation and the large number of analyses required for many design 
variables. In the quest for accuracy, increased hardware capacity has been consumed by greater modeling 
detail and therefore optimization methods have remained largely on the periphery of the area of mechanical 
design. In lieu of formal methods, designers have traditionally resorted to experience and intuition to 
improve designs. This is seldom effective and also manually intensive. Moreover, design objectives are 
often in conflict, making conventional methods difficult to apply, and therefore more analysts are 
formalizing their design approach by using optimization. 
 
2.1.1 Approximating the response 
 
Response Surface Methodology (or RSM) requires the analysis of a predetermined set of designs. A design 
surface is fitted to the response values using regression analysis. Least squares approximations are 
commonly used for this purpose. The response surfaces are then used to construct an approximate design 
“subproblem” which can be optimized. 
 
The response surface method relies on the fact that the set of designs on which it is based is well chosen. 
Randomly chosen designs may cause an inaccurate surface to be constructed or even prevent the ability to 
construct a surface at all. Because simulations are often time-consuming and may take days to run, the 
overall efficiency of the design process relies heavily on the appropriate selection of a design set on which 
to base the approximations. For the purpose of determining the individual designs, the theory of 
experimental design (Design of Experiments or DOE) is required. Several experimental design criteria are 
available but one of the most popular for an arbitrarily shaped design space is the D-optimality criterion. 
This criterion has the flexibility of allowing any number of designs to be placed appropriately in a design 
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space with an irregular boundary. The understanding of the D-optimality criterion requires the formulation 
of the least squares problem. 
 
Consider a single response variable y dependent upon a number of variables x. The exact functional 
relationship between these quantities is 
 
 )(xη=y  ( 2.1-1) 
 
The exact functional relationship is now approximated (e.g. polynomial approximation) as 
 
 )()( xx f≈η  ( 2.1-2) 
 
The approximating function f is assumed to be a summation of basis functions: 
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P is the number of experimental points and y is the exact functional response at the experimental points xi. 
 
The solution to the unknown coefficients is: 
 
 yXXXa TT 1)( −=  ( 2.1-5) 
where X  is the matrix 
 )]([][ uiuiX xX φ==  ( 2.1-6) 
The next critical step is to choose appropriate basis functions. A popular choice is the quadratic 
approximation 
 T
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11 KKK=φ  ( 2.1-7) 

but any suitable function can be chosen. LS-OPT allows linear, elliptical (linear and diagonal terms), 
interaction (linear and off-diagonal terms) and quadratic functions. 
 
2.1.2 Factors governing the accuracy of the response surface 
 
Several factors determine the accuracy of a response surface  [1].  
 
1. The size of the subregion 

For problems with smooth responses, the smaller the size of the subregion, the greater the accuracy. For 
the general problem, there is a minimum size at which there is no further gain in accuracy. Beyond this 
size, the variability in the response may become indistinguishable due to the presence of ‘noise’.  
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2. The choice of the approximating function 
Higher order functions are generally more accurate than lower order functions. Theoretically, over-
fitting (the use of functions of too high complexity) may occur and result in suboptimal accuracy, but 
there is no evidence that this is significant for polynomials up to second order  [1]. 

 
3. The number and distribution of the design points 

For smooth problems, the prediction accuracy of the response surface improves as the number of points 
is increased. However, this is only true up to roughly 50% oversampling  [1] (very roughly). 

 
2.1.3 Advantages of the method 
 
• Design exploration 

As design is a process, often requiring feedback and design modifications, designers are mostly 
interested in suitable design formulae, rather than a specific design. If this can be achieved, and the 
proper design parameters have been used, the design remains flexible and changes can still be made at a 
late stage before verification of the final design. This also allows multidisciplinary design to proceed 
with a smaller risk of having to repeat simulations. As designers are moving towards computational 
prototyping, and as parallel computers or network computing are becoming more commonplace, the 
paradigm of design exploration is becoming more important. Response surface methods can thus be 
used for global exploration in a parallel computational setting. For instance, interactive trade-off studies 
can be conducted. 

• Global optimization 
Response surfaces have a tendency to capture globally optimal regions because of their smoothness and 
global approximation properties. Local minima caused by noisy response are thus avoided. 

 
2.1.4 Other types of response surfaces  
 
Neural and Radial Basis Function networks and Kriging approximations can also be used as response 
surfaces and are discussed under the heading of metamodels in Sections  3.1 and  3.2. 
 
2.2 Experimental design 
 
Experimental design is the selection procedure for finding the points in the design space that must be 
analyzed. Many different types are available  [1]. The factorial, Koshal, composite, D-optimal and Latin 
Hypercube designs are detailed here.  
 
2.2.1 Factorial design 
This is an nl  grid of designs and forms the basis of many other designs. l  is the number of grid points in 
one dimension. It can be used as a basis set of experiments from which to choose a D-optimal design. In LS-
OPT, the 3n and 5n designs are used by default as the basis experimental designs for first and second order 
D-optimal designs respectively. 
 
Factorial designs may be expensive to use directly, especially for a large number of design variables. 
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2.2.2 Koshal design 
This family of designs are saturated for modeling of any response surface of order d. 
 
First order model 
 
For n = 3, the coordinates are: 
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As a result, four coefficients can be estimated in the linear model 
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Second order model 
 
For n = 3, the coordinates are: 
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As a result, ten coefficients can be estimated in the quadratic model 
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2.2.3 Central Composite design 
 
This design uses the 2n factorial design, the center point, and the ‘face center’ points and therefore consists 
of P = 2n + 2n + 1 experimental design points. For n = 3, the coordinates are: 
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The points are used to fit a second-order function. The value of 4 2n=α . 
 
2.2.4 D-optimal design 
 
This method uses a subset of all the possible design points as a basis to solve 
 

XX Tmax . 
 
The subset is usually selected from an nl -factorial design where l  is chosen a priori as the number of grid 
points in any particular dimension. Design regions of irregular shape, and any number of experimental 
points, can be considered  [7]. The experiments are usually selected within a sub-region in the design space 
thought to contain the optimum. A genetic algorithm is used to solve the resulting discrete maximization 
problem. See References  [1] and  [5]. 
 
The numbers of required experimental designs for linear as well as quadratic approximations are 
summarized in the table below. The value for the D-optimality criterion is chosen to be 1.5 times the Koshal 
design value plus one. This seems to be a good compromise between prediction accuracy and computational 
cost  [7]. The factorial design referred to below is based on a regular grid of 2n points (linear) or 3n points 
(quadratic). 
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Table  2.2-1: Number of experimental points required for experimental designs 

Linear approximation Quadratic approximation Number of 
Variables n Koshal D-optimal Factorial Koshal D-optimal Factorial 

Central 
Composite 

1 2 4 2 3 5 3 3
2 3 5 4 6 10 9 9
3 4 7 8 10 16 27 15
4 5 8 16 15 23 81 25
5 6 10 32 21 32 243 43
6 7 11 64 28 43 729 77
7 8 13 128 36 55 2187 143
8 9 14 256 45 68 6561 273
9 10 16 512 55 83 19683 531
10 11 17 1024 66 100 59049 1045

 
 

2.2.5 Latin Hypercube Sampling (LHS) 
 
The Latin Hypercube design is a constrained random experimental design in which, for n points, the range 
of each design variable is subdivided into n non-overlapping intervals on the basis of equal probability. One 
value from each interval is then selected at random with respect to the probability density in the interval. 
The n values of the first value are then paired randomly with the n values of variable 2. These n pairs are 
then combined randomly with the n values of variable 3 to form n triplets, and so on, until k-tuplets are 
formed. 
Latin Hypercube designs are independent of the mathematical model of the approximation and allow 
estimation of the main effects of all factors in the design in an unbiased manner. On each level of every 
design variable only one point is placed. There are the same number of levels as points, and the levels are 
assigned randomly to points. This method ensures that every variable is represented, no matter if the 
response is dominated by only a few ones. Another advantage is that the number of points to be analyzed 
can be directly defined. Let P denote the number of points, and n the number of design variables, each of 
which is uniformly distributed between 0 and 1. Latin hypercube sampling (LHS) provides a P-by-n matrix 
S = Sij that randomly samples the entire design space broken down into P equal-probability regions: 
 

 ( ) PS ijijij ζη −= , ( 2.2-3) 

 
where Pjj ηη ,,1 K  are uniform random permutations of the integers 1 through P and ijζ  independent random 
numbers uniformly distributed between 0 and 1. A common simplified version of LHS has centered points 
of P equal-probability sub-intervals: 
 
 ( ) PS ijij 5.0−= η  ( 2.2-4) 

 
LHS can be thought of as a stratified Monte Carlo sampling. Latin hypercube samples look like random 
scatter in any bivariate plot, though they are quite regular in each univariate plot. Often, in order to generate 
an especially good space filling design, the Latin hypercube point selection S described above is taken as a 
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starting experimental design and then the values in each column of matrix S is permuted so as to optimize 
some criterion. Several such criteria are described in the literature. 
 
Maximin 
 
One approach is to maximize the minimal distance between any two points (i.e. between any two rows of 
S). This optimization could be performed using, for example, Simulated Annealing (see Section  4.10). The 
maximin strategy would ensure that no two points are too close to each other. For small P, maximin distance 
designs will generally lie on the exterior of the design space and fill in the interior as P becomes larger. See 
Section  2.2.6 for more detail. 
 
Centered L2-discrepancy 
 
Another strategy is to minimize the centered L2-discrepancy measure. The discrepancy is a quantitative 
measure of non-uniformity of the design points on an experimental domain. Intuitively, for a uniformly 
distributed set in the n-dimensional cube nI  = [0,1]n, we would expect the same number of points to be in 
all subsets of nI  having the same volume. Discrepancy is defined by considering the number of points in 
the subsets of nI . Centered L2 (CL2) takes into account not only the uniformity of the design points over 
the n-dimensional box region nI , but also the uniformity of all the projections of points over lower-
dimensional subspaces: 
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2.2.6 Space-filling designs 
 
In the modeling of an unknown nonlinear relationship, when there is no persuasive parametric regression 
model available, and the constraints are uncertain, one might believe that a good experimental design is a set 
of points that are uniformly scattered on the experimental domain (design space). Space-filling designs 
impose no strong assumptions on the approximation model, and allow a large number of levels for each 
variable with a moderate number of experimental points. These designs are especially useful in conjunction 
with nonparametric models such as neural networks (feedforward networks, radial basis functions) and 
Kriging,  [8],  [9]. Space-filling points can be also submitted as the basis set for constructing an optimal (D-
Optimal, etc.) design for a particular model (e.g. polynomial). Some space-filling designs are: random Latin 
Hypercube Sampling (LHS), Orthogonal Arrays, and Orthogonal Latin Hypercubes. 
  
The key to space-filling experimental designs is in generating 'good' random points and achieving 
reasonably uniform coverage of sampled volume for a given (user-specified) number of points. In practice, 
however, we can only generate finite pseudorandom sequences, which, particularly in higher dimensions, 
can lead to a clustering of points, which limits their uniformity. To find a good space-filling design is a 
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nonlinear programming hard problem, which – from a theoretical point of view – is difficult to solve 
exactly. This problem, however, has a representation, which might be within the reach of currently available 
tools. To reduce the search time and still generate good designs, the popular approach is to restrict the 
search within a subset of the general space-filling designs. This subset typically has some good 'built-in' 
properties with respect to the uniformity of a design.  
 
The constrained randomization method termed Latin Hypercube Sampling (LHS) and proposed in  [10], has 
become a popular strategy to generate points on the 'box' (hypercube) design region. The method implies 
that on each level of every design variable only one point is placed, and the number of levels is the same as 
the number of runs. The levels are assigned to runs either randomly or so as to optimize some criterion, e.g. 
so that the minimal distance between any two design points is maximized ('maximin distance' criterion). 
Restricting the design in this way tends to produce better Latin Hypercubes. However, the computational 
cost of obtaining these designs is high. In multidimensional problems, the search for an optimal Latin 
hypercube design using traditional deterministic methods (e.g. the optimization algorithm described in  [11]) 
may be computationally prohibitive. This situation motivates the search for alternatives.  
 
Probabilistic search techniques, simulated annealing and genetic algorithms are attractive heuristics for 
approximating the solution to a wide range of optimization problems. In particular, these techniques are 
frequently used to solve combinatorial optimization problems, such as the traveling salesman problem. 
Morris and Mitchell  [12] adopted the simulated annealing algorithm to search for optimal Latin hypercube 
designs.  
 
In LS-OPT, space-filling designs can be useful for constructing experimental designs for the following 
purposes:  

1. The generation of basis points for the D-optimality criterion. This avoids the necessity to create a 
very large number of basis points using e.g. the full factorial design for large n. E.g. for n=20 and 3 
points per variable, the number of points = 320  ≈ 3.5*109. 

2. The generation of design points for all approximation types, but especially for neural networks and 
Kriging.  

3. The augmentation of an existing experimental design. This means that points can be added for each 
iteration while maintaining uniformity and equidistance with respect to pre-existing points. 

 
LS-OPT contains 6 algorithms to generate space-filling designs (see Table  2.2-2). Only Algorithm 5 has 
been made available in the graphical interface. LS-OPTui. 
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Figure  2-1: Six space-filling designs: 5 points in a 2-dimensional box region 

 

Table  2.2-2: Description of space-filling algorithms 

Algorithm  
Number 

Description 

0 Random 
1 'Central point' Latin Hypercube Sampling (LHS) design with random 

pairing  
2 'Generalized' LHS design with random pairing 
3 Given an LHS design, permutes the values in each column of the LHS 

matrix so as to optimize the maximin distance criterion taking into account 
a set of existing (fixed) design points. This is done using simulated 
annealing. Fixed points influence the maximin distance criterion, but are 
not allowed to be changed by Simulated Annealing moves. 

4 Given an LHS design, moves the points within each LHS subinterval 
preserving the starting LHS structure, optimizing the maximin distance 
criterion and taking into consideration a set of fixed points. 

5 given an arbitrary design (and a set of fixed points), randomly moves the 
points so as to optimize the maximin distance criterion using simulated 
annealing (see  4.10). 
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Discussion of algorithms 
The Maximin distance space-filling algorithms 3, 4 and 5 minimize the energy function defined as the 
negative minimal distance between any two design points. Theoretically, any function that is a metric can be 
used to measure distances between points, although in practice the Euclidean metric is usually employed.  
 
The three algorithms, 3, 4 and 5, differ in their selection of random Simulated Annealing moves from one 
state to a neighboring state. For algorithm 3, the next design is always a 'central point' LHS design (Eq. 
2.21). The algorithm swaps two elements of I, Sij and Skj, where i and k are random integers from 1 to N, and 
j is a random integer from 1 to n. Each step of algorithm 4 makes small random changes to a LHS design 
point preserving the initial LHS structure. Algorithm 5 transforms the design completely randomly - one 
point at a time. In more technical terms, algorithms 4 and 5 generate a candidate state, S ′ , by modifying a 
randomly chosen element Sij of the current design, S, according to:  
 
 ξ+=′ ijij SS  ( 2.2-6) 
 
where ξ is a random number sampled from a normal distribution with zero mean and standard deviation 
σξ ∈ [σmin, σmax]. In algorithm 4 it is required that both ijS ′  and ijS  in Eq. (2.23) belong to the same Latin 
hypercube subinterval.  
 
Notice that maximin distance energy function does not need to be completely recalculated for every iterative 
step of simulated annealing. The perturbation in the design applies only to some of the rows and columns of 
S. After each step we can recompute only those nearest neighbor distances that are affected by the stepping 
procedures described above. This reduces the calculation and increased the speed of the algorithm.  
 
To perform an annealing run for the algorithms 3, 4 and 5, the values for Tmax and Tmin can be adapted to the 
scale of the objective function according to: 
 ETT Δ×= maxmax :  ( 2.2-7) 
 ETT Δ×= minmin :   
 
where ΔE > 0 is the average value of |E'-E| observed in a short preliminary run of simulated annealing and 
Tmax and Tmin are positive parameters.  
 
The basic parameters that control the simulated annealing in algorithms 3, 4 and 5 can be summarized as 
follows: 
 

1 Energy function: negative minimal distance between any two points in the design.  
 

2 Stepping scheme: depends on whether the LHS property is preserved or not.  
 

3 Scalar parameters: 
 

1. Parameters for the cooling schedule:  
- scaling factor for the initial (maximal) temperature, Tmax,  
- scaling factor for the minimal temperature, Tmin,  
- damping factor for temperature, μT,  
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- number of iterations at each temperature, νT .  
2. Parameters that control the standard deviation of ξ in (2.23):  

- upper bound, σmax,  
- lower bound, σmin.  

3. Termination criteria:  
-  maximal number of energy function evaluations, Nit. 

 
2.2.7 Random number generator 
The Mersenne Twister  [13] is used in Neural Network construction and Monte Carlo, Latin Hypercube, 
Space Filling and D-Optimal point selection and probabilistic analysis. The Mersenne Twister (MT19937) is 
a pseudorandom number generator developed by Matsumoto and Nishimura and has the merit that it has a 
far longer period and far higher order of equidistribution than any other implemented generators. It has been 
proved that the period is 219937-1, and a 623-dimensional equidistribution property is assured. Features have 
been provided to seed the generator to enable sensitivity studies. 
 
2.2.8 Reasonable experimental designs* 
A ‘reasonable’ design space refers to a region of interest which, in addition to having specified bounds on 
the variables, is also bounded by specified values of the responses. This results in an irregular shape of the 
design space. Therefore, once the first approximation has been established, all the designs will be contained 
in the new region of interest. This region of interest is thus defined by approximate bounds. 
One way of establishing a reasonable set of designs is to move the points of the basis experimental design to 
the boundaries of the reasonable design space in straight lines connecting to the central design xc so that 
 
 )( cc xxxx −+=′ α  ( 2.2-8) 
 
where α is determined by conducting a line search along )( cxx − . 
 
This step may cause near duplicity of design points that can be addressed by removing points from the set 
that are closer than a fixed fraction (typically 5%) of the design space size. 
 
The D-optimality criterion is then used to attempt to find a well-conditioned design from the basis set of 
experiments in the reasonable design space. Using the above approach, a poor distribution of the basis 
points may result in a poorly designed subset. 
 
 
2.3 Model adequacy checking 
 
As indicated in the previous sections, response surfaces are useful for interactive trade-off studies. For the 
trade-off surface to be useful, its capability of predicting accurate response must be known. Error analysis is 
therefore an important aspect of using response surfaces in design. Inaccuracy is not always caused by 
random error (noise) only, but modeling error (sometimes called bias error), especially in a large subregion 
or where there is strong non-linearity present, could play a very significant role. There are several error 
measures available to determine the accuracy of a response surface. 
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2.3.1 Residual sum of squares 
 
For the predicted response iŷ and the actual response yi, this error is expressed as 
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22 ˆε  ( 2.3-1) 

 
If applied only to the regression points, this error measure is not very meaningful unless the design space is 
oversampled. E.g. ε = 0 if the number of points P equals the number of basis functions L in the 
approximation. 
 
2.3.2 RMS error 
 
The residual sum-of-squares is sometimes used in its square root form, RMSε , and called the “RMS error”: 
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2.3.3 Maximum residual 
 
This is the maximum residual considered over all the design points and is given by 
 ii yy ˆmaxmax −=ε .  ( 2.3-3) 

2.3.4 Prediction error 
 
The same as the RMS error, but using only responses at preselected prediction points independent of the 
regression points. This error measure is an objective measure of the prediction accuracy of the response 
surface since it is independent of the number of construction points. It is important to know that the choice 
of a larger number of construction points will, for smooth problems, diminish the prediction error. 
 
The prediction points can be determined by adding rows to X 
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and solving 
 AAXXXX TT += maxmax a

T
a  ( 2.3-5) 

for xp. 
 
2.3.5 PRESS residuals 
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The prediction sum of squares residual (PRESS) uses each possible subset of P – 1 responses as a regression 
data set, and the remaining response in turn is used to form a prediction set  [1]. PRESS can be computed 
from a single regression analysis of all P points. 
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where hii are the diagonal terms of 
 TH XXXX T 1)( −=  ( 2.3-7) 
 
H is the “hat” matrix, the matrix that maps the observed responses to the fitted responses, i.e. 
 
 Hyy =ˆ  ( 2.3-8) 
 
The PRESS residual can also be written in its square root form 
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For a saturated design, H equals the unit matrix I so that the PRESS indicator becomes undefined. 
 
2.3.6 The coefficient of multiple determination R2 
 
The coefficient of determination R2 is defined as: 
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where P is the number of design points and y , iŷ and yi represent the mean of the responses, the predicted 
response, and the actual response, respectively. This indicator, which varies between 0 and 1, represents the 
ability of the response surface to identify the variability of the design response. A low value of R2 usually 
means that the region of interest is either too large or too small and that the gradients are not trustworthy. 
The value of 1.0 for R2 indicates a perfect fit. However the value will not warn against an overfitted model 
with poor prediction capabilities. 
 
2.3.7 R2 for Prediction 
 
For the purpose of prediction accuracy the 2

predictionR  indicator has been devised  [1]. 

 
yy

prediction S
R PRESS12 −=  ( 2.3-11) 

where 
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2
predictionR  represents the ability of the model to detect the variability in predicting new responses  [1]. 

 
2.3.8 Iterative design and prediction accuracy 
 
In an iterative scheme with a shrinking region the R2 value tends to be small at the beginning, then 
approaches unity as the region of interest shrinks, thereby improving the modeling ability. It may then 
reduce again as the noise starts to dominate in a small region causing the variability to become 
indistinguishable. In the same progression, the prediction error will diminish as the modeling error fades, 
but will stabilize at above zero as the modeling error is replaced by the random error (noise). 
 
2.4 ANOVA 
 
Since the number of regression coefficients determines the number of simulation runs, it is important to 
remove those coefficients or variables which have small contributions to the design model. This can be done 
by doing a preliminary study involving a design of experiments and regression analysis. The statistical 
results are used in an analysis of variance (ANOVA) to rank the variables for screening purposes. The 
procedure requires a single iteration using polynomial regression, but results are produced after every 
iteration of a normal optimization procedure. 
 
2.4.1 The confidence interval of the regression coefficients 
 
The 100(1 – α)% confidence interval for the regression coefficients Ljb j ,,1,0, K=  is determined by the 
inequality 
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and 2σ̂  is an unbiased estimator of the variance 2σ  given by 
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jjC  is the diagonal element of 1)( −XX T  corresponding to bj and tα/2,P-L is Student’s t-Distribution. 

100(1 – α)% therefore represents the level of confidence that bj will be in the computed interval. 
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2.4.2 The significance of a regression coefficient bj 
 
The contribution of a single regressor variable to the model can also be investigated. This is done by means 
of the partial F-test where F is calculated to be 
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where r = 1 and the reduced model is the one in which the regressor variable in question has been removed. 
Each of the 2ε  terms represents the sum of squared residuals for the reduced and complete models 
respectively. 
 
It turns out that the computation can be done without analyzing a reduced model by computing 
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F can be compared with the F-statistic Fα,1,P-L so that if F > Fα,1,P-L, βj is non-zero with (100 – α)% 
confidence. The confidence level α that βj is not zero can also be determined by computing the α for 
F = Fα,1,P-L. The importance of βj is therefore estimated by both the magnitude of bj as well as the level of 
confidence in a non-zero βj. 
The significance of regressor variables may be represented by a bar chart of the magnitudes of the 
coefficients bj with an error bar of length )(2 αjbΔ  for each coefficient representing the confidence interval 
for a given level of confidence α. The relative bar lengths allow the analyst to estimate the importance of 
the variables and terms to be included in the model while the error bars represent the contribution to noise or 
poorness of fit by the variable. 
 
All terms have been normalized to the size of the design space so that the choice of units becomes irrelevant 
and a reasonable comparison can be made for variables of different kinds, e.g. sizing and shape variables or 
different material constants. 
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3. Metamodeling Techniques 

Metamodeling techniques allow the construction of surrogate design models for the purpose of design 
exploration such as variable screening, optimization and reliability. LS-OPT provides the capability of using 
three types of metamodeling techniques, namely polynomial response surfaces (already discussed, see 
Section 2.1), Neural Networks (NN) (Section  3.1.2) and Radial Basis Function Networks (RBF)  (Section 
 3.1.3). All three of these approaches can be useful to provide a predictive capability for optimization or 
reliability. In addition, linear polynomials, although perhaps less accurate, are highly suitable for variable 
screening (Section  2.4). At the core, these techniques differ in the regression methods employed to construct 
the surrogate models. The polynomial response surface method and the RBF’s use linear regression, while 
neural networks use nonlinear regression methods requiring an optimization algorithm. 
 
When using polynomials, the user is faced with the choice of deciding which monomial terms to include. In 
addition, polynomials, by way of their nature as Taylor series approximations, are not natural for the 
creation of updateable surfaces. This means that if an existing set of point data is augmented by a number of 
new points which have been selected in a local subregion (e.g. in the vicinity of a predicted optimum), better 
information could be gained from a more flexible type of approximation that will keep global validity while 
allowing refinement in a subregion of the parameter space. Such an approximation would provide a more 
natural approach for combining the results of successive iterations.  
 
3.1 Neural Networks 
Neural methods are natural extensions and generalizations of regression methods. Neural networks have 
been known since the 1940's, but it took the dramatic improvements in computers to make them practical, 
 [3]. Neural networks - just like regression techniques - model relationships between a set of input variables 
and an outcome. Neural networks can be thought of as computing devices consisting of numerical units 
(‘neurons’), whose inputs and outputs are linked according to specific topologies (see the example in Figure 
 3-1). A neural model is defined by its free parameters - the inter-neuron connection strengths (‘weights’) 
and biases. These parameters are typically ‘learned’ from the training data by using an appropriate 
optimization algorithm. The training set consists of pairs of input (design) vectors and associated outputs 
(responses). The training algorithm tries to steer network parameters towards minimizing some distance 
measure, typically the mean squared error (MSE) of the model computed on the training data. 
  
Several factors determine the predictive accuracy of a neural network approximation and, if not properly 
addressed, may adversely affect the solution. For a neural network, as well as for any other data-derived 
model, the most critical factor is the quality of training data. In practical cases, we are limited to a given 
data set, and the central problem is that of not enough data. The minimal number of data points required for 
network training is related to the (unknown) complexity of the underlying function and the dimensionality 
of design space. In reality, the more design variables, the more training samples are required. In the 
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statistical and neural network literature this problem is known as the ‘curse of dimensionality’. Most forms 
of neural networks (in particular, feedforward networks) actually suffer less from the curse of 
dimensionality than some other methods, as they can concentrate on a lower-dimensional section of the 
high-dimensional space. For example, by setting the outgoing weights from a particular input to zero, a 
network can entirely ignore that input – see Figure  3-1. Nevertheless, the curse of dimensionality is still a 
problem, and the performance of a network can certainly be improved by eliminating unnecessary input 
variables. 
  
It is clear that if the number of network free parameters is sufficiently large and the training optimization 
algorithm is run long enough, it is possible to drive the training MSE error as close as one likes to zero. 
However, it is also clear that driving MSE all the way to zero is not a desirable thing to do. For noisy data, 
this may indicate over-fitting rather than good modeling. For highly discrepant training data, zero MSE 
makes no sense at all. Regularization means that some constraints are applied to the construction of the 
neural model with the goal of reducing the 'generalization error', that is, the ability to predict (interpolate) 
the unobserved response for new data points that are generated by a similar mechanism as the observed data. 
A fundamental problem in modeling noisy and/or incomplete data, is to balance the 'tightness' of the 
constraints with the 'goodness of fit' to the observed data. This tradeoff is called the bias-variance tradeoff 
in the statistical literature. 
  
A multilayer feedforward network and a radial basis function network are the two most common neural 
architectures used for approximating functions. Networks of both types have a distinct layered topology in 
the sense that their processing units (‘neurons’) are divided into several groups ('layers'), the outputs of each 
layer of neurons being the inputs to the next layer (Figure  3-1). 
  
In a feedforward network, each neuron performs a biased weighted sum of their inputs and passes this value 
through a transfer (activation) function to produce the output. Activation function of intermediate ('hidden') 
layers is generally a sigmoidal function (Figure  3-2), while network input and output layers are usually 
linear (transparent). In theory, such networks can model functions of almost arbitrary complexity, see  [4] 
and  [5]. All parameters in a feedforward network are usually determined at the same time as part of a single 
(non-linear) optimization strategy based on the standard gradient algorithms (the steepest descent, RPROP, 
Levenberg-Marquardt, etc.). The gradient information is typically obtained using a technique called 
backpropagation, which is known to be computationally effective  [6]. For feedforward networks, 
regularization may be done by controlling the number of network weights (‘model selection’), by imposing 
penalties on the weights (‘ridge regression’)  [7], or by various combinations of these strategies  [8]. 
  
A radial basis function network has a single hidden layer of radial units, each actually modeling a response 
function, peaked at the center, and monotonically varying outwards (Figure  3-3). Each unit responds (non-
linearly) to the distance of points from its center. The RBF network output layer is typically linear. 
Intuitively, it is clear that a weighted sum of the sufficient radial units will always be enough to model any 
set of training data (see Figure  3-4 and Figure  3-5). The formal proofs of this property can be found, for 
example, in  [9] and  [10]. An RBF network can be trained extremely quickly, orders of magnitude faster than 
a feedforward network. The training process typically takes place in two distinct stages. First, the centers 
and deviations of the radial units (i.e. the hidden layer's weights) must be set; then the linear output layer is 
optimized. It is important that deviations are chosen so that RBFs overlap with some nearby units. 
Discovering a sub-optimal ‘spread’ parameter typically implies the preliminary experimental stage. If the 
RBFs are too spiky, the network will not interpolate between known points (see Figure  3-6). If the RBFs are 
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very broad, the network loses fine detail (Figure  3-7). This is actually another manifestation of the 
over/under-fitting dilemma. 
  
In the final shape, after training, a multilayer neural network with linear output (Figure  3-1) can resemble a 
general linear regression model - a least squares approximation. The major differences lie in the choice of 
basis functions and in the algorithms to construct the model (i.e. to adjust model's free parameters). 
Techniques to identify the systematical errors in the model and to estimate the uncertainty of model’s 
prediction of future observations also become more complex. Unlike polynomial regressors, hidden neurons 
do not lend themselves to immediate interpretations in terms of input (design) variables. 
  
The next sections discuss various goodness-of-fit assessment approaches applicable to neural networks. We 
also discuss how to estimate the variance of the neural model and how to compute derivatives of a neural 
network with respect to any of its inputs. Two neural network types, feedforward and radial basis, are 
considered. 
  

 
 
Figure  3-1: Schematic of a neural network with 2 inputs and a hidden layer of 4 neurons with activation 
function f.  
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Figure  3-2: Sigmoid transfer function ( )xey −+= 1/1  
typically used with feedforward networks 

Figure  3-3: Radial basis transfer function 
]exp[ 2xy −=  

 

 
 

Figure  3-4: Weighted sum of radial basis transfer 
functions. Three radial basis functions (dashed 
lines) are scaled and summed to produce a function 
(solid line). 

 
 
 
Figure  3-5: A radial basis network approximation 
(solid line) of the function, which fits the 21 data 
points (plus symbols). 
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Figure  3-6: The same 21 data points as in Figure  3-5. 
Test points reveal that the function has been overfit. 
RBF neuron's spread is too small. RBF network 
could have done better with a higher spread constant. 

 

Figure  3-7: The same 21 data points as in Figure 
 3-5. Approximation with overlapping RBF neurons. 
The spread of RBF units is too high.  

 
 
3.1.1 Model adequacy checking 
Nature is rarely (if ever) perfectly predictable. Real data never exactly fit the model that is being used. One 
must take into consideration that the prediction errors not only come from the variance error due to the 
intrinsic noise and unreliabilities in the measurement of the dependent variables but also from the systematic 
(bias) error due to model mis-specification. According to George E.P. Box's famous maxim, "all models are 
wrong, some are useful". To be genuinely useful, a fitting procedure should provide the means to assess 
whether or not the model is appropriate and to test the goodness-of-fit against some statistical standard. 
There are several error measures available to determine the accuracy of the model. Among them are: 
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where P denotes the number of data points, yi is the observed response value (’target value’), iŷ  is the 

model’s prediction of response, ŷ  is the mean (average) value of ŷ , y  is the mean (average) value of y, 
and 2σ̂ is given by 
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Mean squared error (MSE for short) and root mean squared error (RMS) summarize the overall model error. 
Unique or rare large error values can affect these indicators. Sometimes, MSE and RMS measures are 
normalized with sample variance of the target value (see formulae for nMSE and nRMS) to allow for 
comparisons between different datasets and underlying functions. R2 and R are relative measures. The 
coefficient of multiple determination R2 (’R-square’) is the explained variance relative to the total variance 
in the target value. This indicator is widely used in linear regression analysis. R2 represents the amount of 
response variability explained by the model. R is the correlation coefficient between the network response 
and the target. It is a measure of how well the variation in the output is explained by the targets. If this 
number is equal to 1, then there is a perfect correlation between targets and outputs. Outliers can greatly 
affect the magnitudes of correlation coefficients. Of course, the larger the sample size, the smaller is the 
impact of one or two outliers. 
 
Training accuracy measures (MSE, RMS, R2, R, etc.) are computed along all the data points used for 
training. As mentioned above, the performance of a good model on the training set does not necessarily 
mean good prediction of new (unseen) data. The objective measures of the prediction accuracy of the model 
are test errors computed along independent testing points (i.e. not training points). This is certainly true 
provided that we have an infinite number of testing points. In practice, however, test indicators are usable, 
only if treated with appropriate caution. Actual problems are often characterized by the limited availability 
of data, and when the training datasets are quite small and the test sets are even smaller, only quite large 
differences in performance can be reliably discerned by comparing training and test indicators. 
 
The generalized cross-validation (GCV)  [11] and Akaike’s final prediction error (FPE)  [12] provide 
computationally feasible means of estimating the appropriateness of the model. The k-fold cross-validation 
(denoted here as CV-k), generalized cross-validation (GCV)  [11] and Akaike's final prediction error (FPE) 
 [12] provide computationally feasible means of estimating the appropriateness of the model.  
 
GCV and FPE estimates combine the training MSE with a measure of the model complexity: 
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where ν is the (effective) number of model parameters. 
 
In theory, GCV estimates should be related to ν. As a very rough approximation to ν, we can assume that all 
of the network free parameters are well determined so that ν = M, where M is the total number of network 
weights and biases. This is what we would expect to be the case for large P so that P >> M. Note that GCV 
is undefined when ν is equal to the number of training points (P). In theory, GCV and FPE estimates should 
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be related to the effective number of model's parameters ν. Techniques to assess ν for neural networks will 
be discussed later. As a very rough approximation, we can assume that all of the network free parameters 
are well determined so that ν = M, where M is the total number of network weights and biases. This is what 
we would expect to be the case for large P so that P >> M. Note that both GCV and FPE are undefined 
when the effective number of model's parameters (ν) is equal to the number of training points (P). GCV and 
FPE measures are asymptotically equivalent for large P. 
 
In k-fold cross-validation the training dataset is divided into k randomly selected disjoint subsets of roughly 
equal size P(j). The model is trained and tested k times. Each time kj ,...,1=  it is trained on all data except 
for points from subset j and then tested on j-th subset. Formally, let )()()( ,...,1),( jj

i
j Piyy ==  be the 

prediction of such a model for the points from subset j. Then the CV-k estimates of accuracy  
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The CV estimate is a random number that depends on the division into folds. Repeating cross-validation 
multiple times using different splits into folds provides a better approximation to complete N-fold cross-
validation (leave-one-out). Leave-one-out measure is almost unbiased, but for typical real world datasets it 
has high variance, leading to unreliable estimates. Small datasets are simply not suitable for CV estimates, 
since data distribution can change considerably after we separate out even a small portion of data. In 
addition, the CV approach is usually too expensive. The question is whether the advantages of CV (if any) 
are big enough to justify the computational cost of training multiple networks rather than one. 
 
Anyway, no accuracy estimation can be correct all the time. Most probably it is impossible to evaluate a 
model by means of a single descriptive measure. We should always consider several accuracy measures 
when deciding on the appropriateness of the model, especially if this model is trained on noisy and/or 
incomplete data. In certain cases the crucial phase of integrating disparate measures into a single judgement 
could be delegated to a statistical decision-making tool. Of course, when the quantity of data required for 
statistical methods is simply not available, human experts' knowledge should be used for the really big 
decisions. 
 
3.1.2 Feedforward neural networks 
 
Feedforward (FF) neural networks have a distinct layered topology. Each unit performs a biased weighted 
sum of their inputs and passes this value through a transfer (activation) function to produce the output. The 
outputs of each layer of neurons are the inputs to the next layer. In a feedforward network, the activation 
function of intermediate (’hidden’) layers is generally a sigmoidal function (Figure  3-3), network input and 
output layers being linear. Consider a FF network with K inputs, one hidden layer with H sigmoid units and 
a linear output unit. For a given input vector ),,( 1 Kxx K=x  and network weights 

),,,,,,,( 111010 HKH WWWWWW KK=W , the output of the network is: 
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The computational graph of Eq. (5) is shown schematically in Figure  3-1. The extension to the case of more 
than one hidden layers can be obtained accordingly. It is straightforward to show that the derivative of the 
network Eq. (5) with respect to any of its inputs is given by: 
 

 ∑ ∑
= =

=+′=
∂
∂ H

h

H

h
hhkh

k

KkWWfWW
x
y

1 1
0 .,,1),(

ˆ
K    (6) 

 
Neural networks have been mathematically shown to be universal approximators of continuous functions 
and their derivatives (on compact sets)  [4]. In other words, when a network (5) converges towards the 
underlying function, all the derivatives of the network converge towards the derivatives of this function. 
 
Standard non-linear optimization techniques including a variety of gradient algorithms (the steepest descent, 
RPROP, Levenberg-Marquardt, etc.) are applied to adjust FF network’s weights and biases. For neural 
networks, the gradients are easily obtained using a chain rule technique called ’backpropagation’  [6]. The 
second-order Levenberg-Marquardt algorithm appears to be the fastest method for training moderate-sized 
FF neural networks (up to several hundred adjustable weights)  [3]. However, when training larger networks, 
the first-order RPROP algorithm becomes preferable for computational reasons  [13].  
 
Regularization: For FF networks, regularization may be done by controlling the number of network weights 
(’model selection’), by imposing penalties on the weights (’ridge regression’), or by various combinations of 
these strategies ( [7],  [8]). Model selection requires choosing the number of hidden units and, sometimes, the 
number of network hidden layers. Most straightforward is to search for an ’optimal’ network architecture 
that minimizes MSEGCV, MSEFPE or MSECV–k. Often, it is feasible to loop over 1,2,... hidden units and finally 
select the network with the smallest GCV error. In any event, in order for the GCV measure to be 
applicable, the number of training points P should not be too small compared to the required network size 
M. 
 
Over-fitting: To prevent over-fitting, it is always desirable to find neural solutions with the smallest number 
of parameters. In practice, however, networks with a very parsimonious number of weights are often hard to 
train. The addition of extra parameters (i.e. degrees of freedom) can aid convergence and decrease the 
chance of becoming stuck in local minima or on plateaus  [14]. Weight decay regularization involves 
modifying the performance function F , which is normally chosen to be the mean sum of squares of the 
network errors on the training set (1). When minimizing MSE (1) the weight estimates tend to be 
exaggerated. We can impose a penalty for this tendency by adding a term that consists of the sum of squares 
of the network weights (see also (1)): 
 

 WD EEF αβ +=   (7) 
where 
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where M is the number of weights and P the number of points in the training set. 
 
Notice that network biases are usually excluded from the penalty term EW. Using the modified performance 
function (7) will cause the network to have smaller weights, and this will force the network response to be 
smoother and less likely to overfit. This eliminates the guesswork required in determining the optimum 
network size. Unfortunately, finding the optimal value for α and β is not a trivial task. If we make α /β too 
small, we may get over-fitting. If α /β is too large, the network will not adequately fit the training data. A 
rule of thumb is that a little regularization usually helps  [15]. It is important that weight decay regularization 
does not require that a validation subset be separated out of the training data. It uses all of the data. This 
advantage is especially noticeable in small sample size situations. Another nice property of weight decay 
regularization is that it can lend numerical robustness to the Levenberg-Marquardt algorithm. The L-M 
approximation to the Hessian of Eq. (7) is moved further away from singularity due to a positive addend to 
its diagonal: 
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In  [3],  [16],  [17]and  [18] the Bayesian (’evidence framework’ or ’type II maximum likelihood’) approach to 
regularization is discussed. The Bayesian re-estimation algorithm is formulated as follows. At first, we 
choose the initial values for α and β. Then, a neural network is trained using a standard non-linear 
optimization algorithm to minimize the error function (Eq. (7)). After training, i.e. in the minimum of Eq. 
(7), the values for α and β are re-estimated, and training restarts with the new performance function. 
Regularization hyperparameters are computed in a sequence of 3 steps: 
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where λm, m = 1,…,M are (positive) eigenvalues of matrix H in Eq. (8), ν is the estimate of the effective 
number of parameters of a neural network, 
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It should be noted that the algorithm (Eq. 9) relies on numerous simplifications and assumptions, which hold 
only approximately in typical real-world problems  [19]. In the Bayesian formalism a trained network is 
described in terms of the posterior probability distribution of weight values. The method typically assumes a 



CHAPTER 3: METAMODELING TECHNIQUES 

34  LS-OPT Version 3 

simple Gaussian prior distribution of weights governed by an inverse variance hyperparameter 
2/1 weightsσα = . If we present a new input vector to such a network, then the distribution of weights gives rise 

to a distribution of network outputs. There will be also an addend to the output distribution arising from the 
assumed βσ /12 =noise Gaussian noise on the output variables: 
 

).,0()( 2
noiseNxyy σ+=  

 
With these assumptions, the negative log likelihood of network weights W given P training points 
x(1), … , x(P) is proportional to MSE (Eq. (1)), i.e., the maximum likelihood estimate for W is that which 
minimizes (Eq. (1)) or, equivalently, ED. In order for Bayes estimates of α and β to do a good job of 
minimizing the generalization in practice, it is usually necessary that the priors on which they are based are 
realistic. The Bayesian formalism also allows us to calculate error bars on the network outputs, instead of 
just providing a single ’best guess’ output ŷ . Given an unbiased model, minimization of the performance 
function (Eq. (1)) amounts to minimizing the variance of the model. The estimate for output variance 2

ˆ xyσ  
of the network at a particular point x is given by: 
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Equation (10) is based on a second-order Taylor series expansion of Eq. (7) around its minimum and 
assumes that W∂∂ŷ  is locally linear. 
 
Variability of Feedforward neural networks 
 
Neural networks have a natural variability because of the following reasons  [20]: 
 

1. Local behavior of the neural network training algorithms 
2. Uncertainty (noise) in the training data 

 
The neural network training error function usually has multiple local and global minima. With different 
initial weights, the training algorithm typically ends up in different (but usually almost equally good/bad) 
local minima. The larger the amount of noise in the data, the larger the difference between these NN 
solutions. The user is allowed to specify a neural network committee to find the average net and quantify the 
variability (Section  13.1.3). The starting weights for network training is randomly generated using a user-
specified seed to ensure repeatability (see Section  2.2.7). 
 
3.1.3 Radial basis function networks 
 
A radial basis function neural network has a distinct 3-layer topology. The input layer is linear (transparent). 
The hidden layer consists of non-linear radial units, each responding to only a local region of input space. 
The output layer performs a biased weighted sum of these units and creates an approximation of the input-
output mapping over the entire space.  
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While several forms of radial basis function are considered in the literature, the most common functions are 
the Hardy’s multi-quadrics and the Gaussian basis function. These are given as: 
 
Hardy’s multi-quadric:  

( )22
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Gaussian:  
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between the input vector ),...,( 1 Kxx=x  and RBF center ),...,( 1 hkhh WW=W   in K-dimensional space. The 
Gaussian basis function is a localized function (peaked at the center and descending outwards) with the 
property that 0→hg  as ∞→r . Parameter hσ  controls the smoothness properties of the RBF unit.  
 
For a given input vector ),...,( 1 Kxxx =  the output of RBF network with K inputs and a hidden layer with H 
basis function units is given by (see also Eq.(11)):  
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Notice that hidden layer parameters hkh WW ,...,1  represent the center of hth radial unit, while 0hW  
corresponds to its deviation. Parameters 0W and HWW ,...,1 are the output layer's bias and weights, 
respectively. 
 
A linear super-position of localized functions as in (13) is capable of universal approximation. The formal 
proofs of this property can be found, for example, in  [9] and [10]. It is straightforward to show that the 
derivative of the network (13) with respect to any of its inputs is given by: 
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where 'f  denotes the first derivative of the transfer function ρρ −−= eff )(': . 
  
Theory tells us that when a network (13) converges towards the underlying function, all the derivatives of 
the network converge towards the derivatives of this function.  
 
A key aspect of RBF networks, as distinct from feedforward neural networks, is that they can be interpreted 
in a way which allows the hidden layer parameters (i.e. the parameters governing the radial functions) to be 
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determined by semi-empirical, unsupervised training techniques. Accordingly, although a radial basis 
function network may require more hidden units than a comparable feedforward network, RBF networks 
can be trained extremely quickly, orders of magnitude faster than FF networks. 
  
For RBF networks, the training process generally takes place in two distinct stages. First, the centers and 
deviations of the radial units (i.e. hidden layer parameters HKWW ,...,11  and 010 ,..., HWW ) must be set. All the 
basis functions are then kept fixed, while the linear output layer (i.e. HWW ,...,0 ) is optimized in the second 
phase of training. In contrast, all of the parameters in a FF network are usually determined at the same time 
as part of a single training (optimization) strategy. Techniques for selecting HKWW ,...,11  and 010 ,..., HWW  are 
discussed at length in following paragraphs. Here we shall assume that the RBF parameters have already 
been chosen, and we focus on the problem of optimizing the output layer weights.  
 
Mathematically, the goal of output layer optimization is to minimize a performance function, which is 
normally chosen to be the mean sum of squares of the network errors on the training set (1). If the hidden 
layer's parameters HKWWW ,...,, 1110  in (3.4-2) are kept fixed, then the performance function (1) is a quadratic 
function of the output layer' parameters HWW ,...,0  and its minimum can be found in terms of the solution of 
a set of linear equations (e.g. using singular value decomposition). The possibility of avoiding the need for 
time-consuming and costly non-linear optimization during training is one of the major advantages of RBF 
networks over FF networks. However, when the number of optimized parameters ( 1+H , in our case) is 
small enough, non-linear optimization (Levenberg-Marquardt, etc.) may also be cost-effective.  
 
It is clear that the ultimate goal of RBF neural network training is to find a smooth mapping which captures 
the underlying systematic aspects of the data without fitting the noise. However, for noisy data, the exact 
RBF network, which passes exactly through every training data point, is typically a highly oscillatory 
function. There are a number of ways to address this problem. By analogy with FF network training, one 
can add to (1) a regularization term that consists of the mean of the sum of squares of the optimized weights. 
In conventional curve fitting this form of regularization is called ridge regression. The sub-optimal value for 
hyperparameters α and β in (7) can be found by applying Bayesian re-estimation formulae (8)-(9). It is also 
feasible to iterate over several trial values of α and β.  
 
For RBF networks, however, the most effective regularization methods are probably those pertaining to 
selecting radial centers and deviations in the first phase of RBF training. The commonly held view is that 
RBF centers and deviations should be chosen so as to form a representation of the probability density of the 
input data. The classical approach is to set RBF centers equal to all the input vectors from the training 
dataset. The width parameters hσ  are typically chosen – rather arbitrarily – to be some multiple σS  of the 
average spacing between the RBF centers (e.g. to be roughly twice the average distance). This ensures that 
the RBF's overlap to some degree and hence give a relatively smooth representation of data. 
  
To simplify matters, the same value of the width parameter hσ  for all RBF units is usually considered. 
Sometimes, instead of using just one value for all RBF's, each RBF unit's deviation hσ  is individually set to 
the distance to its NN <<σ  nearest neighbors. Hence, deviations hσ  become smaller in densely populated 
areas of space, preserving fine detail, and are higher in sparse areas of space, interpolating between points 
where necessary. Again the choice of σN  is somewhat arbitrary. RBF networks with individual radial 
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deviations σh can be particularly useful in situations where data tend to cluster in only a small subregion of 
the design space (for example, around the optimum of the underlying system which RSM is searching for) 
and are sparse elsewhere.  
 
One must take into consideration that after the first phase of RBF training is over, there's no way to 
compensate for large inaccuracies in radial deviations hσ  by, say, adding a regularization term to the 
performance function. If the basis functions are too spiky, the network will not interpolate between known 
points, and thus, will lose the ability to generalize. If the Gaussians are very broad, the network is likely to 
lose fine detail. The popular approach to find a sub-optimal spread parameter is to loop over several trial 
values of Sσ and Nσ and finally select the RBF network with the smallest GCV (FPE, CV-k) error. This is 
somewhat analogous to searching for an optimal number of hidden units of a feedforward neural network. 
  
In order to eliminate all the guesswork required in determining RBF deviations, it might seem natural to 
treat 010 ,..., HWW  ( Hσσ ,...,1 , to be precise) in (12) as adjustable parameters, which are optimized in the 
second phase of training along with the output layer's weights and bias. Practical applications of this 
approach, however, are rare. The reason may be that it requires the use of a non-linear optimization method 
in combination with a sophisticated regularization scheme specially designed so as to guarantee that the 
Gaussians will remain localized. 
  
It should be noted that RBF networks may have certain difficulties if the number of RBF units (H) is large. 
This is often the case in multidimensional problems. The difficulty arises because for a large number of 
RBF's, a large number of training samples are required in order to ensure that the neural network parameters 
are properly determined. A large number of RBF units also increase the computation time spent on 
optimization of the network output layer and, consequently, the RBF architecture loses its main (if not the 
only one) advantage over FF networks – fast training. 
  
Radial basis function networks actually suffer more from the curse of dimensionality than feedforward 
neural networks. To explain this statement, consider the effect of adding an extra, perfectly spurious input 
variable to a network. A feedforward network can learn to set the outgoing weights of the spurious input to 
zero, thus ignoring it. An RBF network has no such luxury: data in the relevant lower-dimensional space get 
‘smeared’ out through the irrelevant dimension, requiring larger numbers of units to encompass the 
irrelevant variability.  
 
In principle, the number of RBF's (H) need not equal the number of training samples (P), and RBF units are 
not constrained to be centered on the training data points. In fact, when data contain redundant information, 
we do not need all data points in learning. One simple procedure for selecting RBF centers is to set them 
equal to a random subset of the input vectors from the training set. Since they are randomly selected, they 
will 'represent' the distribution of the (redundant) training data in a statistical sense. Of course, H and P 
should not be too small in this case. 
  
It is clear, however, that the optimal choice of RBF centers based on the input data alone need not be 
optimal for representing the input-output mapping as reflected in the observed data. In order to overcome 
these limitations, the selection procedure should take into account the output values, or at least, approximate 
estimates (assumptions) of the global behavior of the underlying system. The common neural term for such 
techniques involving output values is ‘active learning’. In the context of active learning, RBF networks can 
be thought of as DOE metamodels analogous to polynomials,  [16] and  [19]. Given a candidate list of points, 
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an active learner is searching for the 'best' points in order to position RBF centers. Popular in neural 
applications is to treat RBF active learning as 'pruning' technique intended for identifying critical data and 
discarding redundant points, or more accurately, not selecting some training points as RBF centers. RBF 
active learning methods are being successfully applied to approximate huge datasets that come from natural 
stochastic processes. It is questionable, however, whether active learning can be useful for non-redundant 
datasets, specifically for RSM design sets generated by performing DOE analysis based on low-order 
polynomial metamodels. 
  
To briefly summarize, parameters governing radial units (radial centers and deviations) play a key role in 
generalization performance of a RBF model. The appropriate selection of RBF centers implies that we 
choose a minimal number of training data points that carry enough information to build an adequate input-
output representation of the underlying function. Unfortunately, this is easier said than done. Indeed, there is 
a general agreement that selecting RBF centers and deviations is more Art than Science. 
  
 
3.2    Kriging* 
 
Kriging is named after D.G. Krige  [22], who applied empirical methods for determining true ore grade 
distributions from distributions based on sampled ore grades. In recent years, the Kriging method has found 
wider application as a spatial prediction method in engineering design. Detailed mathematical formulations 
of Kriging are given by Simpson  [23] and Bakker  [24].  
 
The basic postulate of this formulation  [23] is : 
 

y(x) = f(x) + Z(x)  
 

where y is the unknown function of interest, f(x) is a known polynomial and Z(x) is the stochastic 
component with mean zero and covariance: 
 

Cov[Z(xi),Z(xj)] =  σ 2R([R(xi,xj)]). 
 

With L the number of sampling points, R is the L x L correlation matrix with R(xi,xj) the correlation 
function between data points xi and xj. R is symmetric positive definite with unit diagonal.  
 
Two commonly applied correlation functions used are: 
 

Exponential:   ∏=
=

Θ−n

k

dkkeR
1

||  and 

 

Gaussian:   ∏=
=

Θ−n

k

d kkeR
1

2

 

where n is the number of variables and dk = xk
i – xk 

j, the distance between the kth components of points xi 
and xj

 . There are n unknown θ -values to be determined. The default function in LS-OPT is Gaussian. 
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Once the correlation function has been selected, the predicted esitimate of the response ŷ(x) is given by: 
 

 ŷ = 
^
β  + rT(x)R-1(y-f

^
β ) 

 
where rT(x) is the correlation vector (length L) between a prediction point x and the L sampling points, y 
represents the responses at the L points and f is a L-vector of basis functions (ones, if f(x) is taken as a 
constant). One can choose either a constant, linear, or quadratic basis function in LS-OPT. The default 
choice is the constant basis function.  

The vector r and scalar
^
β are given by: 

 
rT(x) = [R(x,x1),R(x,x2),…,R(x,xL)]T  

 
^
β  = (f TR -1f)-1f TR -1y. 

 
The estimate of variance from the underlying global model is: 
 

L

T )()(
^

1
^

2^ ββσ fyRfy −−
=

−

. 

 
 
The maximum likelihood estimates for kΘ , k = 1,…, n can be found by solving the following constrained 
maximization problem: 
 

Max 
2

|]|ln)ln([)(

2^
RΘ +−

=Φ
σL , subject to 0>Θ . 

 
 

where both 
^

σ  and |R| are functions of Θ . This is the same as minimizing 
 

n
12^

||Rσ , s.t. 0>Θ  
 

 
This optimization problem is solved using the real-coded genetic algorithm (Section  4.8). A small constant 
number is adaptively added to the diagonal of matrix R to avoid ill-conditioning. The net effect is that the 
approximating functions might not interpolate the observed response values exactly. However, these 
observations are still closely approximated. 
 
   
3.3 Concluding remarks: which metamodel? 
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There is little doubt that the polynomial-based response surfaces are very robust, especially for sequential 
optimization methods. A negative aspect of using polynomials is the fact that the user is obliged to choose 
the order of polynomial. Also, a greater possibility exists for bias error of a nonlinear response. They are 
also, in most cases, not suitable for updating in sequential methods. Linear approximations may only be 
useful within a certain subregion and therefore quadratic polynomials or other higher order approximations 
such as RBF networks may be required for greater global accuracy. However the linear SRSM method has 
proved to be excellent for sequential optimization and can be used with confidence  [25] [26] [27]. 
 
RBF Networks appear to be generally the best of the neural networks metamodels. They have the following 
advantages: 
 

• Higher prediction accuracy due to built-in cross validation. Although FF networks may appear more 
accurate due to a smaller fitting error (RMSE), their prediction error is generally larger than that of 
RBF networks. An appealing plot of predicted vs. computed responses showing the training points or 

2R values approaching unity or small RMS error values should not be construed as representing a 
higher accuracy. 

• Higher speed due to their linear nature. When sizable FF committees (e.g. with 9 members) are used 
they may be vastly more expensive to construct than RBF networks. This is true especially for a 
relatively small number of variables. 

• Relative independence of the calculation time with respect to the number of functions. Although 
there is a slight overhead which depends on this number, the user does not have to be as careful with 
limiting the number of responses. 

 
FF Neural Networks function well as global approximations and no serious deficiencies have been observed 
when used as prescribed in Section  4.5. FF networks have been used for sequential optimization  [27] and 
can be updated during the process. A more recent study  [28] which focuses on the accuracy comparison for 
FF neural networks and RBF networks for different types of optimization strategies concluded that, for 
crashworthiness analysis, RBF and FF metamodels are mostly similar in terms of the accuracy of a large 
number of checkpoint results. However, the same study showed that Neural Networks are sometimes better 
than RBF networks for smooth problems. As mentioned earlier, RBF networks have a distinct speed 
advantage. Reference  [28] also assesses the use of FF committees and concludes that, although expensive, 
there are some cases where they may be necessary. 
 
Although the literature seems to indicate that Kriging is one of the more accurate methods  [23], there is 
evidence of Kriging having fitting problems with certain types of experimental designs  [29]. Kriging is very 
sensitive to noise, since it interpolates the data  [30]. The authors of this manual have also experienced fitting 
problems with non-smooth surfaces (Z(x) observed to peak at data points) in some cases, apparently due to 
large values of Θ that may be due to local optima of the maximum likelihood function. The model 
construction can be very time consuming   [30] (also experienced with LS-OPT). Furthermore, the slight 
global altering of the Kriging surface due to local updating has also been observed  [27]. Some efforts have 
been made in LS-OPT to reduce the effect of clustering of points.  
 
Reference  [27] compares the use of three of the metamodeling techniques for crashworthiness optimization. 
This paper, which incorporates three case studies in crashworthiness optimization, concludes that while 
RSM, NN and Kriging were similar in performance, RSM and NN were shown to be the most robust for this 
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application. RBF networks were not available at the time of that study and Kriging has also been improved 
in the mean time. 
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4. Optimization 

4.1 Theory of Optimization 
 
Optimization can be defined as a procedure for “achieving the best outcome of a given operation while 
satisfying certain restrictions”  [1]. This objective has always been central to the design process, but is now 
assuming greater significance than ever because of the maturity of mathematical and computational tools 
available for design. 
 
Mathematical and engineering optimization literature usually presents the above phrase in a standard form 
as 
 min )(xf   ( 4.1-1) 
subject to 

mjg j ,,2,1;0)( K=≤x  
and 

lkhk ,,2,1;0)( K==x  
 
where f, g and h are functions of independent variables x1, x2, x3, …, xn. The function f, referred to as the 
cost or objective function, identifies the quantity to be minimized or maximized. The functions g and h are 
constraint functions which represent the design restrictions. The variables collectively described by the 
vector x are often referred to as design variables or design parameters. 
The two sets of functions gj and hk define the constraints of the problem. The equality constraints do not 
appear in any further formulations presented here because algorithmically each equality constraint can be 
represented by two inequality constraints in which the upper and lower bounds are set to the same number, 
e.g. 
 0)( =xkh  ~ 0)(0 ≤≤ xkh  ( 4.1-2) 
Equations (2.1) then become 

 min )(xf  ( 4.1-3)  
subject to 

mjg j ,,2,1;0)( K=≤x  
 
The necessary conditions for the solution *x  to Eq. (2.3) are the Karush-Kuhn-Tucker optimality 
conditions: 
 
 ( ) ( ) 0=∇+∇ ** xgx Tf λ  ( 4.1-4) 

( ) 0=*xgTλ  
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( ) 0* ≤xg  
0≥λ . 

 
 

These conditions are derived by differentiating the Lagrangian function of the constrained minimization 
problem 
 ( ) ( ) ( )xgxx TfL λ+=  ( 4.1-5) 
and applying the conditions 
 0* ≥∂∇ xfT  (optimality)  ( 4.1-6) 
and 
 0≤∂∇ *xgT  (feasibility)  ( 4.1-7) 
to a perturbation *x∂ . 
 

jλ  are the Lagrange multipliers which may be nonzero only if the corresponding constraint is active, i.e.  

( ) 0* =xjg . 
 
For *x  to be a local constrained minimum, the Hessian of the Lagrangian function, ( ) ( )*2*2 xgx ∇+∇ Tf λ  
on the subspace tangent to the active constraint g  must be positive definite at *x . 
 
These conditions are not used explicitly in LS-OPT and are not tested for at optima. They are more of 
theoretical interest in this manual, although the user should be aware that some optimization algorithms are 
based on these conditions. 
 
4.2 Normalization of constraints and variables 
 
It is a good idea to eliminate large variations in the magnitudes of design variables and constraints by 
normalization. 
 
In LS-OPT, the typical constraint is formulated as follows: 
 

 
 mjUgL jjj ,,2,1;)( K=≤≤ x  ( 4.2-1) 

which, when normalized becomes: 
 

 mj
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where x0 is the starting vector. The normalization is done internally. 
 
The design variables have been normalized internally by scaling the design space [xL ; xU] to [0;1], where xL 
is the lower and xU the upper bound. The formula 



 CHAPTER 4:  OPTIMIZATION ALGORITHMS 

LS-OPT Version 3 45 
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=ξ  ( 4.2-3) 

 
is used to transform each variable xi to a normalized variable, iξ . 
When using LS-OPT to minimize maximum violations, the constraints must be normalized by the user. This 
method is chosen to give the user the freedom in selecting the importance of different responses when e.g. 
performing parameter identification. Section   5.3.2 will present this application in more detail. 
 
 
4.3 Gradient Computation and the Solution of Optimization Problems 
 
Solving the optimization problem requires an optimization algorithm. The list of optimization methods is 
long and the various algorithms are not discussed in any detail here. For this purpose, the reader is referred 
to the texts on optimization, e.g.  [1] or  [2]. It should however be mentioned that the Sequential Quadratic 
Programming method is probably the most popular algorithm for constrained optimization and is considered 
to be a state-of-the-art approach for structural optimization  [3],  [4]. In LS-OPT, the subproblem is optimized 
by an accurate and robust gradient-based algorithm: the dynamic leap-frog method  [5]. Both these 
algorithms and most others have in common that they are based on first order formulations, i.e. they require 
the first derivatives of the component functions 
 

idxdf  and ij dxdg  
 

to construct the local approximations. These gradients can be computed either analytically or numerically. 
In order for gradient-based algorithms such as SQP to converge, the functions must be continuous with 
continuous first derivatives. 
Analytical differentiation requires the formulation and implementation of derivatives with respect to the 
design variables in the simulation code. Because of the complexity of this task, analytical gradients (also 
known as design sensitivities) are mostly not readily available. 
 
Numerical differentiation is typically based on forward difference methods that require the evaluation of n 
perturbed designs in addition to the current design. This is simple to implement but is expensive and 
hazardous because of the presence of round-off error. As a result, it is difficult to choose the size of the 
intervals of the design variables, without risking spurious derivatives (the interval is too small) or 
inaccuracy (the interval is too large). Some discussion on the topic is presented in Reference  [1]. 
 
As a result, gradient-based methods are typically only used where the simulations provide smooth 
responses, such as linear structural analysis, certain types of nonlinear analysis or smooth metamodels 
(mathematical approximations) of the actual response. 
 
In non-linear dynamic analysis such as the analysis of impact or metal-forming, the derivatives of the 
response functions are mostly severely discontinuous. This is mainly due to the presence of friction and 
contact. The response (and therefore the sensitivities) may also be highly nonlinear due to the chaotic nature 
of impact phenomena and therefore the gradients may not reveal much of the overall behavior. Furthermore, 
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the accuracy of numerical sensitivity analysis may also be adversely affected by round-off error. Analytical 
sensitivity analysis for friction and contact problems is a subject of current research. 
 
It is mainly for the above reasons that researchers have resorted to global approximation methods (also 
called metamodels) for smoothing the design response. The art and science of developing design 
approximations has been a popular theme in design optimization research for decades (for a review of the 
various approaches, see e.g. Reference  [6] by Barthelemy). Barthelemy categorizes two main global 
approximation methods, namely response surface methodology  [7] and neural networks  [8]. Since then 
other approximations such as Radial Basis Function networks and Kriging have also become popular 
metamodels. 
 
In the present implementation, the gradient vectors of general composites based on mathematical 
expressions of the basic response surfaces are computed using numerical differentiation. A default interval 
of 1/1000 of the size of the design space is used in the forward difference method. 
 
4.4 Optimization methods 
 
The two basic optimization branches employed in LS-OPT are Metamodel-based optimization and Direct 
optimization. Metamodel-based optimization is used to create and optimize an approximate model 
(metamodel) of the design instead of optimizing the design through direct simulation. The metamodel is 
thus created as a simple and inexpensive surrogate of the actual design. Once the metamodel is created it 
can be used to find the optimum or, in the case of multiple objectives, the Pareto Optimal Front. 
Metamodeling techniques are discussed in Chapter  3. 
 
The nature and capacity of the simulation environment as well as the purpose of the optimization effort 
typically dictate the strategies for metamodel-based optimization. The strategies depend mostly on whether 
the user wants to build a metamodel that can be used for global exploration or whether she is only interested 
in finding an optimal set of parameters. An important criterion for choosing a strategy is also whether the 
user wants to build the metamodel and solve the problem iteratively or whether he has a "simulation budget" 
i.e. a certain number of simulations that he wants to use as effectively as possible to build a metamodel and 
obtain as much information about the design as possible. 
 
4.5 Strategies for metamodel-based optimization 
 
There are three recommended strategies for automating the metamodel-based optimization procedure. These 
strategies apply to the tasks: Metamodel-based Optimization and RBDO. The setup for each strategy is 
explained in detail in Section  20.3. 
 
4.5.1 Single stage 
In this approach, the experimental design for choosing the sampling points is done only once. A typical 
application would be to choose a large number of points (as much as can be afforded) to build metamodels 
such as, RBF networks using the Space Filling sampling method. This is probably the best way of sampling 
for Space Filling since the Space Filling algorithm positions all the points in a single cycle. 
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4.5.2 Sequential strategy 
In this approach, sampling is done sequentially. A small number of points is chosen for each iteration and 
multiple iterations are requested. The approach has the advantage that the iterative process can be stopped as 
soon as the metamodels or optimum points have sufficient accuracy. It was demonstrated in Reference  [16] 
that, for Space Filling, the Sequential approach had similar accuracy compared to the Single Stage approach, 
i.e. 10 × 30 points added sequentially is almost as good as 300 points. Therefore both the Single Stage and 
Sequential Methods are good for design exploration using a surrogate model. For instance when 
constructing a Pareto Optimal Front, the use of a Single Stage or Sequential strategy is recommended in lieu 
of a Sequential strategy with domain reduction (see Section  4.5.3). 
 
Both the previous strategies work better with metamodels other than polynomials because of the flexibility 
of metamodels such as neural networks to adjust to an arbitrary number of points. 
 
4.5.3  Sequential strategy with domain reduction 
This approach is the same as that in  4.5.2 but in each iteration the domain reduction strategy is used to 
reduce the size of the subregion. During a particular iteration, the subregion is used to bound the positions of 
new points. This method is typically the only one suitable for polynomials. There are two approaches to 
Sequential Domain Reduction strategies. The first is global and the second, local. 
 
Sequential Adaptive Metamodeling (SAM) 
As for the sequential strategy in  4.5.2 without domain reduction, sequential adaptive sampling is done and 
the metamodel constructed using all available points, including those belonging to previous iterations. The 
difference is that in this case, the size of the subregion is adjusted (usually reduced) for each iteration (see 
Section  4.6). This method is good for converging to an optimum and moderately good for constructing 
global approximations for design exploration such as a Pareto Optimal front. The user should however 
expect to have poorer metamodel accuracy at design locations remote from the current optimum. 

 
Sequential Response Surface Method (SRSM) 
SRSM is the original LS-OPT automation strategy of Section  4.6 and allows the building of a new response 
surface (typically linear polynomial) in each iteration. The size of the subregion is adjusted for each 
iteration (see Section  4.6). Points belonging to previous iterations are ignored. This method is only suitable 
for convergence to an optimum and should not be used to construct a Pareto optimal front or do any other 
type of design exploration. Therefore the method is ideal for system identification (see Section  5.3). 
 
 
4.6 Sequential Response Surface Method (SRSM) 
 
The purpose of the SRSM method is to allow convergence of the solution to a prescribed tolerance. 
 
The SRSM method  [15] uses a region of interest, a subspace of the design space, to determine an 
approximate optimum. A range is chosen for each variable to determine its initial size. A new region of 
interest centers on each successive optimum. Progress is made by moving the center of the region of interest 
as well as reducing its size. Figure  4-1 shows the possible adaptation of the subregion. 
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Figure  4-1: Adaptation of subregion in SRSM: (a) pure panning, (b) pure zooming and (c) a combination of 
panning and zooming 
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where n is the number of design variables. The modification of the ranges on the variables for the next 
iteration depends on the oscillatory nature of the solution and the accuracy of the current optimum. 
 
Oscillation: A contraction parameter γ is firstly determined based on whether the current and previous 
designs )(kx  and )1( −kx  are on the opposite or the same side of the region of interest. Thus an oscillation 
indicator c may be determined in iteration k as 
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The oscillation indicator (purposely omitting indices i and k) is normalized as ĉ  where 

 )(ˆ csigncc = . ( 4.6-4) 

The contraction parameter γ is then calculated as 

 
2

)ˆ1()ˆ1( oscpan cc −++
=

γγ
γ . ( 4.6-5) 

See Figure  4-2. The parameter oscγ  is typically 0.5-0.7 representing shrinkage to dampen oscillation, 
whereas panγ  represents the pure panning case and therefore unity is typically chosen. 
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Figure  4-2: The sub-region contraction rate λ as a function of the oscillation indicator ĉ  and the absolute 

move distance ||d  

Accuracy: The accuracy is estimated using the proximity of the predicted optimum of the current iteration to 
the starting (previous) design. The smaller the distance between the starting and optimum designs, the more 
rapidly the region of interest will diminish in size. If the solution is on the bound of the region of interest, 
the optimal point is estimated to be beyond the region. Therefore a new subregion, which is centered on the 
current point, does not change its size. This is called panning (Figure  4-1(a)). If the optimum point coincides 
with the previous one, the subregion is stationary, but reduces its size (zooming) (Figure  4-1(b)). Both 
panning and zooming may occur if there is partial movement (Figure  4-1(c)). The range )1( +k

ir  for the new 
subregion in the (k + 1)-th iteration is then determined by: 

 niterknirr k
ii

k
i ,,0;,,1;)()1( KK ===+ λ  ( 4.6-6) 

where λi represents the contraction rate for each design variable. To determine λi, )(k
id  is incorporated by 

scaling according to a zoom parameter η that represents pure zooming and the contraction parameter γ to 
yield the contraction rate 

 )()( ηγηλ −+= k
ii d  ( 4.6-7) 

 

for each variable (see Figure  4-2). 

When used in conjunction with neural networks or Kriging, the same heuristics are applied as described 
above. However the nets are constructed using all the available points, including those belonging to 
previous iterations. Therefore the response surfaces are progressively updated in the region of the optimal 
point. 
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Refer to Section  20.4.1 for the setting of parameters in the iterative Sequential Response Surface Method. 
 
 
4.7 Leapfrog Optimizer for Constrained minimization (LFOPC) 
 
The optimization algorithm used to solve the approximate subproblem is the LFOPC algorithm of Snyman 
 [5]. It is a gradient method that generates a dynamic trajectory path, from any given starting point, towards a 
local optimum. This method differs conceptually from other gradient methods, such as SQP, in that no 
explicit line searches are performed. 
 
The original leap-frog method  [9] for unconstrained minimization problems seeks the minimum of a 
function of n variables by considering the associated dynamic problem of a particle of unit mass in an 
n-dimensional conservative force field, in which the potential energy of the particle at point x(t) at time t is 
taken to be the function f(x) to be minimized. 
 
The solution to the unconstrained problem may be approximated by applying the unconstrained 
minimization algorithm to a penalty function formulation of the original algorithm. 
 
The LFOPC algorithm uses a penalty function formulation to incorporate constraints into the optimization 
problem. This implies that when constraints are violated (active), the violation is magnified and added to an 
augmented objective function, which is solved by the gradient-based dynamic leap-frog method (LFOP). 
The algorithm uses three phases: Phase 0, Phase 1 and Phase 2. In Phase 0, the active constraints are 
introduced as mild penalties through the pre-multiplication of a moderate penalty parameter value. This 
allows for the solution of the penalty function formulation where the violation of the (active) constraints are 
premultiplied by the penalty value and added to the objective function in the minimization process. After the 
solution of Phase 0 through the leap-frog dynamic trajectory method, some violations of the constraints are 
inevitable because of the moderate penalty. In the subsequent Phase 1, the penalty parameter is increased to 
more strictly penalize violations of the remaining active constraints. Finally, and only if the number of 
active constraints exceed the number of design variables, a compromised solution is found to the 
optimization problem in Phase 2. Otherwise, the solution terminates having reached convergence in Phase 1. 
The penalty parameters have default values as listed in the User’s manual (Section  20.9). In addition, the 
step size of the algorithm and termination criteria of the subproblem solver are listed. 
 
The values of the responses are scaled with the values at the initial design. The variables are scaled 
internally by scaling the design space to the  [0; 1] interval. The default parameters in LFOPC (as listed in 
Section  20.9) should therefore be adequate. The termination criteria are also listed in Section  20.9. 
 
In the case of an infeasible optimization problem, the solver will find the most feasible design within the 
given region of interest bounded by the simple upper and lower bounds. A global solution is attempted by 
multiple starts from the experimental design points. 
 
4.8 Genetic Algorithm 
Genetic algorithms are nature inspired search algorithms that emulate the Darwinian principle of ‘survival 
of the fittest’. The concept of nature inspired algorithms was first envisaged by Prof. John Holland  [10] at 
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the University of Michigan in mid sixties. Later on this theory gained momentum in engineering 
optimization following the work of Prof. David Goldberg  [11] and his students. The differences between 
genetic algorithms and most conventional optimization methods are:  

• GA does not require derivative information to drive the search of optimal points. 
• While conventional methods use a single point at each iteration, GA is a population based approach. 
• GA is a global optimizer whereas conventional methods may get stuck in local optima. 
• GA is a probabilistic optimization method that is, an inferior solution (that may help evolve the 

correct design variables structure) may also have a non-zero probability of participating in the search 
process. 

• The computational cost of using GA may be high compared to derivative based methods. 
 

4.8.1 Terminology 
The Genetic Algorithm imitates nature so some of its terminology is derived from biology: 
 

• Individual – Each design variable vector (often known as solution or design point) is called an 
individual. 

• Population – A group of individuals is called a population. The number of individuals in a 
population is termed population size.  

• Chromosome – The binary string used to encode design variables is called chromosome. 
Chromosomes are used with binary encoding or conventional GA only. There is no direct 
correspondence of chromosome in real coded GA. The length of a chromosome is the sum of 
number of bits assigned to each variable.  

• Gene – In binary encoding, each bit is called a gene.  
• Fitness – The fitness of an individual is analogous to objective function. Each individual is assigned 

a fitness value based on its objectives and constraints values. The selection process tries to maximize 
the fitness of a population. The individual with the highest fitness represents the optimal solution to 
a problem. 

• Generation – A generation (iteration in general optimization lingo) comprises of application of 
genetic operators – selection, crossover, and mutation – to create a child population. At the end of 
each generation, the child population becomes the parent population.  

 
4.8.2 Encoding 
To use the genetic algorithm for optimization, design variables of a mathematical optimization problem are 
encoded into a format required by GA. There are two prominent ways of encoding design variables: 

• Binary encoding – The conventional approach of using genetic algorithm is to represent an 
optimization problem into a string of binary numbers (chromosomes). The number of bits assigned 
to each variable determines the solution accuracy. If p bits are used to represent a variable with 
lower and upper bounds xl and xu, respectively, the accuracy of this variable can be (xu-xl)/(2p-1). 
While binary encoding is the most natural way to use genetic algorithms, it has two main problems: 
i) discretization of a continuous variable causes loss of accuracy in representation (depends on 
number of bits), ii) Hamming cliff problem – neighbors in real space may not be close in binary 
space such that it may be very difficult to find an optimal solution.  

• Real encoding – To avoid the problems of using binary representation of real variables, researchers 
have suggested directly using real numbers. This required special methods to perform genetic 
operations like crossover and mutation.  
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4.8.3 Algorithm 
The steps in a simple genetic algorithm are illustrated with the help of Figure  4-3. 
 

 
Figure  4-3: Simple genetic algorithm. 

Firstly, problem-specific GA parameters like population size Npop, type of encoding, number of bits per 
variables for binary coding, number of generations are defined.  
 
Initialization 
Next, the population is randomly initialized i.e., binary chromosomes or real variable vectors for Npop 
individuals are generated randomly.  
 
Function evaluation 
For binary encoding, each chromosome (binary string) is decoded to corresponding design variable vector. 
Next, objective functions, constraints, and constraint violation of each individual in parent population is 
evaluated and accordingly fitness of each individual is assigned. 
  
Selection or reproduction operator 
Selection operator is used to identify individuals with high fitness and to form a mating pool of size Npop. 
This operator reduces diversity in the population by filtering out low fitness schema. Many reproduction 
operators are introduced in literature. Three selection operators implemented in LS-Opt are described below.  
 

Tournament selection. In tournament selection, ‘Ntourn’ (Ntourn is tournament size) individuals from a 
population, selected at random, participate in a tournament. The individual with the largest fitness is 
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declared the winner. Mostly, practitioners use Ntourn = 2. Increasing the tournament size ‘Ntourn’ increases 
selection pressure and might lose diversity in the population that is required to drive the search.  
 
Roulette wheel or proportionate reproduction. In this selection approach, each individual is assigned 
a probability of selection based on its fitness value. In a population of Npop individuals, the selection 
probability of the ith individual is  

,
1

∑
=

=
popN

j
jii FFP         ( 4.8-1) 

where Fi is the fitness of ith individual. High fitness individuals have a high probability of getting 
selected. This scheme is implemented by considering a roulette wheel with circumference marked by the 
fitness of each individual. One individual per spin of the wheel is selected. Then, the expected number 
of copies of the ith individual in the mating pool can be estimated as 

 .1;
1

∑
=

==
popN

j
j

pop
ii F

N
FFFN                                                                     ( 4.8-2) 

This selection operator has a higher selection pressure compared to the tournament selection and can 
lead to a premature convergence to local optima. 
 
Stochastic universal sampling. The roulette wheel selection operator is often noisy because of multiple 
spins that correspond to round-off errors in computer simulations. To reduce this noise, it was suggested 
to use a single spin of the wheel with Npop equi-spaced pointers. This operator also has a high selection 
pressure. 
 

Crossover 
Crossover is the main exploration operator of genetic search. In this operator, μ  randomly selected parents 
mate with a probability (Pc: crossover probability) to create λ children. These children share the attributes 
from all parents such that they may be better or worse individuals. There are two prominent strategies to 
create children: i) )( λμ +  strategy selects best individuals from parents and children, and ii) ),( λμ  strategy 
replaces parents with children irrespective of their fitness values. LS-OPT has adopted a )2,2(  strategy for 
crossover such that two parents create two children and children replace parents in the new generation. If 
parents do not create children, they are passed to the next generation.  
There are many crossover operators in literature. A few popular crossover operators that have been shown to 
perform reasonably well are available in LS-OPT. A brief description of these operators is as follows. 

Single point binary crossover 
This crossover operator is used for binary encoding of the individuals. Two parents and a mating site are 
randomly selected. All genes right to the mating sites are swapped between two parents.  
Uniform binary crossover 
This crossover operator is also used for binary encoded individuals. For a randomly selected parent pair, 
genes are swapped based on a flip of a coin for each gene in the chromosome. 
Simulated binary real crossover (SBX) 
This crossover operator, introduced by Deb and Agrawal in 1995  [12], is used with real encoding i.e., 
real variables are used as genes. This crossover emulates the single point binary crossover by assigning a 
probability distribution to each parent. Two children are created from two parents using that probability 
distribution such that the mean of parents and children are the same. The probability distribution is 
controlled by a distribution index ηc such that large value of ηc creates children near parents and small 
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value of ηc creates children far from parents. Deb and Beyer  [13] showed that SBX possesses self-
adaptation capabilities.  
Blend real crossover (BLX-α) 
This crossover operator was introduced by Eshelman and Schaffer in 1993  [14]. In this crossover, a 
child x is created from two parents x(1) and x(2) (x(2) > x(1)) by randomly selecting a value from the 
interval [x(1) – α(x(2) – x(1)), x(2) + α(x(2) – x(1))]. Typically, α is taken as 0.5.  
 

Mutation 
Mutation is carried out with a mutation probability (Pm) to bring random changes in the individuals. This 
operator is very useful when population has lost diversity and the search has become stagnant. Then 
mutation can help improve diversity in the solutions. The mutation operators for binary and real encoding 
are given as follows: 

Simple binary mutation 
In simple binary mutation of an individual, a bitwise mutation is carried out by changing a ‘0’ to ‘1’ or 
vice-versa with a small mutation probability Pm. Typically Pm is taken as the inverse of chromosome 
length such that on an average, one gene (bit) per chromosome is changed. 
Real mutation 
As was used for the SBX operator, a distribution (defined by mutation distribution index) around each 
variable is specified and a random variable is selected from that distribution. Large values of the 
distribution index are recommended to create a child near the parent. 
 

A complete cycle of selection, crossover, and mutation would result in a child population. The population 
size is kept constant for both parent and child populations.  

 
Elitism in simple genetic algorithm 
Due to the disruptive nature of exploration operators, high fitness individuals may get lost while creating a 
child population from the parent population. Sometimes, it is advantageous to keep these high fitness 
individuals to preserve favorable genetic information (schema). This process of artificially saving the best 
individuals is called elitism. To implement this process, the parent and child populations are ranked 
separately. The worst individuals in the child population are replaced by the best individuals from the parent 
population. The number of elites should be carefully chosen because a large number of elite solutions may 
drive the search to local optima by reducing the diversity in the population. On the other hand, too few elites 
may slow the convergence because favorable schema would spread at a slow rate.  
 
After applying elitism, the child population is transferred to the parent population. The best individual found 
in the search process is preserved at each generation. 
 
Stopping criterion 
Many criteria have been specified in literature to terminate the GA search process. Some researchers have 
suggested stopping the search when there is no improvement in the last few generations. However, the most 
common stopping criterion is the fixed number of generations or function evaluations. A user defined 
number of generations is used as the stopping criterion in LS-OPT.  
 
At the end of simple genetic algorithm, the best individual (among all searched individuals) is reported as 
the optimal solution. If enough processing capabilities is carried out, the reported best individual would 
represent the global optimal solution.  
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4.9 Multi-objective optimization using Genetic Algorithms  
 
Multi-objective optimization problems are significantly different than the single-objective optimization 
problems. MOO problems do not have a single optimal solution. Instead there is a set of solutions that 
reflects trade-offs among objectives. For MOO problems, population based methods like genetic algorithms 
are very attractive because many trade-off solutions can be found in a single simulation run. While it is easy 
to compare multiple designs for a single-objective optimization problem, special considerations are required 
to compare different designs. Goldberg  [11] proposed a non-domination concept to compare different 
individuals. This idea forms the backbone of most MOGAs and is defined next. 
 
4.9.1 Non-domination criterion 
A non-domination criterion is used to identify better individuals without introducing any bias towards any 
objective [17] -  [19]. To understand the non-domination criterion, a domination criterion is defined as 
follows.  
A solution x(1) dominates another solution x(2) )( )2()1( xx f , if either of the following three conditions is true. 

1. x(1) is feasible and x(2) is infeasible. 
2. Both x(1) and x(2) are infeasible but x(2) is more infeasible compared to x(1). 
3. When both x(1) and x(2) are feasible, x(1) dominates x(2) )( )2()1( xx f  if following two conditions are 

satisfied 
a. x(1) is no worse than x(2) in ‘all’ objectives, i.e. ),()( )2()1( xx jj ff >/  ].,...,2,1[ Mj ∈  

b. x(1) is strictly better than x(2) in ‘at least one’ objective, i.e., ),()( )2()1( xx jj ff <  
].,...,2,1[ Mj ∈∧  

If neither of the two solutions dominates the other, both solutions are non-dominated with respect to each 
other. An individual s is considered non-dominated with respect to a set of solutions S, if no solution in S 
dominates s.  
 
4.9.2 Pareto optimal solutions 
Any non-dominated solution in the entire design domain is a Pareto optimal solution. By definition, all 
Pareto optimal solutions are non-dominated solutions but vice-versa is not true.  
Like single objective optimization problems, there are local and global Pareto optimal solutions. A non-
dominated solution is a local Pareto optimal solution with respect to the considered non-dominated solution 
set, whereas a global Pareto optimal solution is non-dominated with respect to all solutions in the design 
domain.  
 
4.9.3 Pareto optimal set 
The set of all Pareto optimal solutions is the Pareto optimal set for the given problem.  
 
4.9.4 Pareto optimal front 
Function space representation of the Pareto optimal set is Pareto optimal front. When there are two 
conflicting objectives, the POF is a curve, when there are three objectives, POF is a surface, and for higher 
dimensions, POF is a hyper-surface.  
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4.9.5 Ranking 
Most MOGA search methods assign rank to different individuals based on non-domination criterion. This 
ranking is used to govern the search process. A rank of one is considered the best rank and low fitness 
individuals are assigned low ranks (large values of rank are low). Different individuals in a population are 
assigned rank as follows: 

1. Initialize rnk = 1. Define a set of individuals S, same as the population. 
2. Run a non-domination check on all individuals in S.  
3. All non-dominated individuals are assigned rank = rnk.  
4. rnk = rnk + 1.  
5. Remove all non-dominated individuals from S.  
6. If Φ≠S , repeat Step 2, else stop. 

Note that many individuals can have the same rank.  
 
Different concepts discussed here are illustrated using a two-objective unconstrained minimization problem 
in Figure  4-4. Each dot represents a solution in the design space that is shown as the shaded area. For each 
diamond, there is at least one triangle that it is better than the diamond in at least one objective without 
being inferior in other objective. So all individuals represented by diamonds are dominated by the 
individuals represented by triangles. Similarly, all triangles are dominated by squares and squares are 
dominated by circular dots. No solution represented by triangles can be said better than any other solution 
represented by triangles. Thus, they are non-dominated with respect to each other. All individuals 
represented by circles are non-dominated with respect to any other individual hence they have a rank of one 
(best rank). If all points represented by circles are removed, the individuals represented by squares are non-
dominated with respect to all remaining solutions such that they are assigned a rank of two, and so on. Note 
that all individuals with the same shape of dots have the same rank. For this example, all individuals with 
rank one (circular dots) also represent the true Pareto optimal solutions set. The line on the boundary shows 
the Pareto optimal front.  
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Figure  4-4: Illustration of non-domination criterion, Pareto optimal set, and Pareto optimal front. 

 
4.9.6 Convergence vs. diversity 
Different multi-objective optimization algorithms are compared using two criteria. First, convergence to the 
global Pareto optimal front, and second, diversity on the Pareto optimal front. The convergence criterion 
requires identifying the global Pareto optimal solution set.  
 
A good multi-objective optimizer is required to maintain diversity (representation of different regions of the 
Pareto optimal front). This is an important criterion since our goal is to find different trade-off solutions. It 
is important to note that diversity on the Pareto optimal front (function space) does not mean the diversity in 
the variable space, i.e., small changes in variables can result in large changes in the function values.  
 
4.9.7 Elitist non-dominated sorting genetic algorithm (NSGA-II) 
This algorithm was developed by Prof. Kalyanmoy Deb and his students in 2000  [20]. This algorithm first 
tries to converge to the Pareto optimal front and then it spreads solutions to get diversity on the Pareto 
optimal front. Since this algorithm uses a finite population size, there may a problem of Pareto drift. To 
avoid that problem, Goel et al.  [21] proposed maintaining an external archive.  
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Figure  4-5: Elitist non-dominated sorting genetic algorithm (NSGA-II). The shaded blocks are not the part 

of original NSGA-II but additions to avoid Pareto drift. 

The implementation of this archived NSGA-II is shown in Figure  4-5, and described as follows: 
1. Randomly initialize the parent population (size Npop). Initialize an empty archive.  
2. Evaluate the population i.e., compute constraints and objectives for each individual. 
3. Rank the population using non-domination criteria. Also compute the crowding distance (this 

distance finds the relative closeness of a solution to other solutions in the function space and is used 
to differentiate between the solutions on same rank). 

4. Employ genetic operators – selection, crossover & mutation – to create a child population. 
5. Evaluate the child population.  
6. Combine the parent and child populations, rank them, and compute the crowding distance. 
7. Apply elitism (defined in a following section): Select best Npop individuals from the combined 

population. These individuals constitute the parent population in the next generation. 
8. Add all rank = 1 solutions to the archive. 
9. Update the archive by removing all dominated and duplicate solutions. 
10. If the termination criterion is not met, go to step 4. Otherwise, report the candidate Pareto optimal set 

in the archive. 
 
Elitism in NSGA-II 
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Figure  4-6: Elitism in NSGA-II. 

Elitism is applied to preserve the best individuals. The mechanism used by NSGA-II algorithm for elitism is 
illustrated in Figure  4-6. After combining the child and parent populations, there are 2Npop individuals. This 
combined pool of members is ranked using non-domination criterion such that there are ni individuals with 
rank i. The crowding distance of individuals with the same rank is computed. Steps in selecting Npop 
individuals are as follows:  

1. Set i = 1, and number of empty slots Nslots = Npop. 
2. If ni < Nslots,  

a. Copy all individuals with rank ‘i’ to the new parent population.  
b. Reduce the number of empty slots by ni: Nslots = Nslots – ni.  
c. Increment ‘i’: i=i+1. 
d. Return to Step 2. 

3. If ni > Nslots, 
a. Sort the individuals with rank ‘i’ in decreasing order of crowding distance. 
b. Select Nslots individuals. 
c. Stop 

 
Diversity preservation mechanism in NSGA-II – crowding distance calculation 
To preserve diversity on the Pareto optimal front, NSGA-II uses a crowding distance operator. The 
individuals with same rank are sorted in ascending order of function values. The crowding distance is the 
sum of distances between immediate neighbors, such that in Figure  4-4, the crowding distance of selected 
individual is ‘a + b’. The individuals with only one neighbor are assigned a very high crowding distance.  
 
Note: It is important to scale all functions such that they are of the same order of magnitude otherwise the 
diversity preserving mechanism would not work properly. 
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4.10 Adaptive Simulated Annealing (ASA) 
The Simulated Annealing (SA) is a global stochastic optimization algorithm that mimics the metallurgical 
annealing process. The original simulated annealing algorithm was developed as a generalization of the 
Metropolis Monte Carlo integration algorithm  [22] to solve various combinatorial problems by Kirkpatrick 
et al.  [23]. The term 'simulated annealing' derives from the rough analogy of the way that the liquefied 
metals at a high temperature crystallize on freezing. At high temperatures, the atoms in the liquid are at a 
high energy state and move freely. When the liquid is cooled, the energy of the molecules gradually reduces 
as they go through many lower energy states, and consequently their motion. If the liquid metal is cooled 
too quickly or 'quenched', the atoms do not get sufficient time to reach thermal equilibrium at a temperature 
and might result in a polycrystalline structure with higher energy. This atomic structure of material is not 
necessarily the most desired. However, if the rate of cooling is sufficiently slow, the atoms are often able to 
achieve the state of minimum (most stable) energy at each temperature state, resulting in a pure crystallic 
form. This process is termed as ‘annealing’. Kirkpatrick et al.  [23] employed this annealing analogy to 
develop an efficient search algorithm. Pincus  [24], and Cerny  [25] also are also independently credited with 
the development of modern simulated annealing algorithm.  
 
In simulated annealing parlance, the objective function of the optimization algorithm is often called ‘energy’ 
E and is assumed to be related to the state, popularly known as temperature T, by a probability distribution. 
The Boltzmann distribution is the most commonly used probability distribution: 

 Probability( E ) ~ exp(-E / κBT ),  

where κB is the Boltzmann's constant.  
 
4.10.1 Algorithm 
The search initializes with the temperature being high and cooling slowly such that the system goes through 
different energy states in search of the lowest energy state that is the global minima of the optimization 
problem. A stepwise description of the simulated annealing algorithm is as follows: 
 
Step 1: Initialization 
The search starts by identifying the starting state x(0) ∈ X and corresponding energy E(0) = E(x). The 
temperature T is initialized at a high value: T(0) = Tmax. A cooling schedule, acceptance function, and 
stopping criterion are defined. This is iteration k = 0. X(0) = {x(0)}. 
 
Step 2: Sampling 
A new point x'∈ X is sampled using the candidate distribution D(X(k) ), and set X(k+1) = X(k) U {x'},  and 
corresponding energy is calculated E' = E(x'). 
 
Step 3: Check acceptance 
Sample a uniform random number ζ in [0,1] and set  
 

x(k+1) = x' if ζ ≤ A(E',E(k),T(k)) or   
x(k+1) = x(k) otherwise. 
 

 where A() is the acceptance function that determines if the new state is accepted. 
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Step 4: Temperature update 
Apply the cooling schedule to the temperature: T(k+1) = C( X(k+1), T(k) ). 
 
Step 5: Convergence check 
Stop the search if the stopping criterion is met, else set k = k+1 and goto Step 2.  

 
As is obvious, the efficiency of the simulated annealing algorithm depends on appropriate choices of the 
mechanism to generate new candidate states D, cooling schedule C, acceptance criterion A, and stopping 
criterion. While many options have been proposed in literature, the very fast simulated reannealing 
methodology proposed by Ingber (1989)  [27] has been the most promising. This algorithm is also known as 
adaptive simulated annealing (ASA)  [28]. The different selections along with a very brief historical 
perspective is outlined as follows. 
 
4.10.2 Acceptance function 
Two most prominent acceptance functions used to accept a candidate point are the Metropolis criterion and 
the Barker criterion.  
 
Metropolis criterion: ( )( ){ }.'exp,1min),,'( TEETEEA −−=  
 
Barker criterion: ( )( ){ }.'exp11),,'( TEETEEA −+=  
 
The theoretical motivation for such a restricted choice of acceptance functions can be found in  [29]. It is 
also shown that under appropriate assumptions, many acceptance functions, which share some properties, 
are equivalent to the above two criteria. The Metropolis criterion is the most commonly used selection 
criterion and this is chosen as the acceptance function in LS-OPT. 
 
4.10.3 Sampling algorithm 
The choice of the next candidate distribution and the cooling schedule for the temperature are typically the 
most important (and strongly interrelated) issues in the definition of a SA algorithm. The next candidate 
state, x', is usually selected randomly among all the neighbors of the current solution, x, with the same 
probability for all neighbors. The choice of the size of the neighborhood typically follows the idea that when 
the current function value is far from the global minimum, the algorithm should have more freedom, i.e. 
larger 'step sizes' are allowed. However, Ingber  [27] suggested using a more complicated, non-uniformly 
selection procedure outlined below to allow much faster cooling rates. 
  
Let ith design variable be bounded as, xi ∈ [Ai, Bi]. Then the new sample is given by 
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where iν  is estimated as follows. 
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The most important distinction in ASA with standard SA is the use of an independent temperature schedule 
(Tp,i) for each parameter along with the temperature associated with the energy function. The cooling 
schedule for the parameter temperature, used to generate N dimensional design vector, is 
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The control parameter ci depends on two free parameters mi and ni, defined as 
( ) ).log(,/log )0(

,
min
, annealiipipi NnTTm ==  

The ratio )0(
,

min
, / ipip TT  is the parameter temperature ratio and the parameter Nanneal is linked to the time allowed 

(number of steps) at each parameter temperature state. Ingber  [30] found that the search procedure is 
sensitive to the choice of the two parameters and should be selected carefully. Relatively, the parameter 
temperature ratio is the more important of the two parameters.  
 
4.10.4 Cooling schedule 
The basic idea of the cooling schedule is to start the algorithm off at high temperature and then gradually to 
drop the temperature to zero. The primary goal is to quickly reach the so called effective temperature, 
roughly defined as the temperature at which low function values are preferred but it is still possible to 
explore different states of the optimized system,  [31]. After that the simulated annealing algorithm lowers 
the temperature by slow stages until the system 'freezes' and no further changes occur. Geman and Geman 
 [32] found the lower bound on the cooling schedule to be 1/log(t) where t is an artificial time measure of the 
annealing schedule. Hence, 
 ).log(/)0()1( kTT i

k
i =+  

This strategy is also known as Boltzmann annealing (Szu and Hartley)  [33]. Later van Laarhoven and Aarts 
 [34] modified this strategy to enable a much faster cooling schedule of  
 ./)0()1( kTT i

k
i =+  

 
A straightforward and most popular strategy is to decrement T by a constant factor every νT iterations:  
 TTT μ=:   
where μT is slightly greater than 1 (e.g. μT = 1.001). The value of νT should be large enough, so that 'thermal 
equilibrium' is achieved before reducing the temperature. A rule of thumb is to take νT proportional to the 
size of neighborhood of the current solution.  
 
Nevertheless, the fastest cooling rate was made possible by using Ingber's algorithm that allowed an 
exponentially faster cooling rate of  
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As was described in the previous section, the cooling rate is governed by the two free parameters that are 
linked to the temperature ratio and annealing scale, 

( ) ).log(,/log )0(min
annealNnTTm ==  

Typically the temperature ratio used to drive the energy (objective) function is linked to the parameter 
temperature ratio called here as ‘cost-parameter annealing ratio’.  
 
4.10.5 Stopping criterion 
Selection of an appropriate stopping criterion is one of the most difficult tasks in stochastic optimization 
algorithms because it is unknown a priori if the algorithm has reached the global optima or is stuck in a hard 
local optimum. Thus the stopping rules proposed in the literature about SA all have a heuristic nature and 
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are, in fact, more problem dependent than SA algorithm dependent. Some common ideas in the heuristics 
are i) stop when it does not make a noticeable progress over a number of iterations, ii) stop when the 
number of function evaluations is reached, and iii) stop when the temperature has fallen substantially to a 
desired minimum level Tmin. The last two criteria are used to terminate the adaptive simulated annealing 
search in LS-OPT. 
 
4.10.6 Reannealing 
For multi-dimensional problems, most often the objective function has variable sensitivities for different 
parameters and at different sampling states. Hence, it is worth while to adjust the cooling rates for different 
parameters. Ingber  [27] used a reannealing algorithm to periodically update the annealing time associated 
with parameters and the energy function such that the search is more focused in the regions with potential of 
improvements. For this, he suggested computing the sensitivities of the energy function as, 
 ./ ii xEs ∂∂=  
All the annealing time parameters k are updated by the largest sensitivity smax as follows:  
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The new annealing time associated with the ith parameter is ki = '
ik . Similarly the temperature parameter 

associated with the energy function is scaled. One can easily deduce from the above formulation that 
reannealing stretches the ranges of the insensitive parameters relative to the sensitive parameters. More 
details of reannealing can be obtained elsewhere  [30]. 
 
4.10.7 Some comments 
1. It is difficult to find the initial temperature directly, because this value depends on the neighborhood 
structure, the scale of the objective function, the initial solution, etc. In  [23] a suitable initial temperature is 
one that results in an average uphill move acceptance probability of about 0.8. This T(0) can be estimated by 
conducting an initial search, in which all uphill moves are accepted and calculating the average objective 
increase observed. In some other papers it is suggested that parameter T(0) is set to a value, which is larger 
than the expected value of |E'-E| that is encountered from move to move. In  [31] it is suggested to spend 
most of the computational time in short sample runs with different T(0) in order to detect the effective 
temperature. In practice, the optimal control of T may require physical insight and trial-and-error 
experiments. According to  [35], "choosing an annealing schedule for practical purposes is still something of 
a black art".  
 
2. Simulated annealing has proved surprisingly effective for a wide variety of hard optimization problems in 
science and engineering. Many of the applications in our list of references attest to the power of the method. 
This is not to imply that a serious implementation of simulated annealing to a difficult real world problem 
will be easy. In the real-life conditions, the energy trajectory, i.e. the sequence of energies following each 
move accepted, and the energy landscape itself can be highly complex. Note that state space, which consists 
of wide areas with no energy change, and a few "deep, narrow valleys", or even worse, "golf-holes", is not 
suited for simulated annealing, because in a "long, narrow valley" almost all random steps are uphill. 
Choosing a proper stepping scheme is crucial for SA in these situations. However, experience has shown 
that simulated annealing algorithms are more likely trapped in the largest basin, which is also often the 
basin of attraction of the global minimum or of the deep local minimum. Anyway, the possibility, which can 
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always be employed with simulated annealing, is to adopt a multistart strategy, i.e. to perform many 
different runs of the SA algorithm with different starting points.  
 
3. Another potential drawback of using SA for hard optimization problems is that finding a good solution 
can often take an unacceptably long time. While SA algorithms may quickly detect the region of the global 
optimum, they often require many iterations to improve its accuracy. For small and moderate optimization 
problems, one may be able to construct effective procedures that provide similar results much more quickly, 
especially in cases when most of the computing time is spent on calculations of values of the objective 
function. However, it should be noted that for large-scale multidimensional problems an algorithm which 
always (or often) obtains a solution near the global optimum is valuable, since various local deterministic 
optimization methods allow quick refinement of a nearly correct solution.  
 
In summary, simulated annealing is a powerful method for global optimization in challenging real world 
problems. Certainly, some "trial and error" experimentation is required for an effective implementation of 
the algorithm. The energy (cost) function should employ some heuristic related to the problem at hand, 
clearly reflecting how 'good' or 'bad' a given solution is. Random perturbations of the system state and 
corresponding cost change calculations should be simple enough, so that the SA algorithm can perform its 
iterations efficiently. The scalar parameters of the simulated annealing algorithm have to be chosen 
carefully. If the parameters are chosen such that the optimization evolves too fast, the solution converges 
directly to some, possibly good, solution depending on the initial state of the problem.  
 
 
4.11 Hybrid Algorithms 
 
As discussed earlier, the stochastic algorithms like the genetic algorithm (GA) and adaptive simulated 
annealing (ASA) are designed to find the global optimal solution. However, one of the most difficult aspects 
of using stochastic algorithms is to identify the correct stopping criterion. A defensive, but likely expensive, 
approach is to run an algorithm sufficiently long to ensure the global optimal solution. However, the speed 
of finding the global optimum can be significantly increased by combining the global optimizers with local 
gradient based optimization methods. This combination, referred to as a hybrid algorithm, is based on a very 
simple idea that the global optimizers reach the basin of the global optimum quickly i.e., they find very high 
quality solutions, but significant effort is then required to achieve small improvements for refining the 
solution. On the other hand, gradient based optimization methods like LFOPC can find an optimal solution 
very quickly when starting from a good solution. Thus, in LS-OPT, a global optimizer such as the GA or 
ASA is used to find a good starting solution followed by a single LFOPC run to converge to the global 
optimum. This approach has been found to be both effective and efficient for global optimization. The 
hybrid algorithms are available for both the GA and ASA options. 
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4.12 Visualization of the Pareto Optimal Frontier 
 
4.12.1 Hyper-Radial Visualization (HRV) 
 

 
 

Figure  4-7: The Pareto Frontier and indifference curves 

 
Because of the complexity of visualizing the Pareto Optimal Frontier (POF) for high dimensionality, 
methods to improve exploration of the Pareto set have been devised. Several methods have been 
implemented in LS-OPT, one of which is Hyper-Radial Visualization (HRV)  [36]. HRV is based on the 
minimization of the sum of squares of the normalized objective functions which allows the POF to be 
displayed in two dimensions. HRV is effectively a 2-dimensional mapping of the n-dimensional objective 
function space. 
 
The mathematical form of the multi-objective optimization problem is as follows: 
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HRV can be seen as a conversion of the multi-objective optimization problem to a single objective 
optimization problem using the objective: 
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where s = n/2 and the two additive components represent the objectives assigned to the two axes of the plot 
(see Figure  4-7). The case where n is an odd number is discussed below.  
 
The HRV method assumes that the set of Pareto points has already been computed and are available for 
display. First each objective function iF  is normalized to the range of the Pareto points. Normalization is 
done by using the lower and upper values of all the computed Pareto points to define the range for each 
objective. 
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The coordinate ],...,,[ min  min  2min  1 nFFF represents the Utopian point (see Figure  4-7), i.e. the point 
representing the minima of individual objectives. In the HRV representation, this point becomes the origin 
of the 2-dimensional plot. In addition to normalizing each objective function, the result of the Hyper-Radial 
Calculation (HRC) must also be normalized: 
 

]1,0[   where

~
1

2

∈=
∑

= HRC
n

F
HRC

n

i
i

 

 

Now consider the n-objective sample data, corresponding to Pareto point j (of a total of q) Pareto points. 
The objective functions are grouped into 2 sets controlled by the designer and an HRC value is computed 
for each group resulting in the coordinates HRC1 and HRC2. Thus s objectives are represented by HRC1 
while n-s objectives are represented by HRC2. The two groups are therefore 
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The formulation is unbiased because the objectives can be grouped in an arbitrary way without sacrificing 
the unbiased visualization property. This means the radius originating in the Utopian point of any point is 
preserved irrespective of the objective grouping. The 'best' design is therefore considered to be the one 
closest to the Utopian point, i.e. the one with the smallest radius in the 2-dimensional plot. 

The distance from the Utopian point is not the only criterion of how good a design is since a designer may 
also have a preference regarding the objectives. Preferences are incorporated by adding weights to the 
objectives represented in the HRC functions: 

Group 1:  
s

FW
HRCWFFFF

s

i ii
s

∑ == 1
2

321

~
1         ],...,,,[  

Group 2:  
s

FW
HRCWFFFF

n

si ii
nsss

∑ +=
+++ = 1

2

321

~
2         ],...,,,[  

 
When (n-s < s) as is the case when, for instance, n is an odd number, (2s-n) dummy objective functions are 
added to normalize the visualization. This is to avoid producing an elliptical set of indifference curves. A 
dummy objective is a q-dimensional null vector, q being the number of Pareto points. The addition of such a 
dummy objective ensures the preservation of the indifference radius, so if the groupings are reselected, a 
particular Pareto point will move tangent to its current radius and therefore maintain its level of 
indifference. 
 
 
4.13 Discrete optimization 
 
4.13.1 Discrete variables 
Discrete variables can have only distinct values; for example, the variable can be a plate thickness having 
allowable values 1.0, 2.0, 2.5, and 4.5. 

 
4.13.2 Discrete optimization 
A  very basic method of discrete optimization would be simply evaluating all possible design and selecting 
the best one. This is not feasible for the general case; consider for example that 30 design variables with 
variables having 5 possible values of the design variable will result in 1021 different designs. Evaluating all 
the possible designs is therefore not computationally feasible. Note that 30 design variables describes a 
design space with 109 quadrants, so finding the quadrant containing the optimum design is a hard problem. 
The quadrant containing the optimal design can be found using a gradient based search direction, but 
discrete optimization problems are not convex, which means that gradient based search directions may lead 
to local optima. The LS-OPT discrete optimization methodology therefore use gradient based search in 
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conjunction with random search methods. The optimal design found in this manner, cannot be shown to be 
uniquely the global optimum, but is considered the (practical) optimum because it is known that it is highly 
unlikely that a better design will be found. 
The cost of the discrete optimization is kept affordable by doing the optimization using the values from a 
response surface approximation. The accuracy of the response surface or metamodel is improved using a 
sequential strategy described in a later section. 

 
4.13.3 Mixed-discrete optimization 
The discrete variables can be used together with continuous variables. This is called mixed-discrete 
optimization. 
 
The steps followed to compute the mixed-discrete optimum are: 
1) Consider all the discrete variables to be continuous and optimize using the gradient based design 
optimization package. This continuous optimum found is used as the starting design in the next phase. 
2) Discrete optimization is done considering only the discrete variables with the continuous variables frozen 
at the values found in the previous phase. 
3) Continuous optimization is done considering only the continuous variables and with the discrete variables 
frozen at the values found in the previous phase. 

 
4.13.4 Discrete optimization algorithm: genetic algorithm 
A GA (genetic algorithm, Section  4.8) is used to do the discrete optimization. A GA mimics the 
evolutionary process selecting genetic strings. In a GA, the design variable values are coded up into data 
structure similar to genetic strings. New generations of designs are obtained by combining portions of the 
genetic strings of the previous generation of designs. Designs that have relatively better values of the 
objective function have a better chance to contribute a portion of its genetic string to the next generation. 

 
4.13.5 Objective function for discrete optimization 
The discrete optimization algorithm used can only consider an objective function (no constraints); the 
constraints specified by the user are therefore incorporated into this objective function. The resulting 
objective function has two different behaviors: 

1) A feasible design exists. In this case all infeasible designs (those violating the constraints) are 
simply rejected, and only feasible designs are considered inside the optimization algorithm. The 
objective function used is simply that specified by the user. 
2) A feasible design does not exist. If the search for the best feasible designs fails due to a lack of 
feasible designs, then a search is done for the least infeasible constraint. The objective function is a 

scaled sum of the constraint violations: ∑ −
|Bound|

|Boundconstraint|

i

ii with the summation done over all 

the violated constraints. 
 

4.13.6 Sequential strategy 
The discrete and the mixed-discrete optimization are done using the response values from the response 
surfaces or metamodels. The accuracy of the response surface or metamodels are therefore very important. 
The accuracy of the metamodels are improved by a sequential response surface method (SRSM) (see 
Section  4.6), in which the size of the subregion over which the designs are evaluated are reduced until 
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convergence. Reducing the size of the subregion is the best known method of obtaining accuracy for 
optimizing using metamodels. 
 
Discrete optimization introduces the concern that a discrete variable value may not be on the edge of the 
subregion selected by the SRSM  algorithm. The SRSM  algorithm was therefore modified to use closest 
discrete values outside the subregion. This implies that the subregion cannot be smaller than the distance 
between two successive discrete values.  
 
 
4.14 Summary of the optimization process 
The following tasks may be identified in the process of an optimization cycle using response surfaces. 
 

Table  4.14-1: Summary of optimization process 

Item Input Output 
DOE Location and size of the subregion 

in the design space. The 
experimental design desired. An 
approximation order. An 
affordable number of points. 

Location of the experimental 
points. 

Simulation Location of the experimental 
points. Analysis programs to be 
scheduled. 

Responses at the experimental 
points. 

Build response surface Location of the experimental 
points. Responses at the 
experimental points. Function 
types to be fitted. 
 

The approximate functions 
(response surfaces). The 
goodness-of-fit of the 
approximate functions at the 
construction points. 

Check adequacy The approximate functions 
(response surfaces). The location 
of the check points. The responses 
at the check points. 

The goodness-of-fit of the 
approximate functions at the 
check points. 
 

Optimization The approximate functions 
(response surfaces). Bounds on 
the responses and variables. 

The approximate optimal 
design. The approximate 
responses at the optimal design. 
Pareto optimal curve data. 

 
 
Two approaches may be taken: 
 
 
4.14.1 Convergence to an optimal point 
 
• First-order approximations.  
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Because of the absence of curvature, it is likely that perhaps 5 to 10 iterations may be required for 
convergence. The first-order approximation method turns out to be robust thanks to the sequential 
approximation scheme that addresses possible oscillatory behavior. Linear approximations may be rather 
inaccurate to study trade-off, i.e., in general they make poor global approximations, but this is not 
necessarily true and must be assessed using the error parameters. 

• Second-order approximations.  
Due to the consideration of curvature, a sequential quadratic response surface method is likely to be 
more robust, but can be more expensive, depending on the number of design variables. 

• Other approximations. 
Neural networks (Section  3.1) and Radial Basis Function networks (Section  3.1.3) provide good 
approximations when many design points are used. A suggested approach is to start the optimization 
procedure in the full design space, with the number of points at least of the order of the minimum 
required for a linear approximation. To converge to an optimum, use the iterative scheme with domain 
reduction as with any other approximations, but choose to update the experimental design and response 
surfaces after each iteration (this is the default method for non-polynomial approximations). The 
metamodel will be built using the total number of points.  
 
See Section  4.5 on sequential strategies for optimization and design exploration. 
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5. Applications of Optimization 

5.1 Multicriteria Design Optimization 
 
A typical design formulation is somewhat distinct from the standard formulation for mathematical 
optimization (Eq. 2.3). Most design problems present multiple objectives, design targets and design 
constraints. There are two ways of solving multicriteria design optimization problems.  
 
The first method, discussed in Section  4.9, focused on finding multiple trade-offs, known as Pareto optimal 
solutions, using multi-objective genetic algorithms. The advantage of this method is that one can find many 
trade-off designs and the designer does not have to a priori determine the preference structures.  
 
In the second method, the standard mathematical programming problem is defined in terms of a single 
objective and multiple constraints. The standard formulation of Eq. (2.3) has been modified to represent the 
more general approach as applied in LS-OPT. 
 
Minimize the function 
 )]([ xfp  ( 5.1-1) 
subject to the inequality constraint functions 

mjUgL jjj ,,2,1;)( K=≤≤ x  
The preference function p can be formulated to incorporate target values of objectives. 
 
Two methods for achieving this are given: 
 
 
5.1.1 Euclidean Distance Function 
 
Designs often contain objectives that are in conflict so that they cannot be achieved simultaneously. If one 
objective is improved, the other deteriorates and vice versa. The preference function )]([ xfp  combines 
various objectives fi. The Euclidean distance function allows the designer to find the design with the 
smallest distance to a specified set of target responses or design variables: 
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The symbols Fi represent the target values of the responses. A value Γi is used to normalize each response i. 
Weights Wi are associated with each quantity and can be chosen by the designer to convey the relative 
importance of each normalized response. 
 
 
5.1.2 Maximum distance 
 
Another approach to target responses is by using the maximum distance to a target value 
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This form belongs to the same category of preference functions as the Euclidean distance function  [1] and is 
referred to as the Tchebysheff distance function. A general distance function for target values Fi is defined 
as 

 

r
p

i

r

i

ii Ff
p

1

1

)(
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

Γ
−

= ∑
=

x
 ( 5.1-4) 

 
with r = 2 for the Euclidean metric and ∞→r  for the min.-max. formulation (Tchebysheff metric). 
 
The approach for dealing with the Tchebysheff formulation differs somewhat from the explicit formulation. 
The alternative formulation becomes: 
 

Minimize e ( 5.1-5) 
subject to 
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In the above equation, Γi is a normalization factor, e represents the constraint violation or target discrepancy 
and α represents the strictness factor. If α = 0, the constraint is slack (or soft) and will allow violation. If α 
= 1, the constraint is strict (or hard) and will not allow violation of the constraint. 
 
The effect of distinguishing between strict and soft constraints on the above problem is that the maximum 
violation of the soft constraints is minimized. Because the user is seldom aware of the feasibility status of 
the design problem at the start of the investigation, the solver will automatically solve the above problem 
first to find a feasible region. If the solution to e is zero (or within a small tolerance) the problem has a 
feasible region and the solver will immediately continue to minimize the design objective using the feasible 
point as a starting point. 
 
A few points are notable: 
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• The variable bounds of both the region of interest and the design space are always hard. This is enforced 
to prevent extrapolation of the response surface and the occurrence of impossible designs. 

• Soft constraints will always be strictly satisfied if a feasible design is possible. 
• If a feasible design is not possible, the most feasible design will be computed. 
• If feasibility must be compromised (there is no feasible design), the solver will automatically use the 

slackness of the soft constraints to try and achieve feasibility of the hard constraints. However, even 
when allowing soft constraints, there is always a possibility that some hard constraints must still be 
violated. In this case, the variable bounds could be violated, which is highly undesirable as the solution 
will lie beyond the region of interest and perhaps beyond the design space. If the design is reasonable, 
the optimizer remains robust and finds such a compromise solution without terminating or resorting to 
any specialized procedure. 

 
Soft and strict constraints can also be specified for search methods. If there are feasible designs with respect 
to hard constraints, but none with respect to all the constraints, including soft constraints, the most feasible 
design will be selected. If there are no feasible designs with respect to hard constraints, the problem is ‘hard-
infeasible’ and the optimization terminates with an error message. 
 
In the following cases, the use of the Min-Max formulation can be considered: 
 
1. Minimize the maximum of several responses, e.g. minimize the maximum knee force in a vehicle 

occupant simulation problem. This is specified by setting both the knee force constraints to have zero 
upper bounds. The violation then becomes the actual knee force. 

 
2. Minimize the maximum design variable, e.g. minimize the maximum of several radii in a sheet metal 

forming problem. The radii are all incorporated into composite functions, which in turn are incorporated 
into constraints which have zero upper bounds. 

 
3. Find the most feasible design. For cases in which a feasible design region does not exist, the user may be 

content with allowing the violation of some of the constraints, but is still interested in minimizing this 
violation. 

 
 
5.2 Multidisciplinary Design Optimization 
 
There is increasing interest in the coupling of other disciplines into the optimization process, especially for 
complex engineering systems like aircraft and automobiles  [2]. The aerospace industry was the first to 
embrace multidisciplinary design optimization (MDO)  [3], because of the complex integration of 
aerodynamics, structures, control and propulsion during the development of air- and spacecraft. The 
automobile industry has followed suit  [4]. In  [4], the roof crush performance of a vehicle is coupled to its 
Noise, Vibration and Harshness (NVH) characteristics (modal frequency, static bending and torsion 
displacements) in a mass minimization study. 
 
Different methods have been proposed when dealing with MDO. The conventional or standard approach is 
to evaluate all disciplines simultaneously in one integrated objective and constraint set by applying an 
optimizer to the multidisciplinary analysis (MDA), similar to that followed in single-discipline optimization. 
The standard method has been called multidisciplinary feasible (MDF), as it maintains feasibility with 
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respect to the MDA, but as it does not imply feasibility with respect to the disciplinary constraints, is has 
also been called fully integrated optimization (FIO). A number of MDO formulations are aimed at 
decomposing the MDF problem. The choice of MDO formulation depends on the degree of coupling 
between the different disciplines and the ratio of shared to total design variables  [5]. It was decided to 
implement the MDF formulation in this version of LS-OPT as it ensures correct coupling between 
disciplines albeit at the cost of seamless integration being required between different disciplines that may 
contain diverse simulation software and different design teams. 
 
In LS-OPT, the user has the capability of assigning different variables, experimental designs and job 
specification information to the different solvers or disciplines. The file locations in Version 2 have been 
altered to accommodate separate Experiments, AnalysisResults and DesignFunctions files in 
each solver’s directory. An example of job-specific information is the ability to control the number of 
processors assigned to each discipline separately. This feature allows allocation of memory and processor 
resources for a more efficient solution process. 
 
Refer to the user’s manual (Section  19.1) for the details of implementing an MDO problem. There is one 
crashworthiness-modal analysis case study in the examples chapter (Section  22.6). 
 
 
5.3 System Identification using nonlinear regression 
System identification is a general term used to describe the mathematical tools and algorithms that build 
dynamical models such as systems or processes from measured data. The methodology used in LS-OPT 
consists of a nonlinear regression procedure to optimize the parameters of a system or material. This 
procedure minimizes the errors with respect to given experimental results. Two formulations for system 
identification can be used. The first uses the mean squared error (MSE) as the minimization objective, while 
the second, the Min-Max formulation, uses the auxiliary problem formulation to minimize the maximum 
residual. The MSE approach is commonly used for system identification and has been automated using a 
single command. The two formulations are outlined below. 
  
 
5.3.1 Nonlinear regression: minimizing Mean Squared Error (MSE) 
 
Figure  5-1 shows a graph containing curve f(x,z) and points Gp(z). The points can be interconnected to form 
a curve G(z). f is a computed response curve (e.g. stress or force history) computed at a point x in the 
parameter space. The variables x represent unknown parameters in the model. System (e.g. automotive 
airbag or dummy model) or material constants are typical of parameters used in constructing finite element 
models. The independent state variable z can represent time, but also any other response type such as strain 
or deformation. The target curve G is constant with respect to x and typically represents a test result (e.g. 
stress vs. strain or force vs. deformation). f may not be readily available from the analysis code if z does not 
represent time. In this case f must first be constructed using a “crossplot” feature (see Section  14.1.1) and 
the curve z(t)  to obtain a plot that is comparable to G. Each function f(x,zp) is internally represented by a 
response surface so that a typical curve f(x,z) is represented by P internal response surfaces. 
 
In Figure  5-1, seven regression points are shown. The residuals at these points are combined into a Mean 
Squared Error norm:                                                                                                          
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Figure  5-1: Entities in Mean Squared Error formulation 

                                                                        

The MSE norm is based on a series of P regression points beginning at the start point z1 and terminating at 
the end point zP (see Figure  5-1). The sp, p=1,…,P are residual scale factors and the Wp, p=1,…,P are 
weights applied to the square of the scaled residual (fp - Gp) / sp at point p. 
 
The application of optimization to system identification is demonstrated in Section  22.5. 
 
 
5.3.2 Minimizing the maximum residual (Min-Max) 
 
In this formulation, the deviations from the respective target values are incorporated as constraint violations, 
so that the optimization problem for parameter identification becomes: 
 
 Minimize  e,  ( 5.3-2) 
 subject to 
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   ;   p = 1,…,P 

e ≥ 0 
 

This formulation is automatically activated in LS-OPT when specifying both the lower and upper bounds of 
pp sf /  equal to pp sG / . There is therefore no need to define an objective function. This is due to the fact 

that an auxiliary problem is automatically solved internally whenever an infeasible design is found, ignoring 
the objective function until a feasible design is obtained. When used in parameter identification, the 
constraint set is in general never completely satisfied due to the typically over-determined systems used. 
 
Since sp defaults to 1.0, the user is responsible for the normalization in the maximum violation formulation. 
This can be done by e.g. using the target value to scale the response f(x) so that: 
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Omitting the scaling may cause conditioning problems in some cases, especially where constraint values 
differ by several orders of magnitude. 
 
This option will also be automated in future versions.   
 
 
5.3.3 Nonlinear regression: confidence intervals 
 
Assume the nonlinear regression model: 
 

ε+= ),()( xtFtG  
 

where the measured result G is approximated by F and x  is a vector of unknown parameters. The nonlinear 
least squares problem is obtained from the discretization: 
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is solved to obtain *x . The variance 2σ  is estimated by 
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where F is the P-vector of function values predicted by the model and n is the number of parameters. The 
100(1-α )% confidence interval for each ix*  is: 
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where  
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∇∇= xx T FFC σ  
and 2/α

nPt −  is the Student t-distribution for α . 
 

F∇ is the P×n matrix obtained from the n derivatives of the P response functions representing P points at 
the optimum x. The optimal solution is therefore calculated first, followed by the confidence interval.  
 
A critical issue is to ensure that F∇ is not based on a gradient obtained from a spurious response surface 
(e.g. occurring due to noise in the response). Monitoring convergence and selected statistical parameters 
such as the RMS error and R2 can help to estimate a converged result. In many cases material identification 
problems involve smooth functions (e.g. tensile tests) so that spurious gradients would normally not be a 
problem.  
 
 
5.4 Worst-case design 
 
Worst-case design involves minimizing an objective with respect to certain variables while maximizing the 
objective with respect to other variables. The solution lies in the so-called saddle point of the objective 
function and represents a worst-case design. This definition of a worst-case design is different to what is 
sometimes referred to as min-max design, where one multi-objective component is minimized while another 
is maximized, both with respect to the same variables. 
 
There is an abundance of examples of worst-case scenarios in mechanical design. 
 
One class of problems involves minimizing design variables and maximizing case or condition variables. 
One example in automotive design is the minimization of head injury with respect to the design variables of 
the interior trim while maximizing over a range of head orientation angles. Therefore the worst-case design 
represents the optimal trim design for the worst-case head orientation. Another example is the minimization 
of crashworthiness-related criteria (injury, intrusion, etc.) during a frontal impact while maximizing the 
same criteria for a range of off-set angles in an oblique impact situation. 
Another class of problems involves the introduction of uncontrollable variables nizi ,,1, K=  in addition to 
the controlled variables mjy j ,,1, K= . The controlled variables can be set by the designer and therefore 
optimized by the program. The uncontrollable variables are determined by the random variability of 
manufacturing processes, loadings, materials, etc. Controlled and uncontrollable variables can be 
independent, but can also be associated with one another, i.e. a controlled variable can have an 
uncontrollable component. 
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The methodology requires three features: 
1. The introduction of a constant range ρ of the region of interest for the uncontrollable variables. This 

constant represents the possible variation of each uncontrollable parameter or variable. In LS-OPT this 
is introduced by specifying a lower limit on the range as being equal to the initial range ρ. The lower 
and upper bounds of the design space are set to ±ρ/2 for the uncontrollable variables. 

 
2. The controlled and uncontrollable variables must be separated as minimization and maximization 

variables. The objective will therefore be minimized with respect to the controlled variables and 
maximized with respect to the uncontrollable variables. This requires a special flag in the optimization 
algorithm and the formulation of Equation (2.1) becomes: 

 

 qpf ℜ∈ℜ∈ zyzy
zy

,)},,(maxmin{  ( 5.4-1) 

subject to 
ljg j ,,2,1;0),( K=≤zy  

The algorithm remains a minimization algorithm but with modified gradients: 
yy ∇=∇ :mod  

zz −∇=∇ :mod  
For a maximization problem the min and max are switched. 

 
3. The dependent set (the subset of y and z that are dependent on each other) x = y + z must be defined as 

input for each simulation, e.g. if the manufacturing tolerance on a thickness is specified as the 
uncontrollable component, it is defined as a variation added to a mean value, i.e. t = tmean + tdeviation, 
where t is the dependent variable. 

 
 
5.5 Reliability-based design optimization (RBDO)* 
 
Reliability-based design optimization (RBDO) is the computation of an optimum design subject to 
probabilistic bounds on the constraints. The probabilistic bound is usually interpreted in the six-sigma 
context; for example, the failure of only one part in a million would be acceptable. 
 
RBDO is currently done using First Order Second Moment (FOSM) method of computing the reliability.  
The requested minimum probability of failure is transformed to a number of standard deviations (sigmas) of 
the response, and the number of standard deviations (sigmas) is subsequently transformed into a safety 
margin used in the optimization process. The standard deviation of a response is computed analytically for 
response surfaces, and for the other metamodels and composites a second order local approximation is 
created to compute the standard deviation. See Section  6.4.4 for more detail regarding the First Order 
Second Moment (FOSM) method. The FOSM methodology is currently the default RBDO method, but 
more sophisticated methods may be available in future versions of LS-OPT. 
 
Discrete variables are allowed in RBDO.  The mixed-discrete optimization will be carried out considering 
the probabilitistic bounds on the constraints. 
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The methods are described in more detail in Section  19.3 with an example in Section  22.2.11 illustrating the 
method. 
 
Care must be taken in interpreting the resulting reliability of the responses. Accuracy can be especially poor 
at the tail ends of the response distribution. What constitutes engineering accuracy at the low probabilities is 
an open question. A definition such as six-sigma may be the best way of specifying the engineering 
requirement; a precise numerical value may be not be meaningful. Accuracy at low probabilities requires 
firstly that the input data must be known accurately at these low probabilities, which may be prohibitively 
expensive to estimate. 
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6. Probabilistic Fundamentals 

6.1 Introduction 
 
No system will be manufactured and operated exactly as designed. Adverse combinations of design and 
loading variation may lead to undesirable behavior or failure; therefore, if significant variation exists, a 
probabilistic evaluation may be desirable. 
 
Sources of variation are:  

• Variation in structural properties; for example: variation in yield stress. 
• Variation in the environment; for example: variation in a load. 
• Variation occurring during the problem modeling and analysis; for example: buckling initiation, 

mesh density, or results output frequency. 

  From the probabilistic analysis we want to infer:  

• Distribution of the response values. 
• Probability of failure. 
• Properties of the designs associated with failure. 

o Variable screening - identify important noise factors. 
o Dispersion factors - factors whose settings may increase variability of the responses. 

• Efficient redesign strategies. 

 
6.2 Probabilistic variables 
 
The probabilistic component of a parameter is described using a probability distribution; for example, a 
normal distribution. The parameter will therefore have a mean or nominal value as specified by the 
distribution, though in actual use the parameter will have a value randomly chosen according to the 
probability density function of the distribution. 
 
The relationship between the control variables and the variance can be used to adjust the control process 
variables in order to have an optimum process. The variance of the control and noise variables can be used 
to predict the variance of the system, which may then be used for redesign. Knowledge of the interaction 
between the control and noise variables can be valuable; for example, information such as that the 
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dispersion effect of the material variation (a noise variable), may be less at a high process temperature (a 
control variable) can be used to selected control variables for a more robust manufacturing process.  
 
6.2.1  Variable linking 
 
A single design parameter can apply to several statistically independent components in a system; for 
example: one joint design may be applicable to several joints in the structure. 
 
The components will then all follow the same distribution but the actual value of each component will 
differ. Each duplicate component is in effect an additional variable and will result in additional 
computational cost (contribute to the curse of dimensionality) for techniques requiring an experimental 
design to build an approximation or requiring the derivative information such as FORM. Direct Monte Carlo 
simulation on the other hand does not suffer from the curse of dimensionality but is expensive when 
evaluating events with a small probability. 
 
Design variables can be linked to have the same expected (nominal) value, but allowed to vary 
independently according to the statistical distribution during a probabilistic analysis. One can therefore have 
one design variable associated with many probabilistic variables. 
 
Three probabilistic associations between variables are possible: 

• Their nominal values and distributions are the same. 
• Their nominal values differ but they refer to the same distribution. 
• Their nominal values are the same but their distributions differ. 

 
 
6.3 Basic computations 
 
6.3.1 Mean, variance, standard deviation, and coefficient of variation 
 
The mean of a set of responses is 
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The standard deviation is simply the square root of the variance 
2s s=  

 
The coefficient of variation, the standard deviation as a proportion of the mean, is computed as 

y
svoc =..  
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6.3.2 Correlation of responses 
 
Whether a variation in displacements in one location cause a variation in a response value elsewhere is not 
always clear. 
 
The covariance of two responses indicates whether a change in the one is associated with a change in the 
other. 

)])([(),( 221121 μμ −−= YYEYYCov  

)()(][),( 212121 YEYEYYEYYCov −=  

The covariance can be difficult to use because it is unscaled. The standard deviation of the responses can be 
used for scaling. The coefficient of correlation is accordingly 

21

21 ),(
σσ

ρ YYCov
=  

The confidence interval on the coefficient of correlation is described in the next section. 
 
 
6.3.3 Confidence intervals 
 
The confidence interval on the mean assuming a normal distribution and using s2 as an estimate to the 
variance is 

n
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n
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with μ  the mean, y  the estimate to the mean, and 1,2/ −ntα  the relevant critical value of the t distribution. 
 
The confidence interval on the variance assuming a normal distribution and using s2 as an estimate to the 
variance is 
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with 2σ  the variance and 2
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1,2/ , −−− ΧΧ nn αα  the relevant critical values of the 2Χ distribution. 

 
The confidence interval on the probability of an event is 
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with p  the probability, p̂  the estimate to the probability, and 1,2/ −nzα  the relevant critical value of the 
normal distribution. 
 
The coefficient of correlation has a confidence interval of 
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6.4 Probabilistic methods 
 
The reliability − the probability of not exceeding a constraint value − can be computed using probabilistic 
methods. 

The accuracy can be limited by the accuracy of the data used in the computations as well as the accuracy of 
the simulations. The choice of methods depends on the desired accuracy and intended use of the reliability 
information. 

More details on probabilistic methods can be found in, for example, the recent text by Haldar and 
Mahadevan  [1]. 

 

6.4.1 Monte Carlo simulation 
 
A Monte Carlo simulation aims to compute results with the same scatter as what will occur in practise. 
 
Multiple analyses are conducted using values of the input variables selected considering their probability 
density function. The results from these analyses should have the scatter expected in practice. Under the law 
of large numbers the output results will eventually converge. 

Applications of a Monte Carlo investigation are: 

• Compute the distribution of the responses, in particular the mean and standard deviation. 
• Compute reliability. 
• Investigate design space – search for outliers. 

The approximation to the nominal value is: 

∑= )(1)]([ iXf
N

XfE  

If the Xi are independent, the laws of large numbers allow us any degree of accuracy by increasing N. The 
error of estimating the nominal value is a random variable with standard deviation 

N
σσθ =ˆ  

with σ the standard deviation of )(xf  and N the number of sampling points. The error is therefore unrelated 
to the number of design variables. 
 
The error of estimating p, the probability of an event, is a random value with the following variance 
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which can be manipulated to provide a minimum sampling. A suggestion for the minimum sampling size 
provided by Tu and Choi  [2] is: 
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The above indicates that for a 10% estimated probability of failure; about 100 structural evaluations are 
required with some confidence on the first digit of failure prediction. To verify an event having a 1% 
probability; about a 1000 structural analyses are required, which usually would be too expensive. 
 
A general procedure of obtaining the minimum number of sampling points for a given accuracy is illustrated 
using an example at the end of this section. For more information, a statistics text (for example, reference 
 [3]) should be consulted. A collection of statistical tables and formulae such as the CRC reference  [4] will 
also be useful. 
 
The variance of the probability estimation must be taken into consideration when comparing two different 
designs. The error of estimating the difference of the mean values is a random variable with a variance of 
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with the subscripts 1 and 2 referring to the different design evaluations. The error of estimating the 
difference of sample proportions is a random variable with a variance of  
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The Monte Carlo method can therefore become prohibitively expensive for computing events with small 
probabilities; more so if you need to compare different designs. 
 
The procedure can be sped up using Latin Hypercube sampling, which is available in LS-OPT. These 
sampling techniques are described elsewhere in the LS-OPT manual. The experimental design will first be 
computed in a normalized, uniformly distributed design space and then transformed to the distributions 
specified for the design variables. 
 
Example: 
The reliability of a structure is being evaluated. The probability of failure is estimated to be 0.1 and must be 
computed to an accuracy of 0.01 with a 95% confidence. The minimum number of function evaluations 
must be computed. 
 
For an accuracy of 0.01, we use a confidence interval having a probability of containing the correct value of 
0.95. The accuracy of 0.01 is taken as 4.5 standard deviations large using the Tchebysheff’s theorem, which 
gives a standard deviation of 0.0022. The minimum number of sampling points is therefore: 
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Tchebysheff’s theorem is quite conservative. If we consider the response to be normally distributed then for 
an accuracy of 0.01 and a corresponding confidence interval having a probability of containing the correct 
value of 0.95, the a confidence interval 1.96 standard deviations wide is required. The resulting standard 
deviation is 0.051 and the minimum number of sampling points is accordingly:  
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6.4.2 Monte Carlo analysis using metamodels 
 
Performing the Monte Carlo analysis using approximations to the functions instead of FE function 
evaluations allows a significant reduction in the cost of the procedure. 
 
A very large number of function evaluations (millions) are possible considering that function evaluations 
using the metamodels are very cheap. Accordingly, given an exact approximation to the responses, the exact 
probability of an event can be computed. 
 
The choice of the point about which the approximation is constructed has an influence on accuracy. 
Accuracy may suffer if the metamodel is not accurate close to the failure initiation hyperplane, 0)( =xG . A 
metamodel accurate at the failure initiation hyperplane (more specifically the Most Probable Point of 
failure) is desirable in the cases of nonlinear responses. The results should however be exact for linear 
responses or quadratic responses approximated using a quadratic response surface. 
 
Using approximations to search for improved designs can be very cost-efficient. Even in cases where 
absolute accuracy is not good, the technique can still indicate whether a new design is comparatively better. 
 
The number of FE evaluations required to build the approximations increases linearly with the number of 
variables for linear approximations (the default being 1.5n points) and quadratically for quadratic 
approximations (the default being 0.75(n+2)(n+1) points). 
 
 
6.4.3 Correlated variables 
Considering the correlation  ijjjiiji YYEYYCov Σ=−−= )])([(),( μμ between variables, we construct the 
covariance matrix 
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from which we compute the eigenvalues and eigenvectors as EE 2λ=Σ  with E and 2λ  respectively the 
eigenvectors and the eigenvalues of the covariance matrix. 
 
The correlated variables are created by firstly generating independent variables and transforming them back 
to being correlated variables using the eigenvalues and eigenvectors of the covariance matrix  

nnn iidiid EEX λλ ++= K111  with X the correlated variables and iid  the independent variables. This  
method is only valid for normally distributed variables. 
 
Consider a function of  correlated variables ∑ =

=
n

i iiYaF
1

; the statistics of this functions are computed as 
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6.4.4 First-Order Second-Moment Method (FOSM) 
 
For these computations we assume a linear expansion of the response. The reliability index of a response 

0)( <XG  is computed as: 
 

[ ]
[ ])(

)(
XGD
XGE

=β  

 
with E and D the expected value and standard deviation operators respectively. A normally distributed 
response is assumed for the estimation of the probability of failure giving the probability of failure as: 
 

)( β−Φ=fP  or 1 ( )β− Φ  
 
with Φ(x) the cumulative distribution function of the normal distribution. 
 
The method therefore (i) computes a safety margin, (ii) scale the safety margin using the standard deviations 
of the response, and (iii) then convert the safety margin to a probability of failure by assuming that the 
response is normally distributed. 
 
The method is completely accurate when the responses are linear functions of normally distributed design 
variables. Otherwise the underlying assumption is less valid at the tail regions of the response distribution. 
Caution is advised in the following cases:  

• Nonlinear responses: Say we have a normally distributed stress responses - this implies that fatigue 
failure is not normally distributed and that computations based on a normal distribution will not be 
accurate. 

• The variables are not normally distributed; for example, one is uniformly distributed. In which case 
the following can have an effect: 

o A small number of variables may not sum up to a normally distributed response, even for a 
linear response. 
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o The response may be strongly dependent on the behavior of a single variable. The 
distribution associated with this variable may then dominate the variation of the response. 
This is only of concern if the variable is not normally distributed. 

Considering the accuracy of the input data, this method can be reasonable. For example, it should be 
common that the distribution of the input data can only be estimated using a mean and a standard deviation 
with an 20% error bound, in which case the results should be understood to have at the least a matching 
certainty. Interpreting the results in terms of a number of standard deviations can be a reasonable 
engineering approximation under these circumstances. 

6.4.5 Design for six-sigma methods 
 
See the section for FOSM keeping in mind that the reliability index β is the number of standard deviations. 
 
6.4.6 The most probable point  
 
Probabilistic methods based on the most probable point of failure focus on finding the design perturbation 
most likely to cause failure. 
 
To understand how these methods works, consider the limit state function G(x) dividing the responses into 
two design regions: one consisting of acceptable responses and the other of unacceptable responses. The two 
regions are separated by the hyperplane described by G(x)=0.  
 
 

 
Figure  6-1 Finding the most probable point of failure. The most probable point is the point on the line 

G(x)=0 closest to the design in the probabilistic sense. 
 
We want to find the design perturbation most likely to cause the design to fail. This is difficult in the 
problem as shown in Figure  6-1, because all variables will not have an equal influence of the probability of 
failure due to differences in their distributions. In order to efficiently find this design perturbation, we 
transform the variables to a space of independent and standardized normal variables, the u-space. 
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Figure  6-2 Most probable point in the transformed space. In the transformed space the most probable 

point is the point on the line G(X)=0 the closest to the design. 
 
 
The transformed space is shown in Figure  6-2. The point on the limit state function with the maximum joint 
probability is the point the closest to the origin. It is found by solving the following optimization problem: 

Minimize: ∑ =

n

i iu
1

2  

Subject to: ( ) 0=uG  
 
This point is referred to as the most probable point (MPP) and the distance from the origin in the u-space is 
referred to as the first-order probability index βFORM.  
 
The advantages of the most probable point are: 

• The MPP gives an indication of the design most likely to fail. 
• Highly accurate reliability methods utilizing an approximation around the MPP are possible. 

 
 
6.4.7 FORM (First Order Reliability Method) 
 
The Hasofer-Lind transformation is used to normalize the variables: 

i

ii
i

xu
σ

μ−
=  

The minimization problem is accordingly solved in the u-space to find the first-order probability index 
βFORM. Approximations to the responses are used to solve the optimization problem. 
 
The probability of failure is found assuming a normally distributed response as 

)( FORMfP β−Φ=  
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with Φ the cumulative density function of the normal distribution. 
 
The error component of the procedure is due to (i) curvature of the constraint,  (ii) the error component of 
the approximating function used in the computations, and (iii) the assumption of a normal distribution for 
the computation of failure. 
 
The method is considered conservative considering that disregarding the curvature of the constraint results 
in an overestimation of the probability of failure. 
 
 
6.4.8 Design sensitivity of the most probable point 
 
For a probabilistic variable we use the partial derivative as: 
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with β∂
∂P  the derivative of the CDF function of the normal distribution. 

 
For deterministic variables, which do not have a probabilistic component and therefore no associated u 
variables: 
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with f∂
∂β  taken as ( )nominalconstraint ff −

β . 

For the pathological case of being at the MPP, the vector associated with β vanishes and we use: 
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with 0.4 the relevant value derivative of the CDF function of the normal distribution. 

 
6.5 Required number of simulations 
 
6.5.1 Overview 
 
A single analysis of a noisy structural event yields only a single value drawn from an unexplored 
population. The whole population can be explored and quantified using a probabilistic investigation if the 
computational cost is reasonable. The cost of this probabilistic analysis is of quite some concern for FEA 
results and is therefore expounded in the following subsections. 
 
Rough rules of thumb: 



 CHAPTER 6:  PROBABILISTIC FUNDAMENTALS 

LS-OPT Version 3 93 

• 20 FE evaluation, a maximum of 10 design variables, and a metamodel-based probabilistic analysis 
for design purposes 

• 50 FE evaluations, about 5 design variables, and a metamodel-based probabilistic analysis for a 
detailed analysis of the scatter in the results and the role of the design variables 

• 100 FE evaluations and a Monte Carlo analysis for very noisy behavior or a very large number of 
potentially significant variables. These would be cases where it is very difficult to associate the 
variation in results with the design variables and accordingly only quantifying the result is feasible. 

 
 
6.5.2 Background 
 
The required number of the simulation depends on: 

• Cost of creating an accurate metamodel 
• Cost of estimating the noise variation 
• Cost of observing low-probability events 

 
If the variation in the responses is mainly due to the variation of the design variables, then the cost of 
creating an accurate metamodel dominates. The region of interest for a robustness analysis will not be as 
large as to contain significant curvature; therefore a linear or preferably a quadratic response surface should 
suffice. In past design optimization work, the number of experiments was successfully taken to be 1.5 times 
the number of terms (unknowns) in the metamodel to be estimated. For a robustness analysis, being 
conservative at this point in time, a value of twice the number of terms is recommended. The number of 
terms for a linear model is k+1 with k the number of design parameters. The number of terms for a quadratic 
response surface is (k+1)(k+2)/2. 
 
The variation in the responses may not be mainly due to the variation of the design variables. In this case, 
enough experiments much be conducted to estimate this noise variation with sufficient accuracy. This cost is 
additional to the cost of creating the metamodel. The number of experiments required will differ considering 
the criteria for accuracy used. For example, we can require the error of estimating the noise variation to be 
less than 10%; however, this requires about 150 experiments, which may be too expensive. Considering the 
practical constraints for vehicle crash analysis, useful results can be obtained with 25 or more degrees of 
freedom of estimating the noise variation. This gives a situation where the error bound on the standard 
deviation is about 20% indicating that it is becoming possible to distinguish the six sigma events from five 
sigma events. 
 
For design purposes, the variation of the responses and the role of the design variables are of interest. High 
accuracy may be impossible due to lack of information or unreasonable computational costs. A metamodel-
based investigation and 20 FE evaluations can achieve: 

• Investigate up to 10 variable 
• Quantify the contribution of each variable 
• Estimate if the scatter in results is admissible 

If the scatter in FE results is large, then the FE model must be improved, the product redesigned, or a more 
comprehensive probabilistic investigation performed. The study should indicate which is required. 
 
A study can be augmented to re-use the existing FE evaluations in a larger study. 
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If higher accuracy is required, then for approximately 50 simulations one can compute: 

• Better quantification of the role of the design variables: Investigate the effect of about five variables 
if a quadratic or neural network approximation is used or about 10 variables using linear 
approximations. 

• Higher accuracy and better understanding of the scatter in the results. Predict effect of frequently 
occurring variation with a rare chance of being in error. Outliers may occur during the study and will 
be identified as such for investigation by the analyst. Structural events with a small (5% to 10%) 
probability of occurring might however not be observed. 

 
The accuracy of these computations must be contrasted to the accuracy to which the variation of the design 
parameters is known. These limits on the accuracy, though important for the analyst to understand, should 
not prohibit useful conclusions regarding the probabilistic behavior of the structure. 
 
6.5.3 Competing role of variance and bias 
 
In an investigation the important design variables are varied while other sources are kept at a constant value 
in order to minimize their influence. In practice the other sources will have an influence. Distinguishing 
whether a difference in a response value is due to a deterministic effect or other variation is difficult, 
because both always have a joint effect in the computer experiments being considered. 
 
In general  [4] the relationship between the responses y and the variables x is: 

εxxy ++= )()( δf  
with f(x) the metamodel; )()()( xxx f−= ηδ , the bias, the difference between the chosen metamodel and the 
true functional response )(xη ; and ε the random deviation. 
 
The bias (fitting error) and variance component both contribute to the residuals. If we compute the variance 
of the random deviation using the residuals then the bias component is included in our estimate of the 
variance. The estimate of the variance is usually too large in the case of a bias error. 
 
The bias error is minimized by: 

• Choosing the metamodel to be the same as the functional response. The functional response is 
however unknown. A reliable approach in the presence of noise is difficult to establish. In particular, 
metamodels that can fit exactly to any set of points will fit to the noise thus erroneously stating that 
the random deviation is zero; inflexible metamodels will ascribe deterministic effects to noise. 

• Reducing the region of interest to such a size that the difference between metamodel and true 
functional response is not significant. 

• Large number of experimental points. This strategy should be used together with the correct 
metamodel or a sufficiently small region of interest. 

The recommended approach is therefore to use a linear or quadratic response over a subregion small enough 
that the bias error should be negligible. 
 
 
6.5.4 Confidence interval on the mean 
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For multiple regression, the 100(1-α)% confidence limits on the mean value at 0X  are obtained from 

0
1

0,2/0 ' XX)(XX −
−−± pnpn stY α  

with 2
pns −  an estimate to 2σ . At the center of the region of interest for the coded variables the confidence 

interval is 

11,2/0 CstY pnpn −−± α  

with 11C  the first diagonal element of ( ) 1' −XX . The confidence bound therefore depends on the variance of 
the response and the quality of the experimental design. 
 
More details can be found in, for example, the text by Myers and Montgomery  [6]. 

 
 
6.5.5 Confidence interval on a new evaluation 
 
For multiple regression, the 100(1-α)% confidence limits on a new evaluation at 0X  are obtained from 

0
1

0,2/0 '1 XX)(XX −
−− +± pnpn stY α  

The confidence interval for new observations of the mean is  

11,2/0 1 CstY pnpn +± −−α  
 
In the following table we monitor the bounds for a new evaluation of the mean for a linear approximation 
using five design variables using a 95% confidence interval. The value of C11 is computed from D-optimal 
experimental designs generated using LS-OPT. The error bounds are close to 2σ for more than 25 existing 
runs (20 degrees of freedom). 

n 
 

p n-p C11 Bounds (σ=10% α=5%) 

10 6 4 0.104 ±29% 
15 6 9 0.070 ±23% 
20 6 14 0.051 ±22% 
25 6 19 0.041 ±21% 
30 6 24 0.034 ±21% 
50 6 44 0.020 ±20% 
100 6 94 0.010 ±20% 

 
 
6.5.6 Confidence interval on the noise (stochastic process) variance 
 
The noise (stochastic process) variance can be estimated by considering the residuals of the reponse surface 
fit. Events such as a different buckling mode or order of contact events will appear in the residuals because 
they cannot be attributed to the variables in the response surface fit. These residuals can also be due to a bias 
(lack-of-fit) error, which complicates matters. 
 
The error of estimating the noise variance (σ2) is minimized by: 
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• Large number of points 
• Minimizing the bias error. Ideally one wants to observe many occurrences of the same design.  

 
The residual mean square  
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estimates 2σ  with pn −  degrees of freedom where n is the number of observations and p is the number of 
parameters including the mean.  
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In the table below we monitor the error bounds on the variance for a problem with six parameters (including 
the mean). 
 

Noise Variance Confidence Interval 
Lower Bound Upper Bound n n-p 

α=5% α=10% α=20%

Value (s) 

α=20% α=10% α=5%

10  4 5.99 6.49 7.17 10 19.39 23.72 28.74 
15  9 6.88 7.29 7.83 10 14.69 16.45 18.25 
20  14 7.32 7.69 8.15 10 13.41 14.60 15.77 
25  19 7.605 7.94 8.36 10 12.77 13.70 14.6 
30  24 7.81 8.12 8.50 10 12.38 13.16 13.91 
50  46 8.31 8.56 8.86 10 11.59 12.10 12.56 
106  100 8.78 8.97 9.19 10 11.02 11.33 11.61 
206  200 9.11 9.24 9.41 10 10.69 10.92 11.09 

 
 
In the above it was assumed that the metamodel is a sufficiently accurate approximation to the mechanistic 
model (the bias error sufficiently small) and that the errors are normally distributed. In general the estimate 
of 2σ will be depend on the approximation model. For a model-independent estimate, replicate runs 
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(multiple observations for the same design) are required. If the bias error is significant then the estimate of 
2σ  will usually be too large  [7]. 

 
6.5.7 Probability of observing a specific failure mode 
 
A large number of runs may be required to be sure that an event with a specific probability is observed. 
 
Probability that the event will be observed at least once (one or more times): 
P[observing 0 events] = (1-P[event])n 
P[observing 1 or more events] = 1.0 - (1-P[event])n 
 
 

Probability of event Required number of runs for observing 1 or more 
occurrences at 95% probability 

0.45 5 
0.26 10 
0.14 20 
0.095 30 
0.06 50 
0.03 100 

 
 
6.6 Outlier analysis 
 
Outliers are values in poor agreement with the values expected or predicted for a specific combination of 
design variable values. Unexpected values may occur due to different buckling modes or modeling 
problems. Understanding the cause of the outliers can therefore lead to an improved structure or structural 
model. 
 
To be considered an outlier, the change in response value computed must not be completely explained by 
the change in design variable value. An expected value of the response value associated with a certain 
design is therefore required to judge whether a response is an outlier or not; the value predicted by the 
metamodel is used as the expected value. 
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Figure  6-3 Outliers are identified after a metamodel has been fitted. Value in poor agreement of what is 

predicted by the design variables are considered outliers. 

 
Metamodels are therefore useful to separate the effect of design variable changes from the other types of 
variation. The design variable cause-effect relationship is contained by the metamodel. The residuals of the 
fitting procedure are the variation not explained by changes in the design variables. The outliers therefore 
contain amongst others the bifurcation (buckling) effects. 
 
The outliers are best investigated visually in LS-PrePost by considering the deformation of the structure. A 
useful metric is computing the outliers for the displacement of every node in the structure and to fringe plot 
the standard deviation of these outliers. Fringe plots of the index of the run associated with the maximum or 
minimum displacement outlier can be used to identify different buckling modes. 
 
 
6.7 Stochastic contribution analysis 
 
The variation of the response can be broken down in contributions from each design variable. 
 
6.7.1 Linear Estimation 
The contribution can be estimated as: 

ixig x
G

,, σσ ∂
∂=  

with ix,σ the standard deviation of the variable i and ig ,σ the standard deviation of the variation of function g 
due to the variation of variable i. 
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The variance for all the variables is found as the sum of the variance: 

∑= 22
iT σσ  

 
where 2

Tσ is the variation of the response due to the variation of all the variables and 2
iσ is the variation of 

response due to the variation of variable i. In the above it is assumed that the response is a linear response of 
the design variables and independent variables. If correlation between variables exists, then it is taken into 
account as documented in section  6.4.3. 
 
6.7.2 Second and higher order estimation 
For higher order effects, one must consider the interaction between different design variables as well as 
curvature. If a variation is due to the interaction of two variables, then the effect of one variable on the 
variation depends on the current value of the other. This is in contrast with problems described by first order 
effects, for which the effect of variables can be investigated independently; if interactions exist, this is no 
longer true. 
 
The effect of a variable can be described in terms of its main or total effect. The main effect of a variable is 
computed as if it were the only variable in the system, while the total effect considers the interaction with 
other variables as well. The advantage of using the total effect is that the interaction terms, which can be 
significant, are included. For linear systems, the main and total effects are therefore the same. The second 
order effects must be computed, which increases computational costs considerably. 
 
The variance of the response, assuming independent variables, can be written using the Sobol’s indices 
approach  [8]. Firstly the function is decomposed as: 
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From which partial variances are computed as: 

∫∫=
1

0 1
21

0, ),,( jinjiji dxdxxxfV KKK KK  

with the variance of the response summed from the partial variances as: 
∑ ∑

<

+++=
ji

niji VVVV ,,2,1 LL  

The sensitivity indices are given as: 

VVS

njiVVS
niVVS

niinii

ijij

ii

/

1,/
1,/

,,1,,,1, KK ++ =

≤<≤=
≤≤=
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Using Monte Carlo, the main effect can be computed as  
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with ix~ is the subset of variables not containing ix . 
 
The total effect of a variable can also be computed as: 

iTi SS ~1−=  
Using Monte Carlo, the total effect can be computed by considering the effects not containing ix  
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For second order response surfaces this can be computed analytically  [9] as 
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with mi,j the jth moment about the mean of the distribution i and U the set of variables under consideration. 
 
The stochastic contribution is computed analytically only for responses surfaces. For neural networks, 
Kriging models, and composite functions, two options are currently available: 

1. Approximate using second order response surface. The response surface is built using three times the 
number of terms in the response surface using a central points Latin hypercube experimental design 
over a range of plus/minus two standard deviations around the mean. 

2. Using a Monte Carlo analysis. Many points (10 000 or more) are required. This option is used to 
compute the variance when there is correlation between variables. Note that a small number of 
points can results in negative values of the variance; these negative values should be small relative to 
the maximum variances obtained though. 

 
Correlations between variables are not considered in the computation of the main and total effects of the 
variables. 
 
 
6.8 Robust parameter design 
Robust parameter design selects designs insensitive to changes in given parameters. 
 
The field of robust design relies heavily on the work of Taguchi. Taguchi’s insight was that it costs more to 
control the sources of variation than to make the process insensitive to these variations  [10]. An alternate 
view of Taguchi  [11] is that building quality into a product is preferable to inspecting for quality. Also, in 
simulation, the actual results of a robust system are more likely to conform to the anticipated results  [10]. 
 
The robust design problem definition requires considering two sets of variables: (i) the noise variables 
causing the variation of the response and (ii) the control variables which are adjusted to minimize the effect 
of the noise variables. The method adjusts the control variables to find a location in design space with 
reduced gradients so that variation of the noise variable causes the minimum variation of the responses. 
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6.8.1 Fundamentals 
The robustness of a structure depends on the gradient of the response function as shown in Figure  6-4. A flat 
gradient will transmit little of the variability of the variable to the response, while a steep gradient will 
amplify the variability of the variable. Robust design is therefore a search for reduced gradients resulting in 
less variability of the response. 

 
Figure  6-4 Robustness considering a single variable.  Larger mean values of the area result in a smaller 

dispersion of the stress values. Note that the dispersion of the stress depends on the gradient of the stress-
area relationship. 

 
The variation of the response is caused by a number of variables, some which are not under the control of 
the designer. The variables are split in two sets of variables: 

• Control variables. The variables (design parameters) under the control of the designer are called 
control variables, 

• Noise variables. The parameter not under the control of the designer are called noise variables.  
The relationship between the noise and control variables as shown in Figure  6-5 is considered in the 
selecting of a robust design. The control variables are adjusted to find a design with a low derivative with 
respect to the noise variable. 
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Figure  6-5 Robustness of a problem with both control and noise variables.  The effect of the noise variable z 
on the response variation can be constrained using the control variable x. For robustness, the important 
property is the gradient of the response with respect to the noise variable. This gradient prescribes the noise 
in the response and can be controlled using the control variables. The gradient, as shown in the figure, is 
large for large values of the control variable. Smaller values of the control variable will therefore result in a 
more robust design, because of the lower gradient and accordingly less scatter in the response. 

 

 
6.8.2 Methodology 
The dual response surface method as proposed by Myers and Montgomery  [6] using separate models for 
process mean and variance is considered. Consider the control variables x and noise variables z with 

zrzVar Iz 2)( σ= . The response surface for the mean is xxxzxyE z βββ '')],([ ++=  considering that 
the noise variables have a constant mean. Response surface for variance considering only the variance of the 
noise variables is 22 )()(')],([ σσ += xlxlzxyVar zz  with 

zrzVar Iz 2)( σ= , 2σ  the model error variance, and l  

the vector of partial derivatives 
z

zxyxl
∂

∂
=

),()( . 

The search direction required to find a more robust design is requires the investigation of the interaction 
terms ji zx . For finding an improved design, the interaction terms are therefore required. Finding the 
optimum in a large design space or a design space with a lot of curvature requires either an iterative strategy 
or higher order terms in the response surface. 
For robust design, it is required to minimize the variance, but the process mean cannot be ignored. Doing 
this using the dual response surface approach is much simpler than using the Taguchi approach because 
multicriteria optimization can be used. Taguchi identified three targets: smaller is better, larger is better, and 
target is best. Under the Taguchi approach, the process variance and mean is combined into a single 
objective using a signal-to-noise ratio (SNR). The dual response surface method as used in LS-OPT does 
not require the use of a SNR objective. Fortunately so, because there is wealth of literature in which SNRs 
are criticized   [6]. With the dual response surface approach both the variance and mean can be used, 
together or separately, as objective or constraints. Multicriteria optimization can be used to resolve a 
conflict between process variance and mean as for any other optimization problem. 
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Visualization is an important part of investigating and increasing robustness. As Myers and Montgomery 
state: “The more emphasis that is placed on learning about the process, the less important absolute 
optimization becomes.” 
 
6.8.3 Experimental Design 
One extra consideration is required to select an experimental design for robust analysis: provision must be 
made to study the interaction between the noise and control variables. Finding a more robust design requires 
that the experimental design considers the ji zx cross-terms, while the 2

ix  and 2
iz  terms can be included for a 

more accurate computation of the variance. 
 
The crossed arrays of the Taguchi approach are not required in this response surface approach where both 
the mean value and variance are computed using a single model. Instead combined arrays are used which 
use a single array considering x and z combined. 
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7. Design Optimization Process 

7.1 A modus operandi for design using response surfaces 
 
7.1.1 Preparation for design 
 
Since the design optimization process is expensive, the designer should avoid discovering major flaws in the 
model or process at an advanced stage of the design. Therefore the procedure must be carefully planned and 
the designer needs to be familiar with the model, procedure and design tools well in advance. The following 
points are considered important: 
 
1. The user should be familiar with and have confidence in the accuracy of the model (e.g. finite element 

model) used for the design. Without a reliable model, the design would make little or no sense. 
 
2. Select suitable criteria to formulate the design. The responses represented in the criteria must be 

produced by the analyses and be accessible to LS-OPT. 
 
3. Request the necessary output from the analysis program and set appropriate time intervals for time-

dependent output. Avoid unnecessary output as a high rate of output will rapidly deplete the available 
storage space. 

 
4. Run at least one simulation using LS-OPT. To save time, the termination time of the simulation can be 

reduced substantially. This exercise will test the response extraction commands and various other 
features. Automated response checking is available, but manual checking is still recommended. 

 
5. Just as in the case of traditional simulation it is advisable to dump restart files for long simulations. 

LS-OPT will automatically restart a design simulation if a restart file is available. For this purpose, the 
runrsf file is required when using LS-DYNA as solver. 

 
6. Determine suitable design parameters. In the beginning it is important to select many rather than few 

design variables. If more than one discipline is involved in the design, some interdisciplinary discussion 
is required with regard to the choice of design variables. 

 
7. Determine suitable starting values for the design parameters. The starting values are an estimate of the 

optimum design. These values can be acquired from a present design if it exists. The starting design will 
form the center point of the first region of interest. 
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8. Choose a design space. This is represented by absolute bounds on the variables that you have chosen. 
The responses may also be bounded if previous information of the functional responses is available. 
Even a simple approximation of the design response can be useful to determine approximate function 
bounds for conducting an analysis. 

 
9. Choose a suitable starting design range for the design variables. The range should be neither too small, 

nor too large. A small design region is conservative but may require many iterations to converge or may 
not allow convergence of the design at all. It may be too small to capture the variability of the response 
because of the dominance of noise. It may also be too large, such that a large modeling error is 
introduced. This is usually less serious as the region of interest is gradually reduced during the 
optimization process.  

 
If the user has trouble deciding the size of the starting range, it should be omitted. In this case the full 
design space is chosen. 

 
10. Choose a suitable order for the design approximations when using polynomial response surfaces (the 

default). A good starting approximation is linear because it requires the least number of analyses to 
construct. However it is also the least accurate. The choice therefore also depends on the available 
resources. However linear experimental designs can be easily augmented to incorporate higher order 
terms. 

 
Before choosing a metamodel, please also consult Sections  3.3 and  4.5. 
 

After suitable preparation, the optimization process may now be commenced. At this point, the user has to 
decide whether to use an automated iterative procedure (Section  3.3) or whether to firstly perform variable 
screening (through ANOVA) based on one or a few iterations. Variable screening is important for reducing 
the number of design variables, and therefore the overall computational time. Variable screening is 
illustrated in two examples (see Sections  22.6 and  22.7). 
 
An automated iterative procedure can be conducted with any choice of approximating function. It 
automatically adjusts the size of the subregion and automatically terminates whenever the stopping criterion 
is satisfied. The feature that reduces the size of the subregion can also be overridden by the user so that 
points are sequentially added to the full design space. This becomes necessary if the user wants to explore 
the design space such as constructing a Pareto Optimal front. If a single optimal point is desired, it is 
probably the best to use a sequential linear approximation method with domain reduction, especially if there 
is a large number of design variables. See also Section  4.5. 
 
However a step-by-step semi-automated procedure can be just as useful, since it allows the designer to 
proceed more resourcefully. Computer time can be wasted with iterative methods, especially if handled 
carelessly. It mostly pays to pause after the first iteration to allow verification of the data and design 
formulation and inspection of the results, including ANOVA data. In many cases it takes only 2 to 3 
iterations to achieve a reasonably optimal design. An improvement of the design can usually be achieved 
within one iteration. 
 
A suggested step-by-step semi-automated procedure is outlined as follows: 
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7.1.2 A step-by-step design optimization procedure 
 
1. Evaluate as many points as required to construct a linear approximation. Assess the accuracy of the 

linear approximation using any of the error parameters. Inspect the main effects by looking at the 
ANOVA results. This will highlight insignificant variables that may be removed from the problem. An 
ANOVA is simply a single iteration run, typically using a linear response surface to investigate main 
and/or interaction effects. The ANOVA results can be viewed in the post-processor (see Section  18.5). 

 
2. If the linear approximation is not accurate enough, add enough points to enable the construction of a 

quadratic approximation. Assess the accuracy of the quadratic approximation. Intermediate steps can be 
added to assess the accuracy of the interaction and /or elliptic approximations. Radial Basis Functions 
(Section  3.1.3) can also be used as more flexible higher order functions (They do not require a minimum 
number of points). 

 
3. If the higher order approximation is not accurate enough, the problem may be twofold: 
 

(a) There is significant noise in the design response. 
(b) There is a modeling error, i.e. the function is too nonlinear and the subregion is too large to enable an 

accurate quadratic approximation. 
 
In case (3a),  different approaches can be taken. Firstly, the user should try to identify the source of the 
noise, e.g. when considering acceleration-related responses, was filtering performed?  Are sufficient 
significant digits available for the response in the extraction database (not a problem when using LS-
DYNA since data is extracted from a binary database)? Is mesh adaptivity used correctly? Secondly, if 
the noise cannot be attributed to a specific numerical source, the process being modeled may be chaotic 
or random, leading to a noisy response. In this case, the user could implement reliability-based design 
optimization techniques as described in Section  5.5. Thirdly, other less noisy, but still relevant, design 
responses could be considered as alternative objective or constraint functions in the formulation of the 
optimization  problem.  
 
In case (3b), the subregion can be made smaller. 
 
In most cases the source of discrepancy cannot be identified, so in either case a further iteration would 
be required to determine whether the design can be improved. 
 

4. Optimize the approximate subproblem. The solution will be either in the interior or on the boundary of 
the subregion. 

 
If the approximate solution is in the interior, the solution may be good enough, especially if it is close to 
the starting point. It is recommended to analyze the optimum design to verify its accuracy. If the 
accuracy of any of the functions in the current subproblem is poor, another iteration is required with a 
reduced subregion size. 
 
If the solution is on the boundary of the subregion the desired solution is probably beyond the region. 
Therefore, if the user wants to explore the design space more fully, a new approximation has to be built. 
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The accuracy of the current response surfaces can be used as an indication of whether to reduce the size 
of the new region. 
 
The whole procedure can then be repeated for the new subregion and is repeated automatically when 
selecting a larger number of iterations initially. 

 
 
7.2 Recommended test procedure 
 
A full optimization run can be very costly. It is therefore recommended to proceed with care. Check that the 
LS-OPT optimization run is set up correctly before commencing to the full run. By far the most of the time 
should be spent in checking that the optimization runs will yield useful results. A common problem is to not 
check the robustness of the design so that some of the solver runs are aborted due to unreasonable 
parameters which may cause distortion of the mesh, interference of parts or undefinable geometry. 
 
The following general procedure is therefore recommended: 
 
1. Test the robustness of the analysis model by running a few (perhaps two or three) designs in the extreme 

corners of the chosen design space. Run these designs to their full term (in the case of time-dependent 
analysis). Two important designs are those with all the design variables set at their minimum and 
maximum values. The starting design can be run by selecting ‘0’ as the number of iterations in the Run 
panel.  

 
2. Modify the input to define the experimental design for a full analysis.  
 
3. For a time dependent analysis or non-linear analysis, reduce the termination time or load significantly to 

test the logistics and features of the problem and solution procedure. 
 

4. Execute LS-OPT with the full problem specified and monitor the process. 
 
Also refer to Section  7.1. 
 
7.3 Pitfalls in design optimization 
 
A number of pitfalls or potential difficulties with optimization are highlighted here. The perils of using 
numerical sensitivity analysis have already been discussed and will not be repeated in detail. 
 
• Global optimality. The Karush-Kuhn-Tucker conditions govern the local optimality of a point. 

However, there may be more than one optimum in the design space. This is typical of most designs, and 
even the simplest design problem (such as the well known 10-bar truss sizing problem with 10 design 
variables), may have more than one optimum. The objective is, of course, to find the global optimum. 
Many gradient-based as well as discrete optimal design methods have been devised to address global 
optimality rigorously, but as there is no mathematical criterion available for global optimality, nothing 
short of an exhaustive search method can determine whether a design is optimal or not. Most global 
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optimization methods require large numbers of function evaluations (simulations). In LS-OPT, global 
optimality is treated on the level of the approximate subproblem through a multi-start method 
originating at all the experimental design points. If the user can afford to run a direct optimization 
procedure, a Genetic Algorithm (Section  4.8) can be used. 

 
• Noise. Although noise may evince the same problems as global optimality, the term refers more to a 

high frequency, randomly jagged response than an undulating one. This may be largely due to numerical 
round-off and/or chaotic behavior. Even though the application of analytical or semi-analytical design 
sensitivities for ‘noisy’ problems is currently an active research subject, suitable gradient-based 
optimization methods which can be applied to impact and metal-forming problems are not likely to be 
forthcoming. This is largely because of the continuity requirements of optimization algorithms and the 
increased expense of the sensitivity analysis. Although fewer function evaluations are required, 
analytical sensitivity analysis is costly to implement and probably even more costly to parallelize. 

 
• Non-robust designs. Because RSM is a global approximation method, the experimental design may 

contain designs in the remote corners of the region of interest which are prone to failure during 
simulation (aside from the fact that the designer may not be remotely interested in these designs). An 
example is the identification of the parameters of a monotonic load curve which in some of the 
parameter sets proposed by the experimental design may be non-monotonic. This may cause unexpected 
behavior and possible failure of the simulation process. This is almost always an indication that the 
design formulation is non-robust. In most cases poor design formulations can be eliminated by providing 
suitable constraints to the problem and using these to limit future experimental designs to a ‘reasonable’ 
design space (see Section  2.2.8). 

 
• Impossible designs. The set of impossible designs represents a ‘hole’ in the design space. A simple 

example is a two-bar truss structure with each of the truss members being assigned a length parameter. 
An impossible design occurs when the design variables are such that the sum of the lengths becomes 
smaller than the base measurement, and the truss becomes unassemblable. It can also occur if the design 
space is violated resulting in unreasonable variables such as non-positive sizes of members or angles 
outside the range of operability. In complex structures it may be difficult to formulate explicit bounds of 
impossible regions or ‘holes’. 

 
• Non-unique designs. In some cases multiple solutions will give the same or similar values for the 

objective function. The phenomenon often appears in under-defined parameter identification problems. 
The underlying problem is that of a singular system of equations having more than one solution. The 
symptoms of non-uniqueness are: 

 
o Different solutions are found having the same objective function values 
o The confidence interval for a non-linear regression problem is very large, signaling a singular system 

 
For nonlinear regression probems, the user should ensure that the test/target results are sufficient. It could be 
that the data set is large but that some of the parameters are insensitive to the functions corresponding to the 
data. An example is the determination of the Young’s modulus (E) of a material, but having test points only 
in the plastic range of deformation(see example Section  22.5). In this case the response functions are 
insensitive to E and will show a very high confidence interval for E (Section  22.5.2). 
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The difference between a non-robust design and an impossible one is that the non-robust design may show 
unexpected behavior, causing the run to be aborted, while the impossible design cannot be synthesized at 
all. 
 
Impossible designs are common in mechanism design. 
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8. Graphical User Interface and 
Command Language 

This chapter introduces the graphical user interface, the command language and describes syntax rules for 
names of variables, strings and expressions. 
 
8.1 LS-OPT user interface (LS-OPTui) 
 
LS-OPT can be operated in one of two modes. The first is through a graphical user interface, LS-OPTui, and 
the second through the command line using the Design Command Language (DCL). 
 
The user interface is launched with the command 
 
lsoptui [command_file] 
 
The layout of the menu structure (Figure  8-1) mimics the optimization setup process, starting from the 
problem description, through the selection of design variables and experimental design, the definition and 
responses, and finally the formulation of the optimization problem (objectives and constraints). The run 
information (number of processors, monitoring and termination criteria) is also controlled via LS-OPTui. 
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Figure  8-1: Information panel in LS-OPTui 

 
 
8.2 Problem description and author name 
 
In LS-OPTui, the Info (main) panel has fields for the entering of the problem description and author 
information. 
 
Command file syntax: 
problem_description 
author author_name 
 
A description of the problem can be given in double quotes. This description is echoed in the lsopt_ 
input and lsopt_output files and in the plot file titles. 
 
 
Example: 
 
"Frontal Impact" 
author "Jim Brown" 
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The number of variables and constraints are echoed from the graphical user input. These can be modified by 
the user in the command file. 
 
Command file syntax: 
solvers number_of_solvers < 1 > 
constants number_of_constants < 0 > 
variables number_of_variables 
dependents number_of_dependent_variables < 0 > 
histories number_of_response_histories < 0 > 
responses number_of_responses 
composites number_of_composites < 0 > 
objectives number_of_objectives < 0 > 
constraints number_of_constraints < 0 > 
distributions number_of_distributions < 0 > 
 
 
Example: 
 
variable 2 
constraint 1 
responses 2 
objectives 2 
 
The most important data commands are the definitions. These serve to define the various entities which 
constitute the design problem namely solvers, variables, results, matrices, responses, objectives, constraints 
and composites. The definition commands are: 
 
solver package_name 
constant name value 
variable name value 
dependent name value 
result name string 
history name string 
matrix name string 
response name string 
composite name type type 
composite name string  
objective name entity weight 
constraint name entity name 
 
Each definition identifies the entity with a name. “Results” and “matrices” do not require a count. Other 
entities will be phased out in future. 
 
8.3 Command Language 
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The command input file is a sequence of text commands describing the design optimization process. It is 
also written automatically by LS-OPTui. 
 
The Design Command Language (DCL) is used as a medium for defining the input to the design process. 
This language is based on approximately 200 command phrases drawing on a vocabulary of about 200 
words. Names can be used to describe the various design entities. The command input file combines a 
sequence of text commands describing the design optimization process. The command syntax is not case 
sensitive. 
 
8.3.1 Names 
Entities such as variables, responses, etc. are identified by their names. The following entities must be given 
unique names: 
 
solver 
constant 
variable 
dependent 
result 
history 
matrix 
response 
composite 
objective 
constraint 
 
A name is specified in single quotes, e.g. 
 
solver dyna ’DYNA_side_impact’ 
constant ’Young_modulus’ 50000.0 
variable ’Delta’ 1.5 
dependent ’new_modulus’ {Young_modulus + Delta} 
result ’x_acc’ "BinoutResponse –res_type rcforc –cmp z_force –id 1  
                –side SLAVE –select TIME –end_time 0.002" 
Matrix ’strain’ {Matrix3x3Init(0.001,0.002,0.0035, a,b,c, d,e,f)} 
History ’y_vel’ "DynaASCII nodout Y_VEL 187705 TIMESTEP 0 SAE 30" 
Response ’x_acc’ "DynaASCII rbdout X_ACC 21 AVE" 
composite ’deformation’ type targeted 
composite ’sqdef’ {sqrt(deformation)} 
objective ’deformation’ composite ’deformation’ 1.0 
constraint ’Mass’ response ’Mass’ 
 
In addition to numbers 0-9, upper or lower case letters, a name can contain any of the following characters: 
 
_. 
 
The leading character must be alphabetical. Spaces are not allowed. A name length is limited to 61 
characters. 
 
Note: 
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Because mathematical expressions can be constructed using various entities in the same formula, 
duplication of names is not allowed. 
 
8.3.2 Command lines 
 
Preprocessor commands, solver commands or response extraction commands are enclosed in double quotes, 
e.g. 
 
$ SPECIFICATION OF PREPROCESSOR AND SOLVER 
preprocessor command "/usr/ls-dyna/ingrid" 
solver command "/alpha6_2/usr/ls-dyna/bin/ls-dyna_9402_dec_40" 
$ IDENTIFICATION OF THE RESPONSE 
response ’displacement’ "DynaRelativeDisp 0.2" 
response ’Force’ "Myforce" 
 
In addition to numbers 0-9, upper or lower case letters and spaces, a command line can contain any of the 
following characters: 
 
_=-.’/<>;‘ 
 
In the command input file, a line starting with the character $ is ignored. 
 
A command must be specified on a single line. 
 
8.3.3 File names 
 
Input file names for the solver and preprocessor must be specified in double quotes. 
 
prepro input file "p11i" 
solver input file "side_impact" 

 
8.3.4 Command file structure 
 
The commands are arranged in two categories: 
 
• problem data 
• solution tasks 
 
There are several commands for specifying the available tasks. The remaining commands are for the 
specification of problem data. A solution task command serves to execute a solver or processor while the 
other commands store the design data in memory. 
 
In the following chapters, the command descriptions can be easily found by looking for the large typescript 
bounded by horizontal lines. Otherwise the reader may refer to the quick reference manual that also serves 
as an index. The default values are given in angular brackets, e.g. < 1 >. 
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8.3.5 Environments 
 
Environments have been defined to represent all dependent entities that follow. The only environments in 
LS-OPT are for 
 
• solver identifier_name 

All responses, response histories, solver variables, solver experiments and solver-related job information 
defined within this environment are associated with the particular solver. 

• strict, slack/soft Pertains to the strictness of constraints. See Sections  16.5. 
• move, stay Pertains to whether constraints should be used to define a reasonable design space or 

not for the experimental design. See Section  13.6. 
 
8.3.6 Expressions 
 
Each entity can be defined as a standard formula, a mathematical expression or can be computed with a 
user-supplied program that reads the values of known entities. The bullets below indicate which options 
apply to the various entities. Variables are initialized as specified numbers.  
 

Table  8.3-1: Expression options of optimization entities 

Entity Standard Expression User-defined 
Variable 
Dependent 
Result 
Matrix 
History 
Response 
Composite 

 
 
● 
 
● 
● 
● 

 
● 
● 
● 
● 
● 
● 

 
 
● 
 
● 
● 

 
A list of mathematical and special function expressions that may be used is given in Appendix D : 
Mathematical Expressions. 
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9. Program Execution 
 
 
 
 
This chapter describes the directory structure, output and status files, and logistical handling of a simulation-
based optimization run. 
 
9.1 Work directory 
 
Create a work directory to keep the main command file, input files and other command files as well as the 
LS-OPT program output. 
 
9.2 Execution commands 
 
 

lsoptui command_file_name Execute the graphical user interface 
lsopt command_file_name LS-OPT batch execution 
lsopt info Create a log file for licensing 
lsopt env Check the LS-OPT environment setting
viewer command_file_name Execute the graphical postprocessor 

 
The LS-OPT environment is automatically set to the location of the lsopt executable. 
 
9.3 Directory structure 
 
When conducting an analysis in which response evaluations are done for each of the design points, a sub-
directory will automatically be created for each analysis. 
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Figure  9-1 : Directory structure in LS-OPT 

These sub-directories are named solver_ name/mmm.nnnn, where mmm represents the iteration number and 
nnnn is a number starting from 1. solver_ name represents the solver interface specified with the command, 
e.g. 
 
solver dyna ’side_impact’ 
 
In this case dyna is a reserved package name and side_impact is the name of an analysis case chosen 
by the user. The work directory needs to contain at least the command file and the template input files. 
Various other files may be required such as a command file for a preprocessor. An example of a sub-
directory name, defined by LS-OPT, is side_impact/3.11, where 3.11 represents the design point 
number of iteration 3. The creation of subdirectories is automated and the user only needs to deal with the 
working directory. 
 
In the case of simulation runs being conducted on remote nodes, a replica of the run directory is 
automatically created on the remote machine. The response.n and history.n files will automatically 
be transferred back to the local run directory at the end of the simulation run. These are the only files 
required by LS-OPT for further processing.  
 
9.4 Job Monitoring 
 
The job status is automatically reported at a regular interval. The user can also specify the interval. The 
interface, LS-OPTui reports the progress of the jobs in the Run panel (see Section  17.6). The text screen 
output while running both the batch and the graphical version also reports the status as follows: 
 
JobID Status     PID   Remaining 
----- ------     -----  --------- 
1 N o r m a l termination! 
2 Running    8427  00:01:38 (91% complete) 
3 Running    8428  00:01:16 (93% complete) 
4 Running    8429  00:00:21 (97% complete) 
5 Running    8430  00:01:13 (93% complete) 
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6 Running    8452  00:21:59 (0% complete) 
7 Waiting ... 
8 Waiting ... 
 
In the batch version, the user may also type control-C to get the following response: 
 
Jobs started 
Got control C. Trying to pause scheduler ... 
Enter the type of sense switch: 
sw1: Terminate all running jobs 
sw2: Get a current job status report for all jobs 
t: Set the report interval 
v: Toggle the reporting status level to verbose 
stop: Suspend all jobs 
cont: Continue all jobs 
c: Continue the program without taking any action 
Program will resume in 15 seconds if you do not enter a choice switch: 
If v is selected, more detailed information of the jobs is provided, namely event time, time step, internal 
energy, ratio of total to internal energy, kinetic energy and total velocity. 
 
9.5 Result extraction 
 
Each simulation run is immediately followed by a result extraction to create the history.n and 
response.n files for that particular design point. For distributed simulation runs, this extraction process is 
executed on the remote machine. The history.n and  response.n files are subsequently transferred to 
the local run directory. 
 
9.6 Restarting 
 
Restarting is conducted by giving the command: 
 
lsopt command_file_name, or by selecting the Run button in the Run panel of LS-OPTui. 
 
Completed simulation runs will be ignored, while half completed runs will be restarted automatically. 
However, the user must ensure that an appropriate restart file is dumped by the solver by specifying its 
name and dump frequency. 
 
The following procedure must be followed when restarting a design run: 
 
1. As a general rule, the run directory structure should not be erased. The reason is that on restart, LS-OPT 

will determine the status of progress made during a previous run from status and output files in the 
directories. Important data such as response values (response.n files), response histories 
(history.n files) are kept only in the run directories and is not available elsewhere. 

 
2. In most cases, after a failed run, the optimization run can be restarted as if starting from the beginning. 

There are a few notable exceptions: 
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a. A single iteration has been carried out but the design formulation is incorrect and must be changed. 
b. Incorrect data was extracted, e.g., for the wrong node or in the wrong direction. 
c. The user wants to change the response surface type, but keep the original experimental design. 
 
In the above cases, all the history.n and response.n files must be deleted. After restarting, the 
data will then be newly extracted and the subsequent phases will be executed. A restart will only be able 
to retain the data of the first iteration if more than one iteration was completed. The directories of the 
other higher iterations must be deleted in their entirety. Unless the database was deleted (by, e.g., using 
the clean file, see Section  9.9), no simulations will be unnecessarily repeated, and the simulation run 
should continue normally.  

 
3. A restart can be made from any particular iteration by selecting the ‘Specify Starting Iteration’ button on 

the Run panel, and entering the iteration number. The subdirectories representing this iteration and all 
higher-numbered iterations will be deleted after selecting the Run button and confirming the selection. 

 
4. The number of points can be changed for a restart (see Section  13.12). 
 
 
 

 
9.7 Output files 
 
The following files are intermediate database files containing ASCII data. 
 

Table  9.7-1: Intermediate ASCII database files 

Database file Description Directory 

Experiments 
Trial designs computed as a result of the 
experimental design Case 

AnalysisResults 
The same trial designs and the responses 
extracted from the solver database Case 

DesignFunctions Parameters of the approximate functions Case 

OptimizationHistory 
Variable, response and error history of 
the successive approximation process Work 

OptimizerHistory Detailed history of the optimizer Work 

TradeOff 
All variable, responses and extended 
results of the non-dominated solutions at 
each iteration 

Work 

ExtendedResults 
All variables, responses and extended 
results at each trial design point Case 

Net.funcname 
Parameters of the metamodel of function 
with name funcname Case 
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A more detailed description of the database is available in Appendix C. 
 
The output files are as follows: 

Table  9.7-2: Output files 
 

Database file Description Directory View option 

lsopt_input Input in a formatted style Work Input 

lsopt_output 
Results and some logging 
information Work Output 

lsopt_report 

A final report of the analysis 
results. Available for some of the 
main tasks and most of the Repair 
tasks 

Work Summary 

history_design 
Table of the objective and 
constraint values for each iteration 
(e.g. for plotting) 

Work File 

history_variables 
Table of the design variables, 
responses and composites for each 
iteration (e.g. for plotting) 

Work File 

lsopt_db 

This file communicates the current 
status of the LSOPT databases to 
other LSTC programs. The content 
of this file is subject to change 
between versions of LS-OPT. 

Work File 
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The following files are in a .csv (comma separated variables) format: 
 

Table  9.7-3: Result files in .csv format 

Database file Description Directory Remarks 

Experiments_n.csv 
Experiments (n = iteration 
number) Case  

AnalysisResults_n.csv Analysis Results Case  

ExtendedResultsMaster_n.csv 

Extended Results (variables, 
dependents, responses, 
composites, objectives, 
constraints, multiobjective) 

Case 

 

ExtendedResultsMETAMaster_n.csv
Extended Results file for user-
defined Experiments file Case See Section 

 13.10 

PRESS_predictions_n.csv 

PRESS (Section  2.3.4) 
predicted results and PRESS 
residuals (Polynomials and 
Radial Basis Function 
networks (Section  3.1.2) only. 
PRESS residuals are not 
computed for Feedforward 
Neural Networks) 

Case 

Use check 
box to select 
PRESS in 
Viewer→ 
Accuracy→ 

OptimizerHistory_n.csv 
Detailed history of the 
optimizer for iteration n Work  

 
 
9.8 Log files and status files 
 
Status files prepro, replace, started, finished, history.n, response.n and 
EXIT_STATUS are placed in the run directories to indicate the status of the solution progress. The 
directories can be cleaned to free disk space but selected status files must remain intact to ensure that a 
restart can be executed if necessary. 
 
A brief explanation is given below. 
 
 

Table  9.8-1: Status files generated by LS-OPT 
prepro The preprocessing has been done. 
replace The variables have been replaced in the input files. 
started The run has been started. 
finished The run has been completed. The completion status is given in the file.
response.n Response number n has been extracted. 
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history.n History number n has been extracted. 
EXIT_STATUS Error message after termination. 

 
 
The user interface LS-OPTui uses the message in the EXIT_STATUS file as a pop-up message. 
 
The lfop.log file contains a log of the core optimization solver solution. 
 
The simulation run/extraction log is saved in a file called lognnnnnn in the local run directory, where 
nnnnnn represents the process ID number of the run. An example of a logfile name is log234771. 
 
Please refer to Section  9.6 for restarting an optimization run. 
 
9.9 Managing disk space during run time 
 
During a successive approximation procedure, superfluous data can be erased after each run while keeping 
all the necessary data and status files (see above and example below). For this purpose the user can provide 
a file named clean containing the required erase statements such as: 
 
 
rm -rf d3* 
rm -rf elout 
rm -rf nodout 
rm -rf rcforc 
 
The clean file will be executed immediately after each simulation and will clean all the run directories 
except the baseline (first or 1.1) and the optimum (last) runs. Care should be taken not to delete the lowest 
level directories or the log files prepro, started, replace, finished, response.n or 
history.n (which must remain in the lowest level directories). These directories and log files indicate 
different levels of completion status which are essential for effective restarting. Each file 
response.response_number contains the extracted value for the response: response_number. E.g., the 
file response.2 contains the extracted value of response 2. The essential data is thus preserved even if 
all solver data files are deleted. The response_number starts from 0. 
 
Complete histories are similarly kept in history.history_number. 
 
 
 
The minimal list to ensure proper restarting is: 
 
prepro 
XPoint 
replace 
started 
finished 
response.0 
response.1 
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. 

. 
history.0 
history.1 
. 
. 
 
Remarks: 
 

1. The clean file must be created in the work directory. 
2. If the clean file is absent, all data will be kept for all the iterations.  
3. For remote simulations, the clean file will be executed on the remote machine. 

 
9.10 Error termination of a solver run 
 
The job scheduler will mark an error-terminated job to avoid termination of LS-OPT. Results of abnormally 
terminated jobs are ignored. If there are not enough results to construct the approximate design surfaces, 
LS-OPT will terminate with an appropriate error message. 
 
9.11 Parallel processing 
 
Runs can be executed simultaneously. The user has to specify how many processors are available. 
Command file syntax: 
concurrent jobs number_of_jobs 
 
If a parallel solver is used, the number of concurrent jobs used for the solution will be number_of_jobs times 
the number of cpu’s specified for the solver. 
Example: 
 
concurrent jobs 16 
 
If the number of concurrent jobs is specified as 0, all the jobs will be run simultaneously. This can be used 
to transfer all the jobs to a queuing system (see Section  9.12) at once. 
 
 

9.12 Using an external queuing or job scheduling system 
 
9.12.1 Introduction 
The LS-OPT Queuing Interface interfaces with load sharing facilities (e.g. LSF1

 or LoadLeveler2) to enable 
running simulation jobs across a network. LS-OPT will automatically copy the simulation input files to each 
remote node, extract the results on the remote directory and transfer the extracted results to the local 

                                                 
1 Registered Trademark of Platform Computing Inc. 
2 Registered Trademark of International Business Machines Corporation 
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directory. The interface allows the progress of each simulation run to be monitored via LS-OPTui. The 
README.queue file should be consulted for the most up to date information about the queuing interface. 
 
Command file syntax: 
Solver queue [queue_name] 
 

Table  9.12-1: Queuing options 

queuer_ name Description 
lsf LSF 
loadleveler LoadLeveler 
pbs PBS3 
nqe NQE4 
nqs NQS5 
aqs AQS 
slurm SLURM 
user User Defined 
blackbox Black box 
msccp MS Windows Compute 

Cluster Server 
honda dedicated queuer 

 
9.12.2 Installation 
To run LS-OPT with a queuing (load-sharing) facility the following binary files are provided in the /bin 
directory which un-tars (or unzips) from the distribution during installation of LS-OPT: 
 
 bin/wrappers/wrapper_* 
 bin/runqueuer 
 
The * represents platform details, e.g. wrapper_hp or wrapper_suse91. The runqueuer executes 
the command line for the purpose of queuing and must remain in the LS-OPT environment (the same 
directory as the lsopt executable). 
 
The following instructions should then be followed: 
 
Installation for all remote machines running LS-DYNA 
  

1. Create a directory on the remote machine for keeping all the executables including lsdyna. Copy the 
appropriate executable wrapper_*  program located in the bin/wrappers directory to the new 
directory. E.g. if you are running lsdyna on HPUX, place wrapper_hp on this machine. Rename it 
to "wrapper". 

                                                 
3 Portable Batch System. Registered Trademark of Veridian Systems 
4 Network Queuing Environment. Registered Trademark of Cray Inc. 
5 Network Queuing System 
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 Installation on the local machine 
  

2. Select the queuer option in LS-OPTui or add a statement in the LS-OPT command file to identify the 
queuing system, e.g. 

 
             queuer lsf 
     or 
             solver queuer loadleveler 
 
     for each solver. 

 
To pass all the jobs to the queuing system at once, select zero concurrent jobs in the GUI or 
command file, e.g.   

 
concurrent jobs 0 

 
     Example: 
 
      solver command "rundyna.hp DynaOpt.inp single 980" 
     solver input file "car6_crash.k" 
     solver queuer loadleveler 

 
In this example, the arguments to the rundyna.hp script are optional and can be hard-coded in the 
script. 

 
3. Change the script you use to run the solver via the queuing facility by prepending "wrapper" to the 

solver execution command. Use full path names for both the wrapper and executable or make sure 
the path on the remote machine includes the directory where the executables are kept. 

 
The argument for the input deck specified in the script must always be the LS-OPT reserved name 
for the chosen solver, e.g. for LS-DYNA use DynaOpt.inp . 
 

9.12.3 Example 
 
An example using a script follows: 
 
The LS-OPT command file part relating to the queue is: 
     
solver dyna960 'Case1' 
$ ---- PBS Script  
  solver command "/nec00a/mike/project/submit_pbs" 
$ ---- Input file with variable substitution 
  solver input file "input.k" 
$ ---- Queuing specification 
  solver queue pbs 
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The "submit_pbs" file is: 
 
#!/bin/csh -f 
# 
# Run jobs on a remote processor, remote disk 
set newdir=`pwd | sed -n 's/.*\/\(.*\)\/\(.*\)/\1\/\2/p'` 
# Run jobs on a remote processor, local disk (no transmission) 
# set newdir=`pwd` 
echo $newdir 
cat > dynscr << EOF 
#!/bin/csh -f 
# 
#PBS -l nodes=1:ncpus=1 
# 
setenv LSOPT /nec00a/mike/codes/LSOPT_EXE 
setenv LSOPT_HOST $LSOPT_HOST 
setenv LSOPT_PORT $LSOPT_PORT 
# Run jobs on a remote processor, remote disk 
mkdir -p lsopt/$newdir 
cd lsopt/$newdir 
# The input file name is required for LS-OPT 
/nec00a/mike/codes/wrapper /nec00a/mike/codes/ls980.single i=DynaOpt.inp 
EOF 
qsub dynscr 
 
9.12.4 Mechanics of the queuing process 
Understanding the mechanics of the queuing process should help to debug the installation: 
 

1. LS-OPT automatically prepends runqueuer to the solver command and executes runqueuer 
which runs the submit_pbs script.  

a. The runqueuer sets the variables LSOPT_HOST and LSOPT_PORT locally. 
b. The submit_pbs script spawns the dynscr script.  

2. The queuing system then submits dynscr (see qsub command at  the end of the submit_pbs 
script above) on the remote node which now has fixed values substituted for LSOPT_HOST and 
LSOPT_PORT. In most cases the queuing system will transmit the environment variables to the 
remote side, so the setting of the variables may not be necessary. 

3. The wrapper executes on the same machine as LS-DYNA, opens a socket and connects back to the 
local host using the host/port information.  The standard output is then relayed to the local machine. 
This output is written to the logxxxx file (where xxxx is the process number) on the local host 
(look in the local sub-subdirectory, e.g. CRASH/1.7). An example of an error message resulting 
from a mistype of “wrapper” in the submit script is given in the log file as follows: 

 
STARTING command /home/jim/bin/runqueuer 
PORT=56984 
JOB=LoadLeveler 
llsubmit: The job "1/1.1" has been submitted. 
/home/jim/LSOPT_EXE/Xrapper: Command not found. 
finished with directory 
/home/jim/LSOPT/___3.1___/optQA/QUEUE/EX4a_remote/remote/1/1.1 
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4. The wrapper will also extract the data immediately upon completion on the remote node. Extracted 
data (the history.n and response.n files) are automatically transferred back to the local sub-
subdirectory. If other parts of the database (e.g. d3plot files) are required (e.g. for post-processing 
with LS-PREPOST), the user has to specify these in the command file using appropriate LS-OPT 
commands (see Section  9.12.9). A log of the database extraction is provided in the logxxxx file. 

 
9.12.5 Environment variables   
Users typically do not need to set these. However these variables are set on the local side and their values 
must be carried to the remote side by the queuing software. If you do not know if this is being done, try 
setting them in the submit script as in the example above or please contact your system administrator. 
 
LSOPT_HOST : the machine where LS-OPT (and therefore the runqueuer) is running. Set this if 
wrapper_* has trouble connecting back to runqueuer. 
  
LSOPT_PORT : TCP/IP port runqueuer listens on for remote connections 
 
9.12.6 Abnormal termination and retrying the job submission 
 
User-defined abnormal termination 
It may be prudent to retry job submissions for certain types of abnormal termination. For this purpose, the 
user can specify an A b n o r m a l signal for terminations which are neither normal nor error 
termination. A job that has terminated in this way can then be retried by the LS-OPT job scheduler. The      
A b n o r m a l signal should be sent to standard output from the simulation script. The following 
two parameters can be used to set the number of retries allowed and timeout for each retry. The defaults are 
shown in square brackets 
 
Command file syntax: 
Solver job retry [number_of_retries_allowed[9]] 
Solver job timeout [timeout for retry in seconds[60]] 
 
 
Queuer timout 
A special case exists in which the LS-OPT job scheduler automatically generates an A b n o r m a l 
signal. This is whenever the wrapper has not been executed for a specified timeout period. For this case a 
queuer timeout can be specified. 
 
Command file syntax: 
Solver queue timeout [number_of_minutes[720]] 
 
The queuer timeout is the time it will wait for the wrapper to connect, otherwise it sets an abnormal 
termination status and writes an A b n o r m a l signal to standard output. In this case the job will 
be resubmitted for the number of retries specified and using the queuing timeout for each retry. 
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9.12.7 Troubleshooting 
 

1. Diagnostics for a failed run usually appear in the logxxxx file in the run directory. If there is 
almost no information in this file, the wrapper path may be wrong or the submission script may have 
the wrong path or permission. 

 
Please attach the log file when emailing support@lstc.com. 
 

2. Make sure that the permissions are set for the executables and submission script. 
 

3. Check all paths to executables e.g. "wrapper", etc. No diagnostic can detect this problem. 
 

4. Make sure that the result database is produced in the same directory as where the wrapper is started, 
otherwise the data cannot be extracted. (E.g. the front end program such as mpirun may have a 
specification to change the working directory (-wd dir) ). 

 
5. Running on a remote disk. Make sure that the file "HostDirectory" is not copied by a user script to 

the remote disk if the simulation run is done on a remote disk. The "HostDirectory" file is a marker 
file which is present only on the local disk. Its purpose is to inform the wrapper that it is running on 
the local disk and, if found on a remote disk, will prevent the wrapper from automatically 
transferring extracted results back to the local disk. In general the user is not required to do any file 
copying since input files (including LS-DYNA include files) are copied to the remote disk 
automatically. The response.* and history.* files are recovered from the remote disk 
automatically. Other files can be recovered using the feature in Section  9.12.12 . 

 
6. Termination of user-defined programs: LS-DYNA always displays a  'N o r m a l' at the end 

of its output. When running a user-defined program which does not have this command displayed for 
a normal termination, the program has to be executed from a script followed by a command to write  
'N o r m a l'  to standard output. The example file runscript shown below first runs the 
user-defined solver and then signals a normal termination  

 
mpiexec –n 2 /home/john/bin/myprogram –i UserOpt.inp 
# print normal termination signal to screen 
echo 'N o r m a l' 
 
which is submitted by the wrapper command in submit_pbs as: 

 
/home/john/bin/wrapper /home/john/bin/runscript 
 
Note: Adding "echo N o r m a l" at the end of the wrapper command (after a semicolon) does 
not work which is why it should be part of the script run by the wrapper. 
 

 

mailto:support@lstc.com�
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9.12.8 User-defined queuing systems 
To ensure that the LS-OPT job scheduler can terminate queued jobs, two requirements must be satisfied: 
 
1. The queuer must echo a string 
 

Job ”Stringa Stringb Stringc …” has been submitted 
 

   or 
 
 Job Stringa has been submitted 

 
       e.g. 

 
Job ”Opteron Aqs4832” has been submitted 
Job aqs4832 has been submitted 
 

The string will be parsed as separate arguments in the former example or as a single argument in the 
latter example. The string length is limited to 1024 characters. The syntax of the phrases “Job ” and “ 
has been submitted” must be exactly as specified. If more than one argument is specified without 
the double quotes, the string will not be recognized and the termination feature will fail. 

 
2. A termination script (or program) LsoptJobDel must be placed either in the main working directory 

(first default location) or in the directory containing the LS-OPT binaries (second default). This script 
will be run with the arguments stringA, stringB, etc. and must contain the command for terminating the 
queue. An example of a Unix C shell termination script that uses two arguments is: 

 
#!/bin/csh -f 
aadmin –c $1 –j $2 stop 

 
 
9.12.9 Blackbox queueing system 
The Blackbox queueing system is another flavor of the User-defined queueing system. It can be used when 
the computers running the jobs are separated from the computer running LS-OPT by means of a firewall. 
The key differences between User-defined and Blackbox are: 
 

• It is the responsibility of the queueing system or the user provided scripts to transfer input and output 
files for the solver between the queueing system and the workstation running LS-OPT. LS-OPT will 
not attempt to open any communications channel between the compute node and the LS-OPT 
workstation. 

• Extraction of responses and histories takes place on the local workstation instead of on the computer 
running the job. 

• LS-OPT will not run local placeholder processes (i.e. extractor/runqueuer) for every submitted job. 
This makes Blackbox use less system resources, especially when many jobs are run in each iteration. 
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When using the Blackbox queueing system, a LsoptJobDel script is required, just as in the User-defined 
case. Furthermore, another script named LsoptJobCheck must also be provided. This script takes one 
parameter, the job ID, as returned by the submission script. The script should return the status of the given 
job as a string to standard output.  
 
The Blackbox queuer option requires the user to specify a command that will queue the job.  For example, 
 
solver ls971_single '1' 
solver command "../../submit_script" 
... 
solver queue blackbox 
 
The Blackbox option can also be specified in the "Run" panel of the LS-OPT user interface. 
 
In this case, the solver is named ls971_single and the case subdirectory is named '1'.  The command to 
queue the job (in this case "submit_script") must return a job identifier that has one of the following 
two forms: 
 

Job "Any Quoted String" has been submitted 
Job AnyUnquotedStringWithoutSpaces has been submitted 

 
The Word "Job" must be the first non-white space on the line, and must appear exactly as shown.  Any 
amount of white space may appear between "Job" and the job identifier, as well as after the job identifier 
and before "has been submitted". 
 
The Blackbox queuer requires the presence of two executable scripts LsoptJobCheck and 
LsoptJobDel.  These scripts must be located in either in the current LS-OPT project directory or in the 
directory where the running LS-OPT program is located. (For Windows, the scripts must have an added 
extension .exe, .vbs, .cmd or .bat).  If the Blackbox queuer option is invoked for some solver, then 
LS-OPT checks for the existence of executable scripts in one of these locations, and refuses to run if the 
LsoptJobCheck and/or LsoptJobDel scripts cannot be found or are not executable. The project 
directory is searched first. 
 
LsoptJobCheck script 
The user-supplied LsoptJobCheck script is run each time LS-OPT tries to update the current status of a 
job. The LsoptJobCheck script is run with a single commandline argument: 
 
LsoptJobCheck job_identifier 
 
The working directory of the LsoptJobCheck script is set to the job directory associated with 
job_identifier. 
 
The script is expected to print a status statement that LS-OPT can use to update its status information.  The 
only valid status statements are: 
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String Description 
WAITING The job has been submitted and is waiting to start 
RUNNING The job is running.  
RUNNING N/M After RUNNING, the script may also report the progress as a 

fraction. RUNNING 75/100 means that the job has ¼ to go. The 
progress information will be relayed to the user, but not used in 
any other way by LS-OPT. 

FAILED The job failed. This is only to be used when the underlying 
queueing system reports some kind of problem. Hence, a solver 
that has terminated in error does not have to be deteceted by the 
LsoptJobCheck script. 

FINISHED The job has completed and any output files needed for extraction 
has been copied back to the run directory. 

 
 
Any amount of white space may appear at the beginning of a status statement, and anything may appear 
after these statements.  The optional N/M argument for RUNNING is interpreted as an estimate of the 
progress; in this case N and M are integers and N/M is the fractional progress.  N must be not be larger than 
M. 
 
If LsoptJobCheck terminates without printing a valid status statement, then it is assumed that 
LsoptJobCheck does not function properly, and LS-OPT terminates the job using the LsoptJobDel 
script.  All output from the LsoptJobCheck script is logged to the job log file (logxxxx) in the run 
directory for debugging purposes. 
 
Note: The LsoptJobCheck script may print more than one status statement, but only the first one will be 
used to update the status. 
 
LsoptJobDel script 
The user-supplied LsoptJobDel script is run whenever the user chooses to terminate a job, or whenever 
LS-OPT determines that a job should be killed (for example, if LsoptJobCheck fails). The 
LsoptJobDel script is run with a single commandline argument: 
 
LsoptJobDel job_identifier . 
 
The working directory of the LsoptJobDel script is set to the job directory associated with job_identifier. 
 
9.12.10 Honda queuing system 
 
The Honda queuing system interface is based on the Blackbox queuing system, but is dedicated to the 
particular needs of this system. 
 
Mechanics of the Honda queuing process 
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The queuing system generates a status file for which an environment variable has been defined in LS-OPT 
as: 
 
        $HONDA_STATUSFILE 
 
The status file is the output of the PBS queue check command.  During the initialization phase, LS-OPT 
checks whether this variable setting points to a valid file.  If it does not, LS-OPT terminates before starting 
the scheduler, and prints a standard LSOPT-style error message. 
 
The line which marks the fields in the status file is used to determine how to parse the file; this line has the 
form "-----  -----------  -  ----- ---- ....". Fields are extracted based on this line which consists solely of space 
and dash characters.  The following fields are used: 
 

4 name 
6 status: 'R' for running or 'Q' for queued 
10 total wall clock time allowed 
11 total wall clock time consumed. 

 
Fields 10 and 11 are used to set the progress indicator.  If the indicator ever reaches 100%, then it will 
terminate due to total wall clock time restrictions. 
 
If a job cannot be found in the status file, then it is assumed to be dead.  The job status entry is not looked 
for until a minimum of 3 seconds after the job has been started. A status file is searched for a particular job 
status entry only if the status file has a modification time that is later than the start time of the job. 
 
Since there is no way to determine the exit status of a job by looking only at this status file, the 
determination of the final exit status depends on whether or not the job is an LS-DYNA job. If the job is an 
LS-DYNA job, then the messag file is parsed for the status statements "N o r m a l" and "E r r o 
r" termination. If no messag file is found 10 seconds after the job is no longer listed in the status file, then 
we assume an error termination. 
     
If the job is a non-LS-DYNA job, then LsoptJobCheck (see Section  9.12.9) is executed just once after 
the job no longer appears in the status file. LsoptJobCheck should print either (a) FINISHED or (b) 
ERROR in order to communicate the final exit status.  If LsoptJobCheck cannot be found or cannot be 
executed, then ERROR is assumed. The job log file will contain a message indicating any problem that may 
exist which prevents LsoptJobCheck from being run. 
 
The HONDA queued jobs do not use LsoptJobDel as defined in the Blackbox queuing selection. Jobs 
are deleted using the standard PBSPro qdel command. 
 
Various statements concerning how status information is gathered are logged to the job log files. These are: 
 

1. Job status for LSDYNA jobs found in 'messag' file: 
[HONDA] Termination status found in 'messag' file 
[HONDA] exact termination statement 
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2. The job status line for the current job found in $HONDA_STATUSFILE is saved: 
     [HONDA] status line 
 
3. The job is assumed finished if there is no status line found: 

[HONDA] Job 23551 not found in STATUS file - assuming job is 
finished. 

 
4. Indication that LsoptJobCheck is run at the end of a non-LS-DYNA job: 
 [HONDA] Non LS-DYNA job. Running LsoptJobCheck to determine exit       

 status. 
 

5. Status returned from LsoptJobCheck. 
     [HONDA] Job finished - LsoptJobCheck reports normal termination 
     [HONDA] Job finished - LsoptJobCheck reports error termination 
 
Any errors while gathering status information are logged to the job log files such as log12345. 
 

1. Missing messag file after LSDYNA terminates: 
     [HONDA] Failed to find 'messag' file while FINISHING. 
     [HONDA] Assuming ERROR termination for LSDYNA job. 
 

2. Found no termination status statement in messag file 
     [HONDA] Found no termination status in 'messag' file 
     [HONDA] Assuming ERROR termination for LSDYNA job. 
 

3. HONDA_STATUSFILE variable not set 
     [HONDA] *** Error $HONDA_STATUSFILE not set. 
 

4. Could not open $HONDA_STATUSFILE 
     [HONDA] *** Error Failed to open $HONDA_STATUSFILE=pbsq_status 
 

5. LsoptJobCheck script not found for non-LSDYNA job 
     [HONDA] *** Error LsoptJobCheck cannot be found. 
     [HONDA]          Assuming error termination for non-LSDYNA job. 
 

6. LsoptJobCheck script did not print either (a) FINISHED or (b) FAILED 
     [HONDA] *** Error LsoptJobCheck did not return a valid status. 
     [HONDA]          Assuming error termination for non-LSDYNA job. 
 
If  $HONDA_STATUSFILE is not updated in a timely fashion, then the scheduler can hang forever, never 
moving forward.  A message is passed to lsopt through the communication socket if this happens: 
 
  *** Warning HONDA_STATUSFILE out of date by more than 5 minutes 
 *** Job progress monitoring suspended until next update 
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Even though the status file is checked before starting the scheduler, it is still possible for file errors to occur. 
These are also sent directly to LS-OPT. 
 
  *** Error $HONDA_STATUSFILE not set 
 *** Error Failed to open $HONDA_STATUSFILE=pbsq_status 
 
 
 
9.12.11 Microsoft Windows Compute Cluster Server 
 
LS-OPT supports submission of jobs to the Microsoft Compute Cluster Pack Scheduler. Two scripts called 
submit.cmd and submit.vbs, that work together, are available to interface LS-OPT with CCP. The 
script can be downloaded from ftp://ftp.lstc.com/ls-opt/QUEUING/MSCCS. Before using the 
scripts the variables in the beginning of the file submit.cmd needs to be changed to fit your local 
environment. Most users do not need to change the submit.vbs file. 
 
The example shows how the queue-related parts of an LS-OPT command file look when using the CCP 
scripts, when they are placed in the same directory as the command file: 
 
Example: 
 
solver dyna960 '1' 
 solver command "..\..\submit.cmd \\fileserver\bin\ls971.exe" 
 solver input file "key.k" 
 solver queue msccp 

 
 
 
9.12.12 Database recovery  
 
When distributing the simulation runs, the data can be recovered to the local machine. There are two 
commands: a LS-DYNA specific command and a general command. 
 
LS-DYNA: 

 
Command file syntax: 
Solver recover dyna [d3plot|d3hsp|binout|d3eigv|eigout] 
 
The LS-DYNA database can be recovered by using the above command. The requested database file will 
appear in the local directory. Each name is a prefix, so that e.g. d3plot01, d3plot02, … will be 
recovered when specifying d3plot. The details of the recovery procedure is logged in a local directory 
file. 
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Example: 
 
Solver recover dyna d3plot 
Solver recover dyna binout 
 
The recovery of the LS-DYNA database is only required if the user wants to do local post-processing (e.g. 
using LS-PREPOST). Otherwise the results are automatically extracted and transferred to the local node in 
the form of files response.n and/or history.n. 
 
 
User-defined : 

 
Command file syntax: 
Solver recover file "[file_wildcard]" 
 
Any database can be recovered by using the above command. The requested database file will appear in the 
local directory. Each name is a wildcard. 

  
Example: 
 
Solver recover file "d3plot*" 
Solver recover file "*" 
 
The first command will recover the full d3plot database. 
 
The last command will recover all the files from the run directory on the remote node to the run directory on 
the local node, hence the local directory will mirror the remote directory. 
 
A log of the database recovery is available in the logxxxx file in the run directory on the local machine. 
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10. Interfacing to a Solver, 
Preprocessor or Postprocessor 

This chapter describes how to interface LS-OPT with a simulation package and/or a parametric 
preprocessor. Standard interfaces as well as interfaces for user-defined executables are discussed. 
 
10.1 Labeling design variables in a solver and preprocessor 
 
Parameters specified in input files are automatically identified for the following packages: 
 

 
Package 

Native parameters 
recognized in 

input file 
 

LS-OPT Parameter 
Format recognized 
(see Section  10.1.1) 

include files 
recognized 
in input file 

LS-DYNA Yes Yes Yes 
ANSA Yes Yes Yes 
DEP Morpher6 Yes Yes No 
HyperMorph7 Yes Yes No 
TrueGrid8 No Yes Yes 
LS-INGRID No Yes Yes 
User-defined N/A Yes No 

 
LS-OPTui will automatically recognize the native and LS-OPT parameters for the formats indicated in the 
table and display them as ‘Constants’ against a blue background in the ‘Variables’ panel. The user can then 
change these constants to variables or dependents. The parameter names cannot be changed in the GUI so, if 
desired, must be changed in the original solver input file. A gray background indicates that the parameter 
name was specified in the GUI by the user or read from the LS-OPT command file and is not available in 
any of the input or include files.  
 
The ‘include’ files are also scanned wherever this feature is available making it nonessential to append any 
files. Include files which are specified with a path, e.g. “../../car5.k” or 
“/home/jim/ex4a/car6.k” are not copied to the run directories and no parameter substitutions will be 

                                                 
6 Registered Trademark of Detroit Engineering Products 
7 Registered Trademark of Altair Engineering, Inc. 
8 Registered Trademark of XYZ Scientific Applications, Inc. 
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made in these files. This is solely to prevent unnecessary file proliferation. The user must however ensure 
that files, which are to be distributed to remote nodes through a queuing system (see Section  9.12), do not 
contain any path specifications. These files are automatically transmitted to the relevant nodes where the 
solver will be executed. 
 
The LS-OPT parameter format described next is recognized in all types of input files.  
 
 
10.1.1 The LS-OPT Parameter Format 
 
LS-OPT provides a generic format that allows the user to substitute parameters in any type of input file. The 
parameters or expressions containing parameters must be labeled using the double bracketed format 
<<expression:[i]field-width>> in the input file.  
 
The expression field is for a FORTRAN or C type mathematical expression that can incorporate constants, 
design variables or dependents. The optional i character indicates the integer data type. The field width 
specification ensures that the number of significant digits is maximized within the field width limit. The 
default field width is 10 (commonly used in e.g. LS-DYNA input files). E.g. a number of 12.3456789123 
will be represented as 12.3456789 and 12345678912345 will be represented as 1.23457e13 for a 
field-width of 10.  
 
A field width of zero implies that the number will be represented in the “%g” format for real numbers or 
“%ld” format for integers (C language). For real numbers, trailing zeros and a trailing decimal point will 
not be printed. This format is not suitable for LS-DYNA as the field width is always limited. Real numbers 
will be truncated if specified as integers, so if rounding is desired the “nearest integer” expression should be 
used, e.g. <<nint(expression)>>. 
 
A record of the specified input files and parameters can also be checked in the lsopt_input file. 
 
 
      ---------------------------------------------------------------------- 
       L I S T   O F   I N P U T   F I L E S   U S E D   B Y   L S - O P T   
      ---------------------------------------------------------------------- 
 
       SOLVER: 1 
      --------------------------------|-----------|---------|-----------------| 
      File name                           Type      Utility  Parameter Occur.   
                                                             -----------------  
                                                              Native   LS-OPT   
      --------------------------------|-----------|---------|--------|--------| 
      main.k                           LS-DYNA 960 Rootfile  2        0        
      ../../car5.k                     LS-DYNA 960 Include   0        0        
      --------------------------------|-----------|---------|-----------------| 
 
      --------------------------------------------------------------------------- 
        L I S T   O F   I N C L U D E   F I L E S   A N D   P A R A M E T E R S  
      --------------------------------------------------------------------------- 
      ======================================================================== 
      File Name        Include Parameters Status     Time Stamp 
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                       Files                                    
      ======================================================================== 
      main.k           1       2          OLD        Thu Apr  1 14:39:11 2004 
      ======================================================================== 
       
                     List of Include Files for "main.k" 
 
                     ----------------- 
                     Include File Name 
                     ----------------- 
                     ../../car5.k     
                     ----------------- 
       
                     List of Parameters found in "main.k" 
 
                     ---------------------------------------- 
                     Parameter Name   Value      Type        
                     ---------------------------------------- 
                     tbumper          1          *PARAMETER  
                     thood            3          *PARAMETER  
                     ---------------------------------------- 
 
Inserting the relevant design variable or expression into the preprocessor command file requires that a 
preprocessor command such as 
 
create fillet radius=5.0 line 77 line 89 
 
be replaced with 
 
create fillet radius=<<Radius*25.4:0>> line 77 line 89 
 
where the design variable named Radius is the radius of the fillet and no trailing or leading spaces are 
desired. In this case, the radius multiplied by the constant 25.4 is replaced. Any expression can be specified. 
 
An alternative option would be to specify: 
 
create fillet radius=<<Radius_scaled:0>> line 77 line 89 
 
while specifying the dependent Radius_scaled as a function of independent variable Radius, such that 
Radius_scaled = Radius * 25.4 . This specification is done in the ‘Variables’ panel or command file.  
 
Similarly if the design variables are to be specified using a Finite Element (LS-DYNA) input deck then data 
lines such as 
 
*SECTION_SHELL 
1, 10, , 3.000 
0.002, 0.002, 0.002, 0.002 
 
can be replaced with 
 
*SECTION_SHELL 
1, 10, , 3.000 
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<<Thickness_3>>,<<Thickness_3>>,<<Thickness_3>>,<<Thickness_3>> 
 
to make the shell thickness a design variable. 
 
An example of an input line in a LS-DYNA structured input file is: 
 
* shfact z-integr printout quadrule 
.0 5.0 1.0 .0 
* thickn1 thickn2 thickn3 thickn4 ref.surf 
<<Thick_1:10>><<Thick_1:10>><<Thick_1:10>><<Thick_1:10>> 0.0 
 
 
The field-width specification used above is not required since the default is 10. Consult the relevant User’s 
manual for rules regarding specific input field-width limits. 
 
 
10.2 Interfacing to a Solver 
 
In LS-OPTui, solvers are specified in the Solver panel (Figure  10-1): 
 
Both the preprocessor and solver input and append files are specified in this panel. Multiple solvers (as used 
in multi-case or multi-disciplinary applications) are defined by selecting ’Add solver’. The ’Replace’ button 
must be used after the modification of current data. 
 
The name of the analysis case is used as the name for the subdirectory. 
 
Execution command. The command to execute the solver must be specified. The command depends on the 
solver type and could be a script, but typically excludes the solver input file name argument as this is 
specified using a separate command. The execution command may include any number of additional 
arguments. 
 
Input template files. LS-OPT converts the input template to an input deck for the preprocessor or solver by 
replacing the original parameter values (or labels) with new values determined by the sampling procedure. 
During run-time, LS-OPT appends a standard input deck name to the end of the execution command. In the 
case of the standard solvers, the appropriate syntax is used (e.g. i=DynaOpt.inp for LS-DYNA). For a 
user-defined solver, the name UserOpt.inp is appended. The specification of an input file is not 
required for a user-defined solver. 
 
Appended file. Additional solver data can be appended to the input deck using the 
solver_append_file_name file. This file can contain variables to be substituted. 
 
Include files. These do not have to be specified as they are automatically and recursively searched by LS-
OPT when given the name of the main input file (root file).  
. 
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Figure  10-1: Solver panel in LS-OPTui 

 
Command file syntax: 
solver software_package_identifier name_of_analysis_case 
solver input file "solver_input_file_name" 
solver command "solver_program_name" 
solver append file "solver_append_file_name" 
interval Time_interval_between_progress_reports < 15 > (not available in 
LS-OPTui) 
 
The following software package identifiers are available: 
 

own   user-defined solver 
dyna  LS-DYNA Versions prior to 960 
dyna960  LS-DYNA Version 960/970 
nastran  MSC-NASTRAN SOL 103 
 

10.2.1 Interfacing with LS-DYNA 
 
The first command demarcates the beginning of the solver environment. 
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Example: 
 
$ Define the solver software to be used. 
solver dyna960 ’SIDE_IMPACT’ 
$ the data deck to be read by the solver. 
  solver input file "ingrido" 
$ the command to execute the solver. 
  solver command "/alpha6_2/usr/ls-dyna/bin/ls970.single" 
$ Extra commands to the solver. 
  solver append file "ShellSetList" 
 
More than one analysis case may be run using the same solver. If a new solver is specified, the data items 
not specified will assume previous data as default. All commands assume the current solver. 
 
 
Remarks: 
 
• The name of the solver will be used as the name of the sub-directory to the working directory. 
 
• The command solver package_identifier name initializes a new solver environment. All 

subsequent commands up to the next “solver name” command will apply to that particular solver. 
This is particularly important when specifying response name commandline commands as each 
response is assigned to a specific solver and is recovered from the directory bearing the name of the 
solver. (See Section  14). 

 
• Do not specify the command nohup before the solver command and do not specify the UNIX 

background mode symbol &. These are automatically taken into account. 
 
• The solver command name must not be an alias. The full path name (or the full path name of a 

script which contains the full solver path name) must be specified. 
 
The LS-DYNA restart command will use the same command line arguments as the starting command line, 
replacing the i=input file with r=runrsf. 
 
The *PARAMETER format 
The parameters specified under the LS-DYNA *PARAMETER keyword are recognized by LS-OPT and will 
be substituted with a new value for each of the multiple runs. These parameters should automatically appear 
in the Variable list of the GUI upon specification of the solver input file name. LS-OPT recognizes the “i”  
and “r” formats for integers and real numbers respectively and will replace the number in the appropriate 
format. Note that LS-OPT will ignore the *PARAMETER_EXPRESSION keyword so it may be used to 
change internal LS-DYNA parameters without interference by LS-OPT. 
 
For details of the *PARAMETER format please refer to LS-DYNA User’s Manual. 
 
Check of the *DATABASE cards 
LS-OPT can perform some basic checks of the *DATABASE cards in the LS-DYNA input deck. The 
checks will be done using the input deck of the first run of the first iteration. The items checked are: 
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• Whether the required binout data types are requested in the LS-DYNA input deck. For example, if 
LS_OPT uses airbag data, then the LS-DYNA deck should contain a *DATABASE_ABSTAT card 
requesting binout output. 

• Whether the required nodes and/or elements are requested in the LS-DYNA output. For example, if 
the LS-OPT output request refers to a specific beam, then a *DATABASE_HISTORY_BEAM or a 
*DATABASE_HISTORY_BEAM_SET card must exist and refer to the beam in question. Note 
that *SET_option_GENERAL or *SET_option_COLUMN card will not be interpreted and that an 
output entity specified using *SET_option_GENERAL or *SET_option_COLUMN may be be 
flagged incorrectly as missing; switch off the checking in this case. 

 
The GUI allows this to be set as an advanced solver option. 
 
Command file syntax: 
solver check output on/off 

 
 
 
Altering the d3plot databases 
The following options are available: 

• Compress the d3plot database. All results except displacements, velocities, and accelerations will be 
deleted. 

• Transforming the results to a local coordinate system specified by three nodes. The first node is the 
origin and the other two nodes are used to define the coordinate systems. The coordinate system 
moves with the nodes. A file specified the three nodes is required. An example of the possible 
contents of the file: 1001 1002 1003. The file therefore consists of a single line. 

• Write the results for a user selected set of parts. A file specifying the list of parts to be 
included/excluded is required. The file consists of multiple lines with a single entry per line. The 
syntax of the file is: 

o id includes the part with id, 
o id1-id2 includes the parts from id1 to id2, 
o –id excludes the part with id. Only parts included with id or id1-id2 can be excluded. 

For example:  5 
7-20 
-9. 

 
The GUI allows this to be set as an advanced solver option. 
 
This capability does not work with adaptivity. 
 
The *DATABASE_EXTENT_BINARY option in LS-DYNA also allows control over the size of the d3plot 
databases.  
 
Command file syntax: 
solver compress d3plot on/off 
solver compress d3plot nodes nodrel_filename 
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solver compress d3plot extract parts_filename 
 

 
Example: 
 
$ set d3plot compress options  
solver compress d3plot on 
solver compress d3plot nodes “nodrel_nodes.txt” 
solver compress d3plot extract “part_list.txt” 
 
 
 
10.2.2 Interfacing with LS-DYNA/MPP 
 
The LS-DYNA MPP (Message Passing Parallel) version can be run using the LS-DYNA option in the 
”Solver” window of LS-OPTui (same as the dyna option for the solver in the command file). However, 
the run commands must be specified in a script, e.g. the UNIX script runmpp: 
 
mpirun -np 2 lsdynampp i=DynaOpt.inp 
cat dbout.* > dbout 
dumpbdb dbout 
 
The solver specification in the command file is as follows: 
 
 solver dyna960 ’crash’ 
 solver command "../../runmpp" 
 solver input file "car5.k" 
 solver append file "rigid2" 
 
Remarks: 
 
1. DynaOpt.inp is the reserved name for the LS-DYNA MPP input file name. This file is normally 

created in the run directory by LS-OPT after substitution of the variables or creation by a preprocessor. 
The original template file can have a different name and is specified as the input file in the solver 
input file command. 

 
2. lsdynampp is the name of the MPP executable. 
 
3. The file dumpbdb for creating the ASCII database must be executable. 
4. The script must be specified in one of the following formats: 

 
(a) path relative to the run directory: two levels above the run directory (see example above). 
(b) absolute path, e.g. "/origin/users/john/crash/runmpp" 
(c) in a directory which is in the path. In this case the command is: 

solver command "runmpp". 
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10.2.3 Interfacing with the MSC-NASTRAN® solver (SOL 103) 
 
The user can interface with the NASTRAN implicit solver (sol 103) for modal analysis using the solver 
nastran solvername command, or by selecting the MSC-NASTRAN option in the LS-OPTui. The 
solver command " " can either execute a command, or a script. The substituted input file 
NastranOpt.inp will automatically be appended to the command or script. Variable substitution will be 
performed in the solver input file (which will be renamed NastranOpt.inp) and the solver 
append file. The nastran solver is required to generate a ‘N o r m a l’ termination command to 
standard output at the end of simulation. This can be done by executing NASTRAN using a script with its 
last statement being the command (see remark 2):  
 

echo ‘N o r m a l’. 
 
Example: 
 
solver nastran 'MODAL' 
solver command "/home/bin/myNastran" 
solver input file "modal_analysis.dat" 
 
Remarks: 
 

1. The NASTRAN solver must not be run in the batch mode. This can be done by specifying the 
'batch=no' option with the nastran command.  

2. A 'N o r m a l  T e r m i n a t i o n' statement must be issued after finishing the 
NASTRAN job. This can be easily done by using the following script as thc solver command: 

 
============================================= 
/home/bin/nastran ‘batch=no’ $1 
echo ‘N o r m a l  T e r m i n a t i o n’ 
============================================= 

 
1. Design Parameters: The design parameters can be specified using one of the following two options: 
 

a. defrepsym: The design variables can be specified using the 
  

defrepsym varname default  
 

statement. The design variable value is accessed using %varname%. The user must be 
careful to use the appropriate fieldwidth permitted by NASTRAN. 
 
This is the preferred option. 
 

b. The LS-OPT parameter format discussed in Section  10.1.1. 
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2. Creating the Database: In order to facilitate the creation of appropriate LS-OPT readable database, 
the user must include the following DMAP code at the beginning of the input deck.  

 
============================================================ 
$ open the binary file  
ASSIGN OUTPUT4=`nastEigout.op4` UNIT=39 UNFORMATTED DELETE $ binary  
$ 
$ solver 
SOL 103 
DIAG 5, 6, 8, 56 
$ 
$ Matrix manipulation 
MALTER `call modefsrs’ $ after modes are calculated 
LAMX,,LAMA/LMAT/-1/0 $ convert eigenvalue table to matrix 
MPYAD, MAA, PHA,/MTP/1 $ matrix multiplication 
OUTPUT4 PHA, LMAT, MTP,,//-1/39///16 $ output desired matrices 
$ 
CEND 
============================================================ 
 
The name of the output file (nastEigout.op4) and matrices (PHA, MAA, LMAT, MTP,…) 
must not be changed for successful reading of the binary file. 

 
10.2.4 Interfacing with a user-defined solver 
 
An own solver can be specified using the solver own solvername command, or selecting User-defined in 
LS-OPTui. The solver command " " can either execute a command, or a script. The substituted input 
file UserOpt.inp will automatically be appended to the command or script. Variable substitution will be 
performed in the solver input file (which will be renamed UserOpt.inp) and the solver 
append file. If the own solver does not generate a ‘Normal’ termination command to standard output, 
the solver command must execute a script that has as its last statement the command:  
 

echo ‘N o r m a l’. 
 
Example: 
 
solver own 'Analyzer' 
  solver command "../../run_this_script" 

solver input file "setup.jou" 
 

10.2.5 How to run LS-DYNA from LS-OPT using the license server (Windows) 
 
In case you want to use the license server for LS-DYNA, you need to do the following: 
 
1. Go to the "start" menu of the Windows Operating System and follow the steps: 
2. Right click on "My Computer" 
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• Choose "Properties" 
• Click "Advanced" tab 
• Click "Environment Variables" button 
• Add the following "User variables": 

 
LSTC_LICENSE              network 
LSTC_LICENSE_SERVER      <name of the license server host machine> 
 
The first column above has the variable names and the second column, the variable values, to be filled into 
the boxes. 
 
You can also start by right-clicking on the "My Computer" icon on your desktop and going through the 
steps as explained above. 
 
It may be necessary to restart the operating system to initialize the environment variables. 

 

10.3 Preprocessors 
 
The preprocessor must be identified as well as the command used for the execution. The command file 
executed by the preprocessor to generate the input deck must also be specified. The preprocessor 
specification is valid for the current solver environment. 
 
Command file syntax: 
prepro software_package_identifier 
prepro command "prepro_program_name" 
prepro input file "pre_file_name" 
 
The interfacing of a preprocessor involves the specification of the design variables, input files and the 
preprocessor run command. Interfacing with LS-INGRID, TrueGrid9, AutoDV and HyperMorph10

 and the 
ANSA Morpher11 is detailed in this section. The identification of the design variables in the input file is 
detailed in Section  10.1. 
 
10.3.1 LS-INGRID 
 
The identifier in the prepro section for the use of LS-INGRID is ingrid. The file ingridopt.inp 
is created from the LS-INGRID input template file. 
 
Example: 
 
$ the preprocessor software to be used. 
prepro ingrid 

                                                 
9Registered Trademark of XYZ Scientific Applications, Inc. 
10 Registered Trademark of Altair Engineering, Inc. 
11 Registered Trademark of Detroit Engineering Products 
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$ the command to execute the preprocessor 
  prepro command "ingrid" 
$ the input file to be used by the preprocessor 
  prepro input file "p9i" 
 
This will allow the execution of LS-INGRID using the command “ingrid i=ingridopt.inp –d 
TTY”. The file ingridopt.inp is created by replacing the << name >> keywords in the p9i file with 
the relevant values of the design variables. 
 
10.3.2 TrueGrid 
 
The identifier in the prepro section for the use of TrueGrid is truegrid. This will allow the execution 
of TrueGrid using the command “prepro program_name i=TruOpt.inp". The file TruOpt.inp 
is created by replacing the << name >> keywords in the TrueGrid input template file with the relevant 
values of the design variables. 
 
Example: 
 
$ the preprocessor software to be used. 
prepro truegrid 
$ the command to execute the preprocessor 
  prepro command "tgx" 
$ the input file to be used by the preprocessor 
  prepro input file "cyl" 
 
These lines will execute TrueGrid using the command “tgx i=cyl” having replaced all the keyword 
names << name >> in cyl with the relevant values of the design variables. 
 
The TrueGrid input file requires the line: 
 
write end 
 
at the very end. 
 
10.3.3 ANSA (BETA CAE Systems SA) 
The ANSA preprocessor can be interfaced with LS-OPT allowing for shape changes to be specified. The 
identifier in the prepro section for ANSA is ANSA. Several files must be specified: 
 
1. ANSA executable, typically named ansa.sh. Do not use an alias.  
2. ANSA Design parameter file, typically with the extension .txt or .dat. This file is generated using ANSA 

and LS-OPT will read the ANSA design parameter names and values from this file. Parameters defined 
in the parameter file will become constants with the same name and value in LS-OPT. The user can 
change them to be design variables instead of constants in the variable panel of the GUI. If LS-OPT 
already has a design variable with the same name then this variable will be used to drive the value of the 
ANSA parameter. 

3. ANSA binary database, typically with the extension .ansa.   
4. LS-DYNA executable. 
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5. LS-DYNA input file. ANSA automatically produces a LS-DYNA keyword file called ansaout . This 
file will therefore automatically appear as the LS-DYNA input file in the GUI. However this file can 
also be used as an appended file or include file (specified under *INCLUDE). In this case an input file 
name has to be specified for LS-DYNA. 

 
Example: 
$ 
$ DEFINITION OF SOLVER "1" 
$ Solver “1” uses ANSA 
solver dyna ’1’ 
 
$ 
prepro ANSA 
prepro command "/home/jane/bin/ansa.sh" 
prepro input file "model.txt” 
propro database file “model.ansa” 
$ 
solver command "lsdyna" 
solver input file "ansaout" 
$ 
 
10.3.4 AutoDV 
 
The geometric preprocessor AutoDV can be interfaced with LS-OPT which allows shape variables to be 
specified. The identifier in the prepro section for the use of AutoDV is templex (the name of an 
auxiliary product: Templex12). The use of AutoDV requires several input files to be available. 
 
1. Input deck: At the top, the variables are defined as DVAR1, DVAR2, etc. along with their current values. 

The default name is input.tpl. This file is specified as the prepro input file. 
 
2. Control nodes file: This is a nodal template file used by Templex to produce the nodal output file using 

the current values of the variables. This file is specified using the prepro controlnodes 
command. The default name is nodes.tpl. 

 
3. A coefficient file that contains original coordinates and motion vectors specified in two columns must be 

available. The command used is prepro coefficient file and the default file name is 
nodes.shp. 

 
4. Templex produces a nodal output file that is specified under the solver append file command. 

The default name is nodes.include. 
 
Example: 
 
$ 
$ DEFINITION OF SOLVER "1" 

                                                 
12 Registered Trademark of Altair Engineering, Inc. 
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$ 
solver dyna ’1’ 
  solver command "lsdyna" 
  solver append file "nodes.include" 
  solver input file "dyna.k" 
  prepro templex 
  prepro command "/origin_2/user/mytemplex/templex" 
  prepro input file "a.tpl" 
  prepro coefficient file "a.dynakey.node.tpl" 
  prepro controlnodes file "a.shp" 
 
In the example, several files can be defaulted. 
 

Table  10.3-1: Templex solver and prepro files and defaults 

Command Description Default 
prepro input file Templex input file input.tpl 

prepro coefficient file Coefficient file nodes.shp 

prepro controlnodes file Control Nodes file nodes.tpl 

solver append file Append file (same as templex output file) nodes.include

 
 
The prepro command will enable LS-OPT to execute the following command in the default case: 
 
/origin 2/john/mytemplex/templex input.tpl > nodes.include 
 
or if the input file is specified as in the example: 
 
/origin 2/user/mytemplex/templex a.tpl > nodes.include 
 
Remarks: 
 
1. LS-OPT uses the name of the variable on the DVARi line of the input file: 
 

{DVAR1=23.77} 
{DVAR2=49.05} 

 
to replace the variables and bounds at the end of each line by the current values. The name DVAR1 (or 
DVAR2) is recognized by LS-OPT and displayed in the ‘Variables’ panel. 

 
 
10.3.5 HyperMorph 
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To allow the specification of shape variables, the geometric preprocessor HyperMorph13 has been interfaced 
with LS-OPT. The identifier in the prepro section for the use of HyperMorph is hypermorph.  
 
1. Input deck: At the top, the variables are defined as: 
  

{parameter(DVAR1,"Radius_1",1,0.5,3.0)} 
 

This file is specified as the prepro input file. 
 
2. Templex produces a nodal output file that is specified under the prepro output file command. 
 
Example: 
 
$ 
$ DEFINITION OF SOLVER "1" 
$ 
solver dyna ’1’ 
  solver command "ls970.single" 
  solver append file "nodes.include" 
  solver input file "dyna.k" 
  prepro hypermorph 
   prepro command "/origin_2/user/mytemplex/templex" 
   prepro input file "a.tpl" 
   prepro output file "h.output" 
   

Table  10.3-2: HyperMorph preprocessor input files and defaults 

Command Description 
prepro input file Templex input file 

prepro output file Output file produced by Templex (can e.g. 
be used as an include file in the analysis) 

 
 
The prepro command will enable LS-OPT to execute the following command in the default case: 
 
/origin 2/john/mytemplex/templex input.tpl > nodes.include 
 
or if the input file is specified as in the example: 
 
/origin 2/user/mytemplex/templex a.tpl > h.output 
 
Remarks: 
 
1. LS-OPT uses the name of the variable on the DVARi line of the input file: 
 

{parameter(DVAR1,"Radius_1",1,0.5,3.0)} 
{parameter(DVAR2,"Radius_2",1,0.5,3.0)} 

                                                 
13 Registered Trademark of Altair Engineering, Inc. 
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to replace the variables and bounds at the end of each line by the current values. This name, e.g. 
Radius_1 is recognized by LS-OPT and automatically displayed in the ‘Variables’ panel. The lower 
and upper bounds (in this case: [0.5,3.0]) are also automatically displayed. The DVARi designation 
is not changed in any way, so, in general there is no relationship between the number or rank of the 
variable specified in LS-OPT and the number or rank of the variable as represented by i in DVARi. 

 
 
10.3.6 User-defined preprocessor 
 
In its simplest form, the prepro own preprocessor can be used in combination with the design point file: 
XPoint to read the design variables from the run directory. Only the prepro command statement will 
therefore be used, and no input file (prepro input file) will be specified. 
 
The user-defined prepro command will be executed with the standard preprocessor input file 
UserPreproOpt.inp appended to the command. The UserPreproOpt.inp file is generated after 
performing the substitutions in the prepro input file specified by the user. 
 
Example: 
 
  prepro own 
  prepro command "gambit -r1.3 -id ../../casefile -in " 
  prepro input file "setup.jou" 
  
The executed command is: 

gambit -r1.3 -id ../../casefile –in setup.jou 
 
Alternatively, a script can be executed with the prepro command to perform any number of command 
line commands that result in the generation of a file called: UserOpt.inp for use by an own solver, or 
DynaOpt.inp for use by LS-DYNA. 
 
10.4 Postprocessors 
A postprocessor can be scheduled to run immediately after the completion of simulations, but before 
extracting the data. The postprocessor allows extraction of data from any database it supports, so makes LS-
OPT accessible to interface with any such supported solvers. LS-OPT launches the post-processor in each 
run directory, e.g. Case_A/1.1. This allows the postprocessor to read results from the solver database and 
place them in a simple text file or files for individual extraction of results. The types of processors supported 
are (1) μETA14. The post-processor commands are as follows. 
 
Command file syntax: 
postpro <postprocessor_package> 
postpro command "run_command" 

                                                 
14 BETA CAE Systems S.A. 
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postpro database file "database_file_name" 
postpro input file "input_file_name" 
postpro output file "output_file_name" 
 
 
Example: 
 
  postpro metapost 
   postpro command "../../metap" 
   postpro input file "../../sessionfile.txt" 
   postpro output file "./Results.txt" 
   postpro database file "./" 
    
Remarks: 
 

1. The run command launches the postprocessor. 
2. The input file name contains information about which results to extract. For commercial 

postprocessors, this is typically a session file which was created interactively. 
3. The database file name is the name of the solver database to be parsed or read for results. Because 

the database information may have been specified in the session file, some post-processors (e.g. 
μETA) may only require a path for finding the database. 

4. The output file (result file) is the name of a file containing those results requested in the input 
(session) file. This is usually a text file so it can be easily parsed. For those postprocessors supported 
by LS-OPT, this file has a predetermined format so that LS-OPT can automatically extract the 
individual results. The specified path + name is not used during the optimization run, but only during 
the setup phase while the user is preparing the LS-OPT input data. During this phase, the responses 
are parsed from a baseline result file and automatically displayed in the "Histories" and "Responses" 
pages of the GUI. 

 
The supported post-processors are discussed in more detail as follows: 
 
10.4.1 μETA (BETA CAE Systems SA) 
 
The full μETA run command executed by LS-OPT is: 
 
<metapost_executable> -b -s -foregr <path/sessionfile> "<database_path>" 
"<path/result_file>" 
 
where the arguments to be specified as LS-OPT input have the following meanings: 
 

1. metapost_executable. The μETA executable specified in the postprocessor command. 
2. path/sessionfile. This is the session file name. 
3. path/result_file. This specification is only used for parsing the history and response names (to be 

automatically displayed in the GUI) during the LS-OPT setup phase (see below). 
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4. database_path. This is the path for finding the solver database. The default "./" means that μETA will 
look for the database locally. This specification has no effect during the optimization run as LS-OPT 
will always force μETA to look for the solver database locally, e.g. in the run directory Case_A/1.1 . 

 
 
Setting up an LS-OPT problem: 
 

1. Run μETA and use the session file thus created to create the result file. This is done manually, 
separately from the LS-OPT data preparation (an integrated feature might be provided in the future).  

2. Open the LS-OPT GUI on the Solvers page and select METAPost as the Postprocessor package 
name. 

3. Specify the μETA settings in the LS-OPT GUI (see Figure  10-2). The user can browse for the μETA 
executable, session file and result file. The result file is the one that was created in the manual step 
(Step  1. above). The database path need not be changed. 

4. When exiting the "Solvers" page in the GUI, the result file is parsed for history and response names 
to display in the relevant GUI pages. These can then be used to complete the optimization problem 
setup: define composites, objectives and constraints, etc. 

5. After completion of the optimization setup, run LS-OPT. 
 

 
 

Figure  10-2: Solvers panel showing Post-processor feature 
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10.5 Extra input files 
A list of extra input files can be provided for the preprocessor or solver. A different set can be specified for 
each analysis case. The files must be placed in the main working directory and are copied from the main 
directory to the run directories before the start of the preprocessing. Parameters can be specified in the extra 
files using the LS-OPT parameter format (<<parameter>>) (see Section  10.1.1). Note that LS-DYNA 
include files do not have to be specified as extra files, since these are automatically processed. The files are 
specified in the GUI under the “Solvers” tab (“Extra files” sub-tab). 
 
Command file syntax: 
Solver extra file "extra_file_name" 
 
Example: 
 
solver extra file "inputfile1.txt" 
solver extra file "inputfile2.txt" 
solver extra file "inputfile3.txt" 
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11. Design Variables, Constants, 
and Dependents 

This chapter describes the definition of the input variables, constants and dependents, design space and the 
initial subregion. 
 
All the items in this chapter are specified in the Variables panel in LS-OPTui (Figure  11-1). Shown is a 
multidisciplinary design optimization (MDO) case where not all the variables are shared. E.g., t_bumper 
in Figure  11-1 is only associated with the solver CRASH. 
 

 
Figure  11-1: Variables panel in LS-OPTui 

11.1 Selection of design variables 
 
The variable command is the identification command for each variable. 
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Command file syntax:  
variable variable_name value 
 
Example: 
 
$ DEFINE THE VARIABLE: ’Area’ 
Variable ’Area’ 0.8 
 
The value assigned is the initial value of the variable. 
 
11.2 Definition of upper and lower bounds of the design space 
 
Command file syntax: 
Lower bound variable variable_name value <–10+30> 
Upper bound variable variable_name value <+10+30> 
 
Example: 
 
Lower bound variable ’Area’ 0.1 
Upper bound variable ’Area’ 2.0 
 
Both the lower and upper bounds must be specified, as they are used for scaling. 
 
11.3 Size and location of region of interest (range) 
Command file syntax: 
range variable_name subregion_size 
 
 
Example: 
 
$ RANGE OF ’Area’ 
range ’Area’ 0.4 
 
This will allow ’Area’ to vary from 0.6 to 1.0. 
 
Remarks: 
 
1. A value of 25-50% of the design space can be chosen if the user is unsure of a suitable value. 
 
2. The full design space is used if the range is omitted. 
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3. The region of interest is centered on a given design and is used as a sub-space of the design space to 
define the experimental design. If the region of interest protrudes beyond the design space, it is moved 
without contraction to a location flush with the design space boundary. 

 
 
11.4 Local variables 
  
For multidisciplinary design optimization (MDO) certain variables are assigned to some but not all solvers 
(disciplines). In the command file the following syntax defines the variable as local: 
 
Command file syntax: 
local variable_name 
 
See Section  22.6 for an example. 
 
 
11.5 Discrete Variables  
Discrete variables are defined using (i) a name, (ii) a starting value, and (iii) a list of allowable values. 
Specifying an initial range for the construction of a response surface is optional; the allowable values will be 
used to compute a default range. The following commands are therefore required to define a discrete 
variable: 
 
Command file syntax: 
variable variable_name value 
variable variable_name discrete {discrete_value_1 … discrete_value_n} 
 
Example: 
 
variable ’Area’ 3.1 
variable ’Area’ discrete {2.0 3.1 4.0 5} 
 
 
 
11.6 Assigning variable to solver 
 
If a variable has been flagged as local, it needs to be assigned to a solver. The command file syntax is: 
 
Command file syntax: 
Solver variable variable_name 
 
See Section  22.6 for an example. 
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11.7 Constants 
 
Each variable above can be modified to be a constant. See Figure  11-2 where this is the case for 
t_bumper. 
 
Constants are used: 
 
1. to define constant values in the input file such as π, e or any other constant that may relate to the 

optimization problem, e.g. initial velocity, event time, integration limits, etc. 
 
2. to convert a variable to a constant. This requires only changing the designation variable to constant in 

the command file without having to modify the input template. The number of optimization variables is 
thus reduced without interfering with the template files. 

 
Command file syntax: 
constant constant_name value 
Example: 
 
constant ’Youngs_modulus’ 2.07e8 
constant ’Poisson_ratio’ 0.3 
dependent ’Shear_modulus’ {Youngs_modulus/(2*(1 + Poisson_ratio))} 
 
In this case, the dependent is of course not a variable, but a constant as well. 
 
11.8 Dependent Variables 
 
Dependent variables (see Figure  11-2 for example of definition in Variables panel) are functions of the basic 
variables and are required to define quantities that have to be replaced in the input template files, but which 
are dependent on the optimization variables. They do therefore not contribute to the size of the optimization 
problem. Dependents can be functions of dependents. 
 
Dependent variables are specified using mathematical expressions (see Appendix D). 
 
Command file syntax: 
dependent variable_name expression 
 
The string must conform to the rules for expressions and be placed in curly brackets. The dependent 
variables can be specified in an input template and will therefore be replaced by their actual values. 
 
Example: 
 
variable ’Youngs_modulus’ 2.0e08 
variable ’Poisson_ratio’ 0.3 
dependent ’Shear_modulus’ {Youngs_modulus/(2*(1 + Poisson_ratio))} 
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Figure  11-2: Variables panel in LS-OPTui with Constants and Dependents. “Lock” symbols (before name) 
indicate that variables were automatically imported from input files. 

 
 
11.9 System variables 
 
System variables are internal LS-OPT variables. There are two system variables, namely iterid and 
runid. iterid represents the iteration number while runid represents the run number within an 
iteration. Hence the name of a run directory can be represented by: iterid.runid. System variables are 
useful for using files such as postprocessing files that were already created in an earlier case, but which are 
re-used in the current case. An LS-DYNA example of using system variables is as follows: 
 
*INCLUDE 
../../Case1/<<iterid:i0>>.<<runid:i0>>/frontrail.k 
 
After substitution the second line might become: 
 
../../Case1/1.13/frontrail.k 
 
so that the current case will always include the file in the corresponding directory in Case1  
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The i0 format forces an integer specification (see Section  10.1.1 for a more detailed description). 
 
Unfortunately the feature cannot be used with LS-DYNA *PARAMETER parameters. 
 
11.10 Worst-case design 
 
Worst-case or saddle-point design is where the objective function is minimized (or maximized) with respect 
to some variables, while it is maximized (or minimized) with respect to the remaining variables in the 
variable set. The maximization variables are set using the Maximize option in the Saddle Direction field of 
the Variables panel. The default selection is Minimize. 
 
Command file syntax: 
Variable variable_name max 
 
Example: 
variable ’head_orientation’ max 
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12. Probabilistic Modeling and 
Monte Carlo Simulation 

Probabilistic evaluations investigate the effects of variations of the system parameters on the system 
responses. 
 
The variation of the system parameters is described using variables and probabilistic distributions describing 
their variation. Accordingly, the variation of the system responses, including information such as the 
nominal value of the response, reliability, and extreme values, can be computed. The source of the variation 
can be the variation of the design variables (control variables) as well as the variation of noise variables, 
whose the value is not under the control of the analyst such as the variation in a load. 
 
More background on the probabilistic methods is given in Chapter  6 (the theoretical manual), while example 
problems can be found in Chapter  22. 
 
12.1 Probabilistic problem modeling 
Introducing the probabilistic effects into analysis requires the specification of: 

1. Statistical distributions. 
2. Assigning the statistical distributions to design variables.  
3. Specification of the experimental design. For a Monte Carlo analysis a suitable strategy for selecting 

the experimental points must be specified; for example, a Latin Hypercube experimental design can 
be used to minimize the number of runs required to approximate the mean and standard deviation. 
However, if the Monte Carlo analysis is done using a metamodel, then the experimental design 
pertains to the construction of the metamodel. 

4. The probabilistic analysis to be executed; for example, a Monte Carlo reliability analysis. 
 
12.2 Probabilistic distributions 
The probabilistic component of a design variable is described using a probabilistic distribution. The 
distributions are created without referring to a variable. Many design variables can refer to a single 
distribution. 
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12.2.1  Beta distribution 
The beta distribution is quite versatile as well as bounded by two limits: a and b. The shape of the 
distribution is described by two parameters: q and r.  Swapping the values of q and r produces a mirror 
image of the distribution. 

 
Figure  12-1 Beta distribution 

 
Command file syntax: 
distribution ‘name’ BETA a b q r 
 

Item Description 
name Distribution name 
a Lower Bound 
b Upper Bound 
q Shape parameter q 
r Shape parameter r 

 
Example: 
 
distribution 'distBeta' BETA 2.0 5.0 1.0 1.0 
12.2.2  Binomial distribution 
The binomial distribution is a discrete distribution describing the expected number of events for an event 
with probability p evaluated over n trails. For n=1, it is the Bernoulli distribution (experiments with two 
possible outcomes ― success or failure) with probability of success p. 
 



CHAPTER 12: PROBABILISTIC MODELING AND MONTE CARLO SIMULATION   

 167 

 
Figure  12-2 Binomial distribution 

 
Command file syntax: 
distribution ‘name’ BINOMIAL p n 
 
 

Item Description 
name Distribution name 
p Probability of event (Success) 
n Number of trials 

 
Example: 
 
distribution 'distBin' BINOMIAL 0.1 3 
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12.2.3  Lognormal distribution 
If X is a lognormal random variable with parameters μ and σ, then the random variable Y = ln X has a 
normal distribution with mean μ and variance σ2. 
 
 

 
Figure  12-3 Lognormal distribution 

 
Command file syntax: 
distribution ‘name’ LOGNORMAL mu sigma 
 

Item Description 
name Distribution name 
mu Mean value in logarithmic domain 
sigma Standard deviation in logarithmic domain 

 
 
Example: 
 
distribution 'logDist' LOGNORMAL 12.3 1.1 
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12.2.4 Normal distribution 
The normal distribution is symmetric and centered about the mean μ with a standard deviation of σ. 
 
 
 

 
Figure  12-4 Normal Distribution 

Command file syntax: 
distribution ‘name’ NORMAL mu sigma 
 
 

Item Description 
name Distribution name 
mu Mean value 
sigma Standard deviation 

 
 
Example: 
 
distribution 'normalDist' NORMAL 12.2 1.1 
 
 
 
12.2.5 Truncated Normal distribution 
The truncated normal distribution is a normal distribution with the values constrained to be within a lower 
and an upper bound. This distribution occurs when the tails of the distribution are censored through, for 
example, quality control. 
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Figure  12-5 Truncated Normal Distribution 

Command file syntax: 
distribution ‘name’ TRUNCATED_NORMAL mu sigma low upper 
 
 

Item Description 
name Distribution name 
mu Mean value 
sigma Standard deviation 
low Lower bound on values 
upper Upper bound on values 

 
 
Example: 
 
distribution 'truncNormalDist' TRUNCATED_NORMAL 12.2 1.1 10.0 12.0 
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12.2.6  Uniform distribution 
The uniform distribution has a constant value over a given range. 
 
 

 
Figure  12-6 Uniform Distribution 

 
Command file syntax: 
distribution ‘name’ UNIFORM lower upper 
 
 

Item Description 
name Distribution name 
lower Lower bound 
upper Upper bound 

 
 
Example: 
 
distribution 'rangeX' UNIFORM 1.2 3.4 
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12.2.7 User defined distribution 
A user-defined distribution is specified by referring to the file containing the distribution data. 
 
The probability density is to be assumed piecewise uniform and the cumulative distribution to be piecewise 
linear. Either the PDF or the CDF data can be given:  

• PDF distribution: The value of the distribution and the probability at this value must be provided 
for a given number of points along the distribution. The probability density is assumed to be 
piecewise uniform at this value to halfway to the next value; both the first and last probability must 
be zero. 

• CDF distribution: The value of the distribution and the cumulative probability at this value must be 
provided for a given number of points along the distribution. It is assumed to vary piecewise 
linearly. The first and last value in the file must be 0.0 and 1.0 respectively. 

 

Figure  12-7 User defined distribution 

 
Lines in the data file starting with the character ‘$’ will be ignored. 
 
Command file syntax: 
distribution ‘name’ USER_DEFINED_PDF ”fileName” 
distribution ‘name’ USER_DEFINED_CDF ”fileName” 
 
 

Item Description 
name Distribution name 
filename Name of file containing the distribution data 
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Example: 
 
distribution 'bendDist' USER_DEFINED_PDF "bendingTest.pdf" 
distribution 'testDat' USER_DEFINED_CDF "threePointTest.dat" 
 
 
The file “bendingTest.pdf” contains: 
$ Demonstration of user defined distribution with 
$ piecewise uniform PDF values 
$ x PDF 
$ First PDF value must be 0 
-5              0.00000 
-2.5            0.11594 
 0              0.14493 
 2.5            0.11594 
$ Last PDF value must be 0 
 5              0.00000 
 
The file “threePointTest.dat” contains: 
$ Demonstration of user defined distribution with 
$ piecewise linear CDF values 
$ x CDF 
$ First CDF value must be 0 
-5               0.00000 
-4.5            0.02174 
-3.5            0.09420 
-2.5            0.20290 
-1.5            0.32609 
-0.5            0.46377 
0.5             0.60870 
1.5             0.73913 
2.5             0.85507 
3.5             0.94928 
$ Last CDF value must be 1 
4.5 1.00000 
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12.2.8 Weibull distribution 
The Weibull distribution is quite versatile – it has the ability to take on various shapes. The probability 
density function is skewed to the right, especially for low values of the shape parameter. 
 
 
 
 

 
Figure  12-8 Weibull distribution 

 
 

 
Command file syntax: 
distribution ‘name’ WEIBULL scale shape 
 
 

Item Description 
name Distribution name 
scale Scale parameter 
shape Shape parameter 

 
Example: 
 
distribution 'wDist' WEIBULL 2.3 3.1 
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12.3 Probabilistic variables 
A probabilistic variable is completely described using a statistical distribution. From this statistical 
distribution defines the mean or nominal value as well as the variation around this nominal value. Note that 
some special rules apply to control variables, the mean of which can be adjusted by the optimization 
algorithm. 
 
 

 
Figure  12-9 Probabilistic variables. The nominal value of a control variable can be adjusted by the 

optimization algorithm between the lower and upper bound; the probabilistic variation of a design variable 
is around this nominal value. A noise variable is described completely by the statistical distribution. A 
discrete variable, like design variable has a nominal value selected by the optimization algoritm; the 

probabilistic variation of the discrete variable is around this nominal value. 

 
A distinction is made between control and noise variables:  

• Control variables:  Variables that can be controlled in the design, analysis, and production level; for 
example: a shell thickness. It can therefore be assigned a nominal value and will have a variation 
around this nominal value. The nominal value can be adjusted during the design phase in order to 
have a more suitable design. A discrete variable is a special case of a control variable. 

• Noise variables: Variables that are difficult or impossible to control at the design and production 
level, but can be controlled at the analysis level; for example: loads and material variation. A noise 
variable will have the nominal value as specified by the distribution, that is follow the distribution 
exactly.  
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A variable is declared probabilistic by: 

• Creating it as a noise variable or  
• Assigning a distribution to a control variable or 
• Creating it as linked to an existing probabilistic variable. 

 
 Three associations between probabilistic variables are possible: 

• Their nominal values are the same but their distributions differ 
• Their nominal values and distributions are the same 
• Their nominal values differ, but they refer to the same distribution. 
 
 

Command file syntax: 
  
noise variable ‘variableName’ distribution ‘distributionName’ 
variable ‘variableName’ distribution ‘distributionName’ 
variable ‘variableName’ link variable ‘variableName’ 
 
 

Item Description 
variableName Variable identifier 
distributionName Distribution identifier 

 
 
Example: 
 
$ Create a noise variable 
Noise Variable ‘windLoadScatter’ distribution ‘windLoadData’ 
$ Assigning a distribution to an existing control variable 
Variable 'Var-D-1' Distribution 'dist-1' 
$ Creating a variable by linking it to another.  
Variable 'Var-D-2' Link variable 'Var-D-1'   
 
 
12.3.1 Setting the nominal value of a probabilistic variable 
If no nominal value is specified for a control variable, then the nominal value of the distribution is used.  
 
If the nominal value of a control variable is specified, then this value is used; the associated distribution will 
be used to describe the variation around this nominal value. For example: a variable with a nominal value of 
7 is assigned a normal distribution with μ=0 and σ=2; the results values of the variable will be normally 
distributed around a nominal value of 7 with a standard deviation of 2. 
 
This behavior is only applicable to control variables; noise variables will always follow the specified 
distribution exactly. 
 
 



CHAPTER 12: PROBABILISTIC MODELING AND MONTE CARLO SIMULATION   

 177 

12.3.2  Bounds on probabilistic variable values 
Assigning a distribution to a control value may result in designs exceeding the bounds on the control 
variables. The default is not to enforce the bounds. The user can control this behavior. 
 
A noise variable is bounded by the distribution specified and does not have upper and lower bounds similar 
to control variables. However bounds are required for the construction of the approximating functions and 
are chosen as described in the next subsection. 
 
Command file syntax: 
  
set variable distribution bound state 
 
 

Item Description 
state Whether the bounds must be enforced for the probabilistic 

component of the variable. 
 
Example: 
 
$ ignore bounds on control variables 
set variable distribution bound 0  
$ Respect bounds on control variables 
set variable distribution bound 1 
 
 
12.3.3  Noise variable subregion size 
Bounds are required for noise variables to construct the metamodels. The bounds are taken to a number of 
standard deviations away from the mean; the default being two standard deviations of the distribution. The 
number of standard deviations can however be set by the user. In general, a noise variable is bounded by the 
distribution specified and does not have upper and lower bounds similar to control variables. 
 
Command file syntax: 
  
set noise variable range standardDeviations 
 
 

Item Description 
standardDeviations The subregion size in standard deviations for the noise 

variable. 
Example: 
 
$ Set noise var bounds to 1.5 standard deviations 
$ for defining subregion for creating approximation 
set noise variable range 1.5 
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12.3.4  Correlated variables 
The correlation between variables can be specified. This correlation will be considered in Monte Carlo 
simulation (including metamodel based simulations) as well as in reliability based design optimization. Only 
correlation between normally distributed variables is allowed. 
 
Command file syntax: 
  
variable ‘vname1’ correlated variable ‘vname2’ corr_value 
 
 

Item Description 
corr_value Value of the correlation between the variables. 

Example: 
 
$ Set the correlation between x1 and x2 as -0.5 
Variable ‘x1’ correlation ‘x2’ -0.5 
 
 

12.4 Probabilistic simulation 
The following simulation methods are provided:  

• Monte Carlo. 
• Monte Carlo using metamodels. 

The upper and lower bounds on constraints will be used as failure values for the reliability computations. 

12.4.1  Monte Carlo analysis 
The Monte Carlo evaluation will: 

• Select the random sample points according to a user specified strategy and the statistical 
distributions assigned to the variables. 

• Evaluate the structural behavior at each point. 
• Collect the statistics of the responses.  

 
The user must specify the experimental design strategy (sampling strategy) to be used in the Monte Carlo 
evaluation. The Monte Carlo, Latin Hypercube and space-filling experimental designs are available. The 
experimental design will first be computed in a normalized, uniformly distributed design space and then 
transformed to the distributions specified for the design variables.  
 
Only variables with a statistical distribution will be perturbed; all other variables will be considered at their 
nominal value. 
 
The following will be computed for all responses: 

• Statistics such as the mean and standard deviation for all responses and constraints. 
• Reliability information regarding all constraints: 

o The number of times a specific constraint was violated during the simulation. 
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o The probability of violating the bounds and the confidence region of the probability. 
o A reliability analysis for each constraint assuming a normal distribution of the response. 

  
The exact value at each point will be used. Sampling schemes must be duplicated across disciplines if 
composite functions must be computed for each point, because if the experimental designs differ across 
disciplines, then composite functions referring to responses in more than one discipline can not be 
computed.  
 
 
Command file syntax: 
  
analyze Monte Carlo 
 
 
Example: 
 
analyze Monte Carlo 
 

12.4.2 Monte Carlo analysis using a metamodel 
The Monte Carlo analysis will be done using the metamodels − response surfaces, neural networks, or 
Kriging − as prescribed by the user. 

 
Figure  12-10 Metamodel-based Monte Carlo analysis. The method proceed in two steps: firstly a metamodel 
is created, and then the Monte Carlo simulation is done using the metamodel and the statistical distribution 
of the variable. Note that the metamodel for a design/control variable is constructed considering the upper 
and lower bound on the variable and not considering the statistical distribution.For a noise variable the 
upper and lower bounds for the creation of the metamodel are selected considering the statistical 
distribution. 

The number of function evaluations can be set by the user. The default value is 106. The function 
evaluations are done using designs chosen randomly respecting the distributions of the design variables and 
are evaluated using the metamodels. 
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The following data will be collected: 

• Statistics such as the mean and standard deviation for all responses, constraints, and variables. 
• The reliability information for each constraint: 

o The number of times a specific constraint was violated during the simulation. 
o The probability of violating the bounds and the confidence region of the probability. 

 
 
Command file syntax: 
  
analyze metamodel monte carlo 
 
 
Example: 
 
analyze metamodel monte carlo 
 
 
12.4.3 Accuracy of metamodel based Monte Carlo 
The number of function evaluations to be analyzed can be set by the user. The default value is 106. 
 
Command file syntax: 
  
set reliability resolution m 
 
 

Item Description 
m Number of sample values 

 
 
Example: 
 
set reliability resolution 1000 
 
 
 

12.4.4 Adding the noise component to metamodel Monte Carlo computations 
If noise was found when the metamodel was created, then this noise may be reproduced whenever the 
metamodel is used for reliability computations. This is possible only for the response surfaces and neural 
nets. The noise is normally distributed with a zero mean and a standard deviation computed from the 
residuals of the least square fit. The default is not to add the noise to the computations. 
 
Command file syntax: 
  
set metamodel noise true_false 
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Item Description 
true_false 0 for not adding noise; 1 otherwise 

 
 
Example: 
 
set metamodel noise 0 $ default: noise not added in computation 
set metamodel noise 1 $ noise included in computation 
 
 

12.4.5 FORM (First Order Reliability Method) analysis 
A FORM evaluation will: 

• Construct the metamodels − response surfaces, neural networks, or Kriging − as prescribed by the 
user. If the metamodels already exists, then they won’t be recreated. 

• Conduct a FORM analysis for every constraint using the metamodels. 
 

The following are computed in a FORM analysis: 
• The most probable point (see Section  6.4.6) 
• The probabilities of exceeding the bounds on the constraint 
• The derivatives of the probability of exceeding the bound on the constraint with respect to the design 

variables 
 
The method requires very little information additionally to what is required for deterministic optimization. 
Specify the following: 

1. Statistical distributions associated with the design variables 
2. Probabilistic bounds on the constraints 

 
Theoretical concerns are discussed in Section  6.4.7. See also Section  19.3 for more information about 
Reliability Based Design Optimization (RBDO). 
 
Command file syntax: 
  
analyze metamodel FORM 
 
 
Example: 
 
analyze metamodel FORM 
 
 
 

12.5 Stochastic Contribution Analysis (DSA) 
 
It can be useful to know how the variation of each design variable contributes to the variation of a response. 
These computations are also known as Stochastic Sensitivity Analysis  or Sobol’s analysis. 
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The stochastic contribution will be printed for all the responses in a metamodel-based procedure. If no 
metamodel is available the covariance of the responses with the variables can be investigated. The stochastic 
contributions of the variables can also be examined in the Viewer component of the GUI. 
 
The amount of variation due to noise or the residuals from the fitting procedure will be indicated. This term 
is taken as zero for composite functions. 
 
The stochastic contribution is computed analytically for response surfaces. For neural networks, Kriging 
models, and composite functions, two options are available: 

1. Approximate using second order response surface. The response surface is built using three times the 
number of terms in the response surface using a central points Latin hypercube experimental design 
over a range of plus/minus two standard deviations around the mean. 

2. Use Monte Carlo. The number of points used will be the same as used for a metamodel based Monte 
Carlo analysis. A large number of points (10 000 or more) is required. The default of 10 000 points 
should give the 1 digit of accuracy needed to compare the effects of variables. This option, using 10 
000 points, is the default method. 

 
Theoretical concerns are discussed in Section  6.7.  
 
Note that negative values of the variance can occur if computated using the Monte Carlo approach, 
especially if a small number of  Monte Carlo Points is used. In general the analysis should compare the 
effects of the variables and not the variance. The default of 10 000 points should give the 1 digit of accuracy 
which means that if the maximum variance is 3e12 then negative values of -3e10 can be be ignored as zero 
being two orders of magnitude smaller. Inspecting the values printed for the effects of the variables should 
clarify the situation, because the effects are scaled values. 
 
Command file syntax: 
  
set dsa method monte carlo 
set dsa method  meta model 
set dsa resolution m 
 
 

Item Description 
M Number of sample values 

 
 
Example: 
 
set dsa method  meta model 
$ Use Monte Carlo simulation 
set dsa method monte carlo 
$ use 1000 points in the Monte Carlo simulation 
set dsa resolution 1000 
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12.6 Covariance  
 
The covariance and coefficient of correlation of the responses will be printed for a Monte Carlo analysis. 
 
The covariance and coefficient of the responses can also be examined in the Viewer part of the GUI. 
 
Theoretical concerns are discussed in Section  6.3.2.  
 
 
12.7 Robust Design 
The implementation of robust design in LS-OPT only required that the variation of a response be available 
as a composite. The standard deviation of a response is therefore available for use in a constraint or 
objective, or in another composite.  
 
The LS-OPT command defining the standard deviation of another response or composite to be a composite 
is: 
composite 'var x11' noise 'x11' 
 
The variation of response approximated using response surfaces is computed analytically as documented for 
the LS-OPT stochastic contribution analysis.  For neural nets and composites a quadratic response surface 
approximation is created locally around the design, and this response surface is used to compute the 
robustness. Note that the recursion of composites (the standard deviation of a composite of a composite) 
may result in long computational times especially when combined with the use of neural networks. If the 
computational times are excessive, then the problem formulation must be changed to consider the standard 
deviations of response surfaces. 
 
One extra consideration is required to select an experimental design for robust analysis: provision must be 
made to study the interaction between the noise and control variables. Finding a more robust design requires 
that the experimental design considers the ji zx cross-terms, while the 2

ix  and 2
iz  terms can be included for a 

more accurate computation of the variance. 
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13. Metamodels and Point 
Selection  

This chapter describes the specification of the metamodel types and point selection schemes (design of 
experiments or DOE). The terms point selection and experimental design are used interchangeably. 
 
 
13.1 Metamodel definition 
 
The user can select from three metamodel types in LS-OPT. The standard and default selection is the 
polynomial response surface method (RSM) where response surfaces are fitted to results at data points using 
polynomials. For global approximations, neural network or Kriging approximations are available. 
Sensitivity data (analytical or numerical) can also be used for optimization. This method is more suitable for 
linear analysis solvers. 
 
Command file syntax: 
Solver order [linear|interaction|elliptic|quadratic|FF|RBF|kriging|user] 
 
The linear, interaction (linear with interaction effects), elliptic and quadratic options are for polynomials. FF 
represents the Feedforward Neural network and RBF represents the radial basis function network. 
 
13.1.1 Response Surface Methodology 
 
When polynomial response surfaces are constructed, the user can select from different approximation 
orders. The available options are linear, linear with interaction, elliptic and quadratic. Increasing the order of 
the polynomial results in more terms in the polynomial, and therefore more coefficients. In LSOPTui, the 
approximation order is set in the Order field. See Figure  13-1. 
 
The polynomial terms can be used during the variable screening process (see Section  2.4) to determine the 
significance of certain variables (main effects) and the cross-influence (interaction effects) between 
variables when determining responses. These results can be viewed graphically (Section  18.5). 
 
The recommended point selection scheme for polynomial response surfaces is the D-optimal scheme 
(Section  13.2.2). 
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13.1.2 Neural Networks and Radial Basis Function Networks 
 
To apply neural network or radial basis functions approximations, select the appropriate option in the 
Metamodel field in LS-OPTui. See Figure  13-2. The recommended Point Selection Scheme for neural 
networks and radial basis functions is the space filling method. The user can select either a sub-region 
(local) approach, or update the set of points for each iteration to form a global approximation. An updated 
network is fitted to all the points. See Section  13.7 for more detail on updating. 
 
13.1.3 Variability of Neural Networks* 
 
Because of the natural variability of neural networks (see Section  3.1.2), the user is allowed to select the 
number of members in a neural net committee and the centering (averaging) procedure to be used. To ensure 
distinct members, the regression procedure uses new randomly selected starting weights for generating each 
committee member. The syntax is shown below. 
  
Command file syntax: 
solver FF_committee size [number_of_members] 
solver FF_committee discard [number_of_members] 
 
solver FF_committee use [MEAN|MEDIAN] 
 
solver FF_committee seed [integer_value] 
 
The selected attributes apply to the current solver. A seed can be provided to the random number generator 
(see Section  2.2.7) to ensure a repeatable (but different) committee. 
 
The discard option allows the user to discard number_of_members committee members with the lowest 
mean squared fitting error and the number_of_members  committee members with the highest MSE. This 
option is intended to exclude neural nets which are either under- or over-fitted. The total number of nets 
excluded in the MEAN or MEDIAN calculation is therefore 2* number_of_members.  
 
The discard feature is activated during the regression procedure whereas the averaging function 
(mean/median) is only used during the evaluation procedure.The use of the MEDIAN option simply finds the 
median value of all the member values obtained at a point, so different points in the parameter space may 
not be represented by the same member and the neural net surface plot may be discontinuous. If a single 
median neural net is desired, the user must generate an uneven committee size n and then discard the 
truncated integer value of n/2 members, e.g. size=5 and discarded=2, 9 and 4, 17 and 8, etc. Size=1 and 
discarded=0 is the least expensive. 
 
The seed feature allows the generation of a unique set of neural networks. This feature can be used for 
sensitivity studies. In this case the user must provide a different seed for each new set of networks for the 
specific solver. 
 
The default attributes of committees are given in Table  13.1-1. This selection creates a committee of 5 nets 
and finds the mean value during evaluation. The data for all 5 nets appears in the database file for each 
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specific net, e.g. Net.<variable_name>.<iteration_number> in the solver 
subdirectory. 
 
The variance of the predicted result is reported. 
 

Table  13.1-1: Default values for Neural Net committees 

 
Option Default 

Size 9 
Discard (int) (Size + 3/2)/4 
Averaging type MEAN 
Seed 0 

 
 
Please refer to Sections  3.3 and  4.5 for recommendations on how to use metamodels. 
 
13.1.4 Basis Functions and Optimization Criterion for RBF 
 
The performance of the RBFs can significantly vary with the choice of basis function and the optimization 
criterion. Two basis functions available for selection are Hardy’s multi-quadrics, and Gaussian RBF. The 
user is also allowed to select the optimization criterion to be generalized cross-validation error or the 
pointwise ratio of the generalized cross validation error. The syntax is shown below. 
  
Command file syntax: 
solver RBF transfer [HMQ|GAUSS] 
solver RBF optimize [GCV|GCV Ratio|RMSERROR] 
 
 
13.1.5 Efficiency of Neural Networks* 
Neural Network construction calculation may be time-consuming because of the following reasons: 
 

1. The committee size is large 
2. The ensemble size is large 

 
Committee size. The default committee size as specified above is largely required because the default 
number of points when conducting an iterative optimization process is quite small. Because of the tendency 
of NN’s to have larger variability when supplied with fewer points, committees are relied on to stabilize the 
approximation. When a large number of points have been simulated however, the committee size can be 
reduced to a single neural net using 
 
solver FF_committee size 1 
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Ensemble size. The ensemble size can be reduced in two ways: (i) by exactly specifying the architecture of 
the ensemble and (ii) by providing a threshold to the RMS training error. The architecture is specified as 
follows: 
 
Command file syntax: 
Solver FF_committee ensemble add number_of_hidden_nodes 
 
e.g. 
 
Solver FF_committee ensemble add 0 
Solver FF_committee ensemble add 1 
Solver FF_committee ensemble add 2 
 
represents an ensemble of 0 (linear), 1 and 2 hidden nodes or 0-1-2 from which one will be selected 
according to the minimum Generalized Cross Validation (GCV) value across the ensemble. The default is  
Lin-1-2-3-4-5. Higher order neural nets are more expensive to compute. 
 
The threshold for the RMS error is specified as: 
 
Command file syntax: 
Solver FF_committee rmserror threshold 
 
The sorting algorithm will pick the first neural net which falls below the specified threshold starting with 0 
hidden nodes (linear). That means that, for a truly linear function, the sorting process will be terminated 
after 0, resulting in a dramatic saving of computational effort. 
 
Example: 
 
Solver FF_committee rmserror 0.1 
 
for a 10% threshold. 
 
See Figure  13-2 for how to specify efficiency options in the GUI. 
 
13.1.6 Kriging Parameters 
 
The kriging fit depends on the choice of appropriate correlation function and the trend model. performance 
Two correlation functions available for selection are Gaussian and exponential. The user can also select 
either a constant, linear, or quadratic trend model. The syntax is shown below. 
  
Command file syntax: 
solver kriging correlation [GAUSS|EXPONENTIAL] 
solver kriging use [constant|linear|quadratic] 
 
Remark:  
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1. The linear trend model requires atleast (N+2) design points, and quadratic trend model requires 
atleast 0.5(N+1)(N+2) + 1 design points, where N is the number of variables. 

2. By default, a single set of theta values is fit to all responses, however the user can also fit 
individual set of correlation function parameters (theta) for each response by using the following 
command. 

 
solver kriging select one 

 
All selections can also be made through the GUI using the ‘Advanced Options’. 
 
13.1.7 User-defined metamodel 
 
The user-defined metamodel distribution is available at http://ftp.lstc.com/user/ls-opt. 
 
Building the example 
 
Under Linux, issue the command "make" while in this directory. Your resulting metamodel is called 
umm_avgdistance_linux_i386.so (or umm_avgdistance_linux_x86_64.so if running 
under 64-bit OS). 
 
Under Windows, open usermetamodel.sln in Visual Studio. Open the Build menu, select "Build 
solution". Your resulting metamodel is called umm_avgdistance_win32.dll 
 
Along with the metamodel binary you also get an executable called "testmodel". This program can be used 
for simple verification of your metamodel. Just give the name of your metamodel as a parameter, i.e.: 
 
    testmodel avgdistance 
 
Note that you are not supposed to supply the full .dll/.so filename as a parameter. 
 
 
Using the example as a template 
 
If you wish to use the example as a template for your own metamodel, do the following steps (in this 
example your metamodel is called mymetamodel): 
 

• Copy avgdistance.* to mymetamodel.* 
• Replace any occurrence of the string "avgdistance" with "mymetamodel" in the following 

files: Makefile, mymetamodel.def, mymetamodel.vcproj, Makefile, usermetamodel.sln 
 
Distributable metamodel 
 
When compiled, your metamodel binary will be called something like: 
 
    umm_mymetamodel_win32.dll 
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or 
    umm_mymetamodel_linux_i386.dll 
 
 
This is the only file that is needed in order to use the metamodel from LS-OPT.  It can be placed either in a 
central repository (which needs to be pointed out by the "solver user metamodel path" command 
(see below), or in the same directory as the command file that refers to it. 
 
Referring to user-defined metamodels in LS-OPT command files 
 
In order to use a user-defined metamodel for a certain solver, add the command "solver order user" to the 
command file, under the appropriate solver. 
 
The following commands apply for user defined metamodels: 
 
Command file syntax: 
 Solver order user 
 
 
 The command enables the use of a user-defined metamodel for the current solver. 
 
Solver user metamodel ’name’ 
   
Example: 
 
   Solver user metamodel ’mymetamodel’ 
 
Gives the name of the user-defined metamodel (e.g. umm_mymetamodel_linux_i386.so). Note this 
should not include the "umm_" prefix or the platform dependent suffix. LS-OPT will look for the correct file 
based upon the current platform.  This allows for cross platform operation. 
 
Solver user metamodel path "path" 
 
Example: 
 
    solver user metamodel path "/home/joe/metamodels" 
    
specifies where the user defined metamodel may be found.  If it is not found in the given directory (or that 
directory does not exist), LS-OPT will look in the same directory as the current command file. This 
parameter is optional. 
 
Solver user metamodel command "string"  
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Example: 
 
    Solver user metamodel command "do it right" 
 
Allows the user to send one string parameter to the user-defined metamodel, that may be used in any way by 
the metamodel. This parameter is optional. 
 
Solver user metamodel param value 
     
Example: 
 
   solver user metamodel param 1.3 
 
Allows the user to send a numeric parameter to the user defined metamodel. This statement may be given 
multiple times for one solver in order to pass many parameters to the metamodel. It is up to the metamodel 
to specify which, if any, parameters it requires for operation. 
 
 
13.2 Point Selection Schemes 
 
13.2.1 Overview 
 
Table  13.2-1 shows the available point selection schemes (experimental design methods). 
 

Table  13.2-1: Point selection schemes 

 
Experiment Description Identifier Remark 

Linear Koshal lin_koshal For polynomials 

Quadratic Koshal quad_koshal  

Central Composite composite  
 
 

D-optimal designs 

D-optimal dopt Polynomials 

Factorial Designs 

2n 2toK  

3n 3toK  

M  M  M  
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11n 11toK  
 
 

Random designs 

Latin Hypercube latin_hypercube For probabilistic analysis 

Monte Carlo monte_carlo  

Space filling designs 

Space filling 5 (recommended) space_filling Algorithm 5 (Section  2.2.6) 

Space filling 0 monte_carlo - 

Space filling 1 lhd_centralpoint - 

Space filling 2 lhd_generalized - 

Space filling 3 maximin_permute - 
Space filling 4 maximin_subinterval - 

 
User defined designs 

User-defined user  

Plan plan  
 
 
Command file syntax: 
Solver order [linear|interaction|elliptic|quadratic|FF|kriging|user] 
Solver experimental design point_selection_scheme 
Solver basis experiment basis_experiment 
Solver number experiment number_experimental_points 
Solver number basis experiments number_basis_experimental_points 
 
Example 1: 
 
Solver order quadratic 
Solver experimental design dopt 
Solver basis experiment 5toK 
 
Example 2: 
 
Solver order linear 
Solver experimental design dopt 
Solver number experiments 40 
Solver basis experiment latin_hypercube 
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Solver number basis experiments 1000 
 
In Example 1, the default number of experiments will be selected depending on the number of design 
variables. In Example 2, 40 points are selected from a total number of 1000. 
 
In LS-OPTui, the point selection scheme is selected using the Point Selection panel (Figure  13-1). 
 
The default options are preset and are based on the number of variables, e.g., the D-optimal point selection 
scheme (basis type: Full Factorial, 11 points per variable (for 2=n )) is the default for linear polynomials 
(Figure  13-1), and the space-filling scheme is the default for the Neural Net and Kriging methods (Figure 
 13-2). 
 

 
Figure  13-1: Metamodel and Point Selection panel in LS-OPTui (Advanced options (basis experimental 

design) displayed) 

 
13.2.2  D-Optimal point selection 
 
The D-optimal design criterion can be used to select the best (optimal) set of points for a response surface 
from a given set of points. The basis set can be determined using any of the other point selection schemes 
and is referred to here as the basis experiment. The order of the functions used has an influence on the 
distribution of the optimal experimental design. 
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The following must be defined to select D-optimal points. 
 
 

Order The order of the functions that will be used. Linear, linear 
with interaction, elliptic or quadratic. 

Number experiments The number of experimental points that must be selected. 
Basis experiment The set of points from which the D-optimal design points 

must be chosen, e.g. 3tok 
Number basis experiments The number of basis experimental points (only random, 

latin hypercube and space filling). 
 
The default number of points selected for the D-optimal design is int(1.5(n + 1)) + 1 for linear, 
int(1.5(2n + 1)) + 1 for elliptic, int(0.75(n2 + n + 2)) + 1 for interaction, and 
int(0.75(n + 1)(n + 2)) + 1 for quadratic. As a result, about 50% more points than the minimum required 
are generated. If the user wants to override this number of experiments, the command “solver number 
experiments” is required.  
 
The default basis experiment for the D-optimal design is based on the number of variables. For small values 
of n, the full factorial design is used, whereas larger n employs a space filling method for the basis 
experiment. The basis experiment attributes can be overridden using the commands: solver basis 
experiment and solver number basis experiments. 
 
13.2.3 Latin Hypercube Sampling 
 
The Latin Hypercube point selection scheme is typically used for probabilistic analysis. 
 
The Latin Hypercube design is also useful to construct a basis experimental design for the D-optimal design 
for a large number of variables where the cost of using a full factorial design is excessive. E.g. for 15 design 
variables, the number of basis points for a 3n design is more than 14 million. 
 
The Monte Carlo, Latin Hypercube and Space-Filling point selection schemes require a user-specified 
number of experiments. 
 
Even if the Latin Hypercube design has enough points to fit a response surface, there is a likelihood of 
obtaining poor predictive qualities or near singularity during the regression procedure. It is therefore better 
to use the D–optimal experimental design for RSM. 
 
Example: 
 
Solver order linear 
Solver experimental design latin_hypercube 
Solver number experiment 20 
 
 
13.2.4 Space filling 
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Only algorithm 5 (see Section  2.2.6) is available in LS-OPTui. This algorithm maximizes the minimum 
distance between experimental design points. The only item of information that the user must provide for 
this point selection scheme, is the number of experimental design points. Space filling is useful when 
applied in conjunction with the Neural Net (neural network) and Kriging methods (see Section  13.1.2). 
 
 

 
Figure  13-2: Selecting the Feedforward neural network approximation method in the Point Selection panel 

(Efficiency options displayed). 

13.2.5 User-defined point selection 
 
A user-defined experimental design can be specified in a text file using a free format. The user option 
(“User-defined” in the GUI) allows the user to import a table from a text file with the following keyword-
based format: 
 
lso_numvar 2 
lso_numpoints 3 
lso_varname      t_bumper  t_hood 
lso_vartype      dv   nv 
This is a comment  lso_point  1.0   2.0 

lso_point  2.0   1.0 
lso_point  1.0   1.0 

 



CHAPTER 13:  METAMODELS AND POINT SELECTION 

196  LS-OPT Version 3 

The keywords (e.g. lso_numvar) except lso_vartype are required but can be preceded or followed by 
any other text or comments. The variable types are design variables (dv) or noise variables (nv) 
respectively. The variable names assure that each column is tied to a specific name and will be displayed as 
variables in the “Variables” panel. The variable types defined in the user file will take precedence over other 
type definitions of the same variable (e.g. from the input files) if the user switches to the “Variables” panel 
only after firstly selecting the file to be imported in the “Sampling” panel. 
 
This format is convenient for use with Microsoft Excel which allows the export of a .txt text file. The 
browser for specifying an input file has a filter for .txt files. 
 
  
13.3 Sampling at discrete points 
 
A flag is provided to select the sampling points at specified discrete values of the variables. Discrete 
sampling will also handle discrete-continuous problems correctly. In the GUI, a check box is located as a D-
Optimal advanced option for each case (See Figure  13-1). Discrete sampling is based on selecting a discrete 
basis set for D-Optimality and is therefore not available for other point selection schemes. Discrete sampling 
is only available if discrete variables are specified.  
 
See Section  11.5 for how to specify a discrete variable. 
 
Command file syntax: 
Solver basis experiment discrete 

 
13.4 Duplicating an experimental design 
 
When executing a search method (see e.g. Section  4.6) for a multi-case or multidisciplinary optimization 
problem, the design points of the various disciplines must be duplicated so that all the responses and 
composites can be evaluated for any particular design point. The command must appear in the environment 
of the solver requiring the duplicate points. An experimental design can therefore be duplicated as follows: 
 
Command file syntax: 
solver experiment duplicate string  
 
 
where string is the name of the master solver in single quotes, e.g. 
 
Solver experiment duplicate ’CRASH’ 
 
‘CRASH’ is the master experimental design that must be copied exactly. 
 
Multi-case composites not accompanied by case duplication cannot be visualized in 2-D or 3-D point plots. 
This is a mandatory step for using ‘Direct GA’ solver with multiple cases. 
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See also the example in Section  22.5. 

 

13.5 Augmentation of an existing design 
 
To retain existing (expensive) simulation data in the optimization process, it is advantageous to be able to 
augment an existing design with additional experimental points. This can be performed by constructing a 
user-defined experiment as follows. 
 
User-defined experiments can be placed in a file named Experiments.PRE.casename in the work 
directory. These will be used in the first iteration only for the case with name casename. The user can 
augment this set D-optimally by requesting a number of experiments greater than the number of lines in 
Experiments.PRE.casename. Each experiment must appear on a separate line with spaces, commas 
or tabs between values. 
 
 
13.6 Specifying an irregular design space* 
 
An irregular (reasonable) design space refers to a region of interest that, in addition to having specified 
bounds on the variables, is also bounded by arbitrary constraints. This may result in an irregular shape of the 
design space. Therefore, once the first approximation has been established, all the designs will be contained 
in the new region of interest. This region of interest is thus defined by approximate constraint bounds and by 
variable bounds. The purpose of an irregular design space is to avoid designs which may be impossible to 
analyze. 
 
The move/stay commands can be used to define an environment in which the constraint bound 
commands (Section  16.4) can be used to double as bounds for the reasonable design space. 
 
If a reasonable experimental design is required from the start, a DesignFunctions.PRE.case_name 
file can be provided by the user. This is however not necessary if explicit constraints, i.e. constraints that do 
not require simulations, are specified for the reasonable design space. An explicit constraint may be a simple 
relationship between the design variables. 
 
The move start option moves the designs to the starting point instead of the center point (see Section 
 2.2.8). This option removes the requirement for having the center point inside the reasonable design space. 
 
Command file syntax: 
move 
stay 
move start 
 
 
Example 1: 
 
$ SET THE BOUNDS ON THE REASONABLE DESIGN SPACE 
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Lower bound constraint ’Energy’ 4963.0 
move 
Upper bound constraint ’Energy’ 5790.0 
stay 
Lower bound constraint ’Force’ -1.2 
Upper bound constraint ’Force’ 1.2 
 
The example above shows the lines required to determine a set of points that will be bounded by an upper 
bound on the Energy. 
 
Example 2: 
 
Variable ’Radius_1’ 20.0 
Variable ’Radius_2’ 20.0 
. 
. 
Composite ’TotalR’ {Radius_1 + Radius_2} 
move 
Constraint ’TotalR’ 
Upper bound constraint ’TotalR’ 50 
 
This specification of the move command ensures that the points are selected such that the sum of the two 
variables does not exceed 50. 
 
Remarks: 
 
1. For constraints that are dependent on simulation results, a reasonable design space can only be created if 

response functions have already been created by a previous iteration. The mechanism is as follows: 
 

 Automated design: After each iteration, the program converts the database file 
DesignFunctions to file DesignFunctions.PRE in the solver directory. 
DesignFunctions.PRE then defines a reasonable design space and is read at the beginning of 
the next design iteration. 

 Manual (semi-automated) Procedure: If a reasonable design space is to be used, the user must 
ensure that a file DesignFunctions.PRE.case_name is resident in the working directory 
before starting an iteration. This file can be copied from the DesignFunctions file resulting 
from a previous iteration. 

 
2. A reasonable design space can only be created using the D-optimal experimental design. 
3. The reasonable design space will only be created if the center point (or the starting point in the case of 

move start) of the region of interest is feasible.  
Feasibility is determined within a tolerance of 0.001*| fmax – fmin| where fmax and fmin are the maximum 
and minimum values of the interpolated response over all the points. 

4. The move feature should be used with extreme caution, since a very tightly constrained experimental 
design may generate a poorly conditioned response surface. 
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13.7 Automatic updating of an experimental design 
 
Updating the experimental design involves augmenting an existing design with new points. Updating only 
makes sense if the response surface can be successfully adapted to the augmented points such as for neural 
nets or Kriging surfaces in combination with a space filling scheme.  
 
Command file syntax: 
solver update doe 
 
The new points have the following properties: 
 
• They are located within the current region of interest. 
• The minimum distance between the new points and between the new and existing points, is maximized 

(space filling only). 
 
  
13.8 Using design sensitivities for optimization 
 
Both analytical and numerical sensitivities can be used for optimization. The syntax for the solver 
experimental design command is as follows: 
 

Experiment Description Identifier 
Numerical Sensitivity numerical_DSA 
Analytical Sensitivity analytical_DSA 

 
 
13.8.1 Analytical sensitivities 
 
If analytical sensitivities are available, they must be provided for each response in its own file named 
Gradient. The values (one value for each variable) in Gradient should be placed on a single line, 
separated by spaces. 
 
In LS-OPTui, the Metamodel (Point Selection panel) must be set to Sensitivity Type  Analytical. See 
Figure  13-3. 
 
Example: 
 
Solver experimental design analytical_DSA 
 
A complete example is given in Section  0. 
 
 
13.8.2 Numerical sensitivities 
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To use numerical sensitivities, select Numerical Sensitivities in the Metamodel field in LS-OPTui and 
assign the perturbation as a fraction of the design space. 
 
Numerical sensitivities are computed by perturbing n points relative to the current design point x0, where the 
j-th perturbed point is: 
 

( )LU
0

iiiji
j

i xxεδxx −+=  
 

0=ijδ  if ji ≠  and 1.0 if ji = . The perturbation constant ε  is relative to the design space size. The same 
value applies to all the variables and is specified as: 
 
Command file syntax: 
Solver perturb perturbation_value 
 
Example: 
 
Solver experimental design numerical_DSA 
Solver perturb 0.01 
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Figure  13-3: Selecting Sensitivities in the Point Selection panel 

 
13.9 Checkpoints 
The error measures of any number of designs (checkpoints) can be evaluated using an existing metamodel. 
There are two simple steps to obtaining a table with error data. 
 

1. Browse for the file with the checkpoint information using the Checkpoints tab in the Solvers panel. 
The file must be in the format of the AnalysisResults file (see Appendix  C.2) pertaining to the 
selected case.  

2. Use the Analyze checkpoints option in the Repair task menu and run the task (Section  17.7). 
 
Cases without checkpoint files will be ignored. 
 
Command file syntax: 
solver check file file_name 
 
Example: 
 
solver check file ″checkpoints2″ 
solver check file ″/user/bob/lsopt/checkpoints2″ 
 
13.10 Metamodel Evaluation using a set of design points 
The response values of any number of points can be computed using an existing metamodel and written to a 
.csv file (file with comma separated variables that can be read with most spreadsheet programs such as 
Microsoft Excel). 
 
There are two simple steps to obtain a table with response data. 
 

1. Browse for the file with the sampling point information using the Evaluate Metamodel tab in the 
Solvers panel and Replace. The file must be in the format of the Experiments file (see Appendix 
 C.2) pertaining to the selected case. Spaces, commas or tabs are allowed as delimiters. 

2. Use the Analyze checkpoints option in the Repair task menu and run the task (Section  17.7). This 
is the same repair option as for the "checkpoints" in Section  13.9 above. 

 
• Input: Each sampling point file must represent the variables in a case. Cases without 

sampling point files will be ignored. LS-OPT will check that the number of columns in the 
file is equal to the number of case variables. 

• Output: The AnalysisResults or ExtendedResults output can be found as META 
files in the case directories, e.g. AnalysisResultsMETA_3.csv or 
ExtendedResultsMETAMaster_3.csv. The AnalysisResults file has only variable 
and response values, whereas the ExtendedResults file has variable, response, composite, 
objective, constraint and multiobjective values. 

• If  sampling points are defined before the start of an optimization run, the META files will be 
automatically computed for each iteration. 
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Command file syntax: 
solver evaluate file file_name 
 
Example: 
 
solver evaluate file ″UserPoints″ 
solver evaluate file ″/user/bob/lsopt/UserPoints2″ 
solver evaluate file ″C:\lsopt\UserPoints2″ 
solver evaluate file ″my_user_files/UserPoints3″ 
 
13.11 Alternative point selection 
Alternative point selection schemes can be specified to replace the main scheme in the first iteration. The 
main purpose is to provide an option to use linear D-optimality in the first iteration because: 
 

1. D-optimality minimizes the size of the confidence intervals to ensure the most accurate variable 
screening, usually done in the first iteration. 

2. It addresses the variability encountered with neural networks due to possible sparsity (or poor 
placement) of points early in the iterative process, especially in iteration 1, which has the lowest 
point density. 

 
Command file syntax: 
solver alternate experiment 1 
 solver alternate order linear 
 solver alternate experimental design point_selection_scheme 
 solver alternate number experiment number_experimental_points 
 solver alternate basis experiment basis_experiment 
 solver alternate number basis experiments  
                      number_basis_experimental_points  
 
 
 
 
The defaults are as follows: 
 

Attribute Default 
Order Linear (only option available) 
Experimental design D-Optimal 
Number of experiments Number of experiments of main experimental design 
Basis experimental design type depends on number of variables (only D-optimal) 
Number of basis experiments depends on basis experiment type and number of 

experiments (only D-optimal)  
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Example: 
 
Solver order FF 
Solver experimental design space filling 
Solver number experiments 5 
Solver update doe 
Solver alternate experiment 1 
 
In the above example a linear surface based on D-optimal point selection will be used in the first iteration 
instead of a neural network based on Space Filling. The number of points is 5, the same as for the main 
experimental design. In the second iteration all the points created in the first and second iterations will be 
used to fit a neural network (because of update doe). The single additional line is typically all that is 
needed when using neural networks. 
 
Example: 
 
Solver order FF 
Solver experimental design space filling 
Solver number experiments 5 
Solver alternate experiment 1 
 Solver alternate experimental design dopt 
 Solver alternate order linear 
 Solver alternate basis experiments space_filling 
 Solver alternate number basis experiments 100 
 
13.12  Changing the number of points on restart* 
 
The number of points to be analyzed can be changed starting with any iteration. This feature is useful when 
the user wants to restart the process with a different (often larger) number of points. This option avoids 
adding points in iterations prior to the specified iteration. The feature is case-specific, so must be added to 
all the case definitions. 
 
Command file syntax: 
Solver experiment augment iteration iteration_number 



CHAPTER 13:  METAMODELS AND POINT SELECTION 

204  LS-OPT Version 3 

Example 1: 
 
In the first analysis, the following sampling scheme was specified:  
 
Solver experiment design dopt 
Solver number experiment 5 
Solver basis experiment 3toK 
. 
. 
. 
Iterate 1 
 
By default, a single verification run is done in iteration 2. 
 
 
After the first analysis, the user wants to restart, using a larger number of points 
 
Solver experiment design dopt 
Solver number experiment 10 
Solver basis experiment 5toK 
Solver experiment augment iteration 2 
. 
. 
. 
Iterate 3 
 
Iterations 2 and 3 will then be conducted with 10 points each while iteration one will be left intact. 
 
 
Example 2: 
 
Starting with: 
 
Solver experiment design dopt 
Solver number experiment 5 
. 
. 
. 
Iterate 1 
 
and restarting with: 
 
Solver experiment design dopt 
Solver number experiment 10 
Solver experiment augment iteration 1 
. 
. 
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. 
Iterate 3 
 
iteration 1 of the restart will be augmented with 5 points (to make a total of 10), before continuing with 10 
points in further iterations.  
 
Note: The user will have to delete the single verification point generated in the first analysis before 
restarting the run. For this example, this can be done by entering “2” in the box for “Specifying Starting 
Iteration” in the Run panel. The restart will then generate a new starting point for iteration 2 and conduct 10 
simulations altogether. 
 
13.13 Repeatability of point selection 
All point selection schemes are repeatable, but a seed can be provided to create different sets of random 
points. The feature is particularly useful for Monte Carlo or Latin Hypercube point selection which both 
directly use random numbers. Because D-Optimal and Space Filling designs also use random numbers, 
albeit less directly, they may only show small differences due to the occurrence of local minima in the 
respective optimization procedures. The seed is of the type “unsigned long”, so the value typically has 
to be between 0 and 4,294,967,295 (depending on the machine architecture).  The syntax is as follows: 
 
Command file syntax: 
Solver experiment seed integer_value 
 
The default value is 0 (zero). 
 
Solver experimental design lhd_generalized 
Solver number experiments 30 
Solver experiment seed 349177 
 
13.14 Remarks: Point selection 
 
1. The number of points specified in the “solver number experiment num” command is reduced 

by the number already available in the Experiments.PRE.case_name or 
AnalysisResults.PRE.case_name files. 

2. The files Experiments and AnalysisResults are synchronous, i.e. they will always have the 
same experiments after extraction of results. Both these files also mirror the result directories for a 
specific iteration. 

3. Design points that replicate the starting point are omitted. 
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14. History and Response Results 

This chapter describes the specification of the history or response results to be extracted from the solver 
database. The chapter focuses on the standard response interfaces for LS-DYNA. 
 
14.1 Defining a response history (vector) 
 
A response history can be defined by using the history command with an extraction, a mathematical 
expression or file import. The extraction of the result can be done using a standard LS-DYNA interface (see 
Section  14.4) or with a user-defined program. 
 
Command file syntax: 
history history_name string 
history history_name expression math_expression 
history history_name file string 
 
 
The string is an interface definition (in double quotes), while the math_expression is a mathematical 
expression (in curly brackets). 
 
Example 1: 
 
history ’displacement_1’ "BinoutHistory –res_type nodout -cmp x_displacement –
id 12789 –filter SAE -filter_freq 60" 
history ’displacement_2’ "BinoutHistory –res_type nodout -cmp x_displacement –
id 26993 –filter SAE –filter_freq 60" 
history ’deformation’ expression {displacement_2 - displacement_1} 
response ’final_deform’ expression {deformation(200)} 
 
Example 2: 
 
constant ’v0’ 15.65 
history ’bumper_velocity’  "BinoutHistory –res_type nodout -cmp x_velocity –
id 73579 –filter SAE –filter_freq 30" 
history ’Apillar_velocity_1’ "BinoutHistory –res_type nodout -cmp x_velocity –
id 41195 –filter SAE –filter_freq 30" 
history ’Apillar_velocity_2’ "BinoutHistory –res_type nodout -cmp x_velocity -
id 17251 –filter SAE –filter_freq 30" 
history ’global_velocity’  "BinoutHistory –res_type glstat -cmp X_VEL " 
history ’Apillar_velocity_average’ expression { 
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                              (Apillar_velocity_1 + Apillar_velocity_2)/2} 
$ 
response ’time_to_bumper_zero’ expression {Lookup("bumper_velocity(t)",0)} 
response ’vel_A_bumper_zero’ expression {Apillar_velocity_average 
(time_to_bumper_zero)} 
response ’PULSE_1’ expression {Integral 
  ("Apillar_velocity_average(t)", 
  0, 
  time_to_bumper_zero) 
  /time_to_bumper_zero} 
response ’time_to_zero_velocity’expression {Lookup("global_velocity(t)",0)} 
response ’velocity_final’ expression 
{Apillar_velocity_average(time_to_zero_velocity)} 
response ’PULSE_2’ expression  {Integral 
  ("Apillar_velocity_average(t)" 
  time_to_bumper_zero, 
  time_to_zero_velocity) 
 /(time_to_zero_velocity - time_to_bumper_zero)} 
 
Example 3: 
 
constant ’Event_time’ 200 
$ Results from a physical experiment 
history ’experiment_vel’ file "expdata" 
$ LS-DYNA results 
history ’velocity’ "DynaASCII nodout X_VEL 12667 TIMESTEP" 
response ’RMS_error’ expression {Integral("(experiment_vel-
velocity)**2",0,Event_time} 
 
Example 4: 
 
In this example a user-defined program (the post-processor LS-PREPOST) is used to produce a history file 
from the LS-DYNA database. The LS-PREPOST command file get_force: 
 
open d3plot d3plot 
ascii rcforc open rcforc 0 
ascii rcforc plot 4 Ma-1 
xyplot 1 savefile xypair LsoptHistory 1 
deletewin 1 
quit 
 
produces the LsoptHistory file. 
 
history ’Force’ "lsprepost c=../../get_force" 
response ’Force1’ expression {Force(.002)} 
response ’Force2’ expression {Force(.004)} 
response ’Force3’ expression {Force(.006)} 
response ’Force4’ expression {Force(.008)} 
 
Note : 
 
1. The rcforc history in Example 4 can be obtained more easily by direct extraction (see Section  14.5.1 and 
Appendix B) 
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Remarks: 
 
1. Histories are used by response definitions (see Section  14.1.1) to define a response surface. They are 

therefore intermediate entities and cannot be used directly to define a response surface. Only 
response can define a response surface. 

2. For LS-DYNA history definition and syntax, please refer to Section  14.4. 
 
In LS-OPTui, histories are defined in the Histories panel (Figure  14-1): 
 

 
Figure  14-1: Histories panel in LS-OPTui 

 
14.1.1 Crossplot history 
 
A special history function Crossplot is provided to construct a curve g(f) given f(t) and g(t). 
 
 
 
 
Expression syntax: 
 



CHAPTER 14:  HISTORY AND RESPONSE RESULTS 

LS-OPT Version 3  209 

History ’curvename’ {Crossplot (abscissa_history, ordinate_history, 
[numpoints, begin, end] )} 

 
Argument name Description Symbol LS-OPT Type Default 
abscissa history History of 

abscissa 
f(t) Expression - 

ordinate history History of 
ordinate 

g(t) Expression - 

numpoints Number of 
points created 
in crossplot 

P Int 10,000  

begin Begin t-value t1 Float Smallest t-value 
end End t- value tP Float Largest t-value 

 

Table  14.1-1: Description of Crossplot arguments 

 
Examples: 
 
$ ------ CROSSPLOT CURVES -------------------------------------------------- 
history 'Force_Disp_Dflt' expression {Crossplot("-Disp2", "Force2") } 
history 'Force_Disp_to_Num' expression {Crossplot("-Disp2", "Force2", 2) } 
history 'Force_Disp_to_Beg' expression {Crossplot("-Disp2", "Force2", 4, 0.002) } 
history 'Force_Disp_to_End' expression {Crossplot("-Disp2", "Force2", 4, 0.002, End) } 
 
14.1.2 History files 
A history can be provided in a text file with arbitrary format. Coordinate pairs are found by assuming that 
any pair of numbers in a row is a legitimate coordinate pair. History files are typically used to import test 
data for parameter identification problems. 
 
Command file syntax: 
history name file filename 
 
Example: 
 
History ′Test1’ file ″Test1.txt″ 
 
where Test1.txt contains: 
 
 
Time    Displacement 
1.2, 143.97 
1.4   156.1 
1.7 , 923.77 
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14.2 Defining a response (scalar) 
 
The extraction of responses consists of a definition for each response and a single extraction command or 
mathematical expression. A response is often the result of a mathematical operation of a response history, 
but can be extracted directly using the standard LS-DYNA interface (see Section  14.4) or a user-defined 
interface. 
 
Each extracted response is identified by a name and the command line for the program that extracts the 
results. The command line must be enclosed in double quotes. If scaling and/or offsetting of the response is 
required, the final response is computed as ( the extracted response × scale factor ) + offset. This operation 
can also be achieved with a simple mathematical expression. 
A mathematical expression for a response is defined in curly brackets after the response name. 
 
 
Command file syntax: 
response response_name {scale_factor offset} string 
response response_name expression math_expression 
 
Example: 
 
response ’Displacement_x’ 25.4 0.0 "DynaASCII nodout ’r disp’ 63 TIMESTEP 0.1" 
response ’Force’ "$HOME/ownbin/calculate force" 
response ’Displacement_y’ "calc constraint2" 
response ’Disp’ expression {Displacement_x + Displacement_y} 
 
Remarks: 
 
1. The first command will use a standard interface for the specified solver package. The standard interfaces 

for LS-DYNA are described in Section  14.4. 
 
2. The middle two commands are used for a user-supplied interface program (see Section  14.10). The 

interface name must either be in the path or the full path name must be specified. Aliases are not 
allowed. 

 
3. For the last command, the second argument expression is a reserved name. 
 
14.3 Specifying the metamodel type  
 
The metamodel type can be specified for an individual reponse. 
 
Command file syntax: 
response response_name 
[linear|interaction|elliptic|quadratic|FF|kriging] 
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The default is the metamodel specified in Section  13.1. FF refers to the feedforward neural network 
approximation method (see Section  3.1). 
 
Example: 
 
response ’Displacement’ kriging 
 
In LS-OPTui, responses are defined in the Responses panel (Figure  14-2): 
 
 

 
Figure  14-2: Reponses panel in LS-OPTui 

 

14.4 Extracting history and response quantities: LS-DYNA 
 
In LS-OPT the general functionality for reading histories and responses from the simulation output is 
achieved through the history and response definitions (see Section  14.1 and Section  14.1.1 
respectively). The syntax for the extraction commands for LS-DYNA responses and histories is identical, 
except for the selection attribute. The history function is included so that operations (such as subtracting two 
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histories) can first be performed, after which a scalar (such as maximum over time) can be extracted from 
the resulting history. 
 
There are two types of interfaces: 
 
1. Standard LS-DYNA result interfaces. This interface provides access to the LS-DYNA binary databases 

(d3plot or Binout). The interface is an integral part of LS-OPT.  
 
2. User specified interface programs. These can reside anywhere. The user specifies the full path. 
 
Aside of the standard interfaces that are used to extract any particular data item from the database, 
specialized responses for metal-forming are also available. The computation and extraction of these 
secondary responses are discussed in Section  14.9.  
 
The user must ensure that the LS-DYNA program will provide the output files required by LS-OPT. 
 
As multiple result output sets are generated during a parallel run, the user must be careful not to generate 
unnecessary output. The following rules should be considered: 
 
• To save space, only those output files that are absolutely necessary should be requested. 
• A significant amount of disk space can be saved by judiciously specifying the time interval between 

outputs (DT). E.g. in many cases, only the output at the final event time may be required. In this case the 
value of DT can be set slightly smaller than the termination time. 

• The result extraction is done immediately after completion of each simulation run. Database files can be 
deleted immediately after extraction if requested by the user (clean file (see also Section  9.9)). 

• If the simulation runs are executed on remote nodes, the responses of each simulation are extracted on 
the remote node and transferred to the local run directory. 

 
For more specialized responses the Perl programs provided can be used as templates for the development of 
own routines. 
 
All the utilities can be specified through the command: 
 
 

response response_name {scale_factor offset } command_line. 
 
or 
 

history history_name command_line. 
 

 

14.5 LS-DYNA Binout results  
 
From Version 970 of LS-DYNA the ASCII output can be written to a binary file: the Binout file.  
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The LS-PREPOST Binout capability can be used for the graphical exploration and troubleshooting of the 
data. 
 
The response options are an extension of the history options – a history will be extracted as part of the 
response extraction. 
 
 
14.5.1     Binout histories 
 
Results can be extracted for the whole model or a finite element entity such as a node or element. For shell 
and beam elements the through-thickness position can be specified as well. 
 
 
Command file syntax: 

 
BinoutHistory –res_type res_type {-sub sub} –cmp component {-invariant 
invariant –id(-name) id(NAME) –pos position –side side} 

 
 
 

Item Description Default Remarks
res_type Result type name - 1 
sub Result subdirectory - 1 
cmp Component of result - 2 
invariant Invariant of results. Only MAGNITUDE is currently available. - 3 
id ID number of entity -  
name Description (heading) of entity - 4 
pos Through thickness shell position at which results are computed. 1 5 
side Interface side for RCFORC data. MASTER or SLAVE. SLAVE   

 
 
Example: 
history 'ELOUT1' "BinoutHistory -res_type Elout -sub shell -cmp sig_xx  
-id 1 -pos 1" 
history 'invarHis' "BinoutHistory -res_type nodout -cmp displacement  
-invariant MAGNITUDE –name RAIL15" 
 
 
Remarks: 
1. The result types and subdirectories are as documented for the *DATABASE_OPTION LS-DYNA 

keyword. 
2. The component names are as listed in Appendix  A: LS-DYNA Binout Result Components. 
3. The individual components required to compute the invariant will be extracted automatically; for 

example, “-cmp displacement –invariant MAGNITUDE” will result in the automatic 
extraction of the x, y and z components of the displacement. 
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4. The option “-name” that allows using the description/heading/name of the entity is valid only with 
nodout and Elout result types. 

5. For the shell and thickshell strain results the upper and lower surface results are written to the database 
using the component names such as lower_eps_xx and upper_eps_xx. 

 
Averaging, filtering, and slicing Binout histories 
 
These operations will be applied in the following order: averaging, filtering, and slicing. 
 
Command file syntax: 

 
BinoutHistory {history_options} {–filter filter_type  
–filter_freq filter_freq –units units –ave_points ave_points  
–start_time start_time –end_time end_time } 

 
 
 

Item Description Default 
history_options All available history options - 
filter_type Type of filter to use: SAE or BUTT - 
filter_freq Filter frequency 60 cycles / time unit 
units S=seconds MS=milliseconds S 
ave_points Number of points to average - 
start_time Start time of history interval to extract using slicing 0 
end_time End time of history interval to extract using slicing tmax 

 
 
Example: 
history 'ELOUT12' "BinoutHistory -res_type Elout -sub shell -cmp sig_xx  
-name RAIL15 -pos 2 -filter SAE –start_time 0.02 –end_time 0.04" 
history 'nodHist432acc_AVE' "BinoutHistory -res_type nodout  
-cmp x_acceleration -id 432 -ave_points 5" 
 
 
14.5.2    Binout responses 
 
A response is extracted from a history – all the history options are therefore applicable and options required 
for histories are required for responses as well. 
 
Command file syntax: 

 
BinoutResponse {history_options} –select selection 

 
 

Item Description Default Remarks 
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history_options  All available history options including 
averaging, filtering, and slicing. -  

selection MAX|MIN|AVE|TIME TIME 1 
 
Example: 
response 'eTime'  "BinoutResponse -res_type glstat -cmp kinetic_energy  
-select TIME -end_time 0.015" 
$ 
response ‘nodeMax’ "BinoutResponse -res_type nodout -cmp x_acceleration 
-id 432 -select MAX -filter SAE -filter_freq 10" 
 
 
Remarks: 
1. The maximum, minimum, average, or value at a specific time must be selected. If selection is TIME 

then the end_time history value will be used. If end_time is not specified, the last value (end of 
analysis) will be used. 

 
 
Binout injury criteria 
 
Injury criteria such as HIC can be specified as the result component. The acceleration components will be 
extracted, the magnitude computed, and the injury criteria computed from the acceleration magnitude 
history. 
 
Command file syntax: 

 
BinoutResponse {history_options}  –cmp cmp {–gravity gravity  
–units units} 

 
 
 

Item Description Default 
history_options All available history options including filtering and slicing. - 
cmp HIC15, HIC36, or CSI - 
gravity Gravitational acceleration 9.81 
units S=seconds MS=milliseconds S 

 
 
Example: 
response 'HIC_ms' 1 0 "BinoutResponse -res_type Nodout -cmp HIC15  
-gravity 9810. -units MS -name RAIL15" 
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14.6 LS-DYNA D3Plot results  
 
The D3Plot interface is related to the Binout interface. The D3Plot commands differ from the Binout 
commands in that a response or history can be collected over a whole part. For example, the maximum 
stress in a part or over the whole model. 
 
The available results types and components are listed in Appendix A. 
 
The LS-PREPOST fringe plot capability can be used for the graphical exploration and troubleshooting of 
the data. 
 
The response options are an extension of the history options – a history will be extracted as part of the 
response extraction. 
 
 
14.6.1 D3Plot histories 
 
Results can be extracted for the whole model or a finite element entity such as a node or element. For shell 
and beam elements the through-thickness position can be specified as well. 
 
 
Command file syntax: 

 
D3PlotHistory –res_type res_type {-sub sub} –cmp component {–id id   
–pos position –pids part_ids –loc ELEMENT|NODE –select_in_region 
selection –coord x y z –setid setid –tref ref_state} 

 
 
 

Item Description Default Remarks
res_type Result type name - 1 
cmp Component of result - 1 
id ID number of entity - 2 
pos Through thickness shell position 1  
pids One or more part ids. - 3 
loc Locations in model. ELEMENT or NODE. - 4 
select_in_region MAX|MIN|AVE -select 5 
coord Coordinate of a point for finding nearest element - 6 
tref Time of reference state for finding nearest element 0.0 6 
setid ID of *SET_SOLID_GENERAL in LS-DYNA keyword file - 6 

 
 
Example: 
history 'ELOUT1' "D3PlotHistory -res_type Elout -sub shell -cmp sig_xx  
-id 1 -pos 1" 
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history 'invarHis' "D3PlotHistory -res_type nodout -cmp displacement  
-invariant MAGNITUDE –id 432" 
history 'd3ploth4' "D3PlotHistory -res_type ndv –cmp x_displacement –
pids 2 3 –select_in_region MAX" 
 
 
Remarks: 
1. The result types and components are similar to what is used in LS-PREPOST. The result types and 

component names are listed in Appendix A:LS-DYNA D3Plot Result Components. 
2. For histories, the -id option is mutually exclusive with the –select_in_region option. 
3. If part ids are specified, the extraction will be done over these parts only. If no part ids and no element 

or node id are specified, then the extraction will be done considering the whole model. 
4. Element results such as stresses will be averaged in order to create the NODE results. Nodal results 

such as displacements cannot be requested as ELEMENT results. 
5. The maximum, minimum, or average over a part can be selected. The –select_in_region option is 

mutually exclusive with the –id option. The default value is that of the d3plot response -select 
argument which in turn defaults to MAX. 

6. An x,y,z coordinate can be selected. The quantity will be extracted from the element nearest to x,y,z at 
time tref. Only elements included in the *SET_SOLID_GENERAL element set are considered (only 
the PART and ELEMENT options). 

 
 
 

Slicing D3Plot histories 
 
Slicing of D3Plot histories is possible. Averaging and filtering are not available for D3Plot results. 
 
Command file syntax: 

 
D3PlotHistory {history_options} {–start_time start_time –end_time 
end_time } 

 
 
 

Item Description Default 
history_options All available history options - 
start_time Start time of history interval to extract using slicing 0 
end_time End time of history interval to extract using slicing tmax 

 
 
Example: 
history 'ELOUT12' "D3PlotHistory -res_type stress -cmp xx_stress  
-id 1 -pos 2 –start_time 0.02 –end_time 0.04" 
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D3Plot FLD results 
 
If FLD results are requested then the FLD curve can be specified using (i) the t and n coefficients or (ii) a 
curve in the LS-DYNA input deck. The interpretation of the t and n coefficients is the same as in LS-
PREPOST. 
 
Command file syntax: 

 
D3PlotHistory {history_options} {–fld_t fld_t –fld_n fld_n –fld_curve 
fld_curve} 

 
 
 

Item Description Default 
history_options All available history options - 
fld_t Fld curve t coefficient - 
fld_n Fld curve t coefficient - 
fld_curve ID of curve in the LS-DYNA input deck - 

 
 
Example: 
history 'ELOUT12' "D3PlotHistory -res_type stress -cmp xx_stress  
-id 1 -pos 2 –start_time 0.02 –end_time 0.04" 
 
 
 
14.6.2    D3Plot responses 
 
A response is extracted from a history – all the history options are therefore applicable and options required 
for histories are required for responses as well. 
 
Command file syntax: 

 
D3PlotResponse {history_options} –select selection 

 
 

Item Description Default Remarks 
history_options  All available history options -  
select MAX|MIN|AVE|TIME TIME 1 

 
Example: 
Response ′nodeMax′ "D3PlotResponse -res_type ndv -cmp x_displacement -id 
432 -select MAX" 
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Remarks: 
1. The maximum, minimum, average, or value at a specific time must be selected. If select is TIME then 

the end_time history value will be used. If end_time is not specified, the last value (end of analysis) 
will be used.  If the selection must be done over parts as well, then this option is used together with the 
–select_in_region argument as documented for d3plot histories; firstly the maximum, minimum, or 
average value will be selected for the part as specified by the –select_in_region argument, followed by 
the selection of the maximum, minimum, or average over time as specified by the –select argument.  

 
 
 
14.7 Mass 
 
Command file syntax: 
DynaMass p1 p2 p3 ... pn mass_attribute 
 

 

Table  14.7-1: Mass item description 

Item Description 
p1 ... pn Part numbers of the model. Omission implies the entire model. 
Mass_attribute Type of mass quantity (see table below). 

 

 

 

 

Table  14.7-2: Mass attribute description 

Attribute Description 
MASS Mass 
I11 Principal inertias 
I22  
I33  
IXX Components of inertia tensor 
IXY  
IXZ  
IYX  
IYY  
IYZ  
IZX  
IZY  
IZZ  
X_COORD x-coordinate of mass center 
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Y_COORD y-coordinate of mass center 
Z_COORD z-coordinate of mass center 

 
Example: 
 
$ Specify the mass of material number 13, 14 and 16 as 
$ the response ’Component_mass’. 
response ’Component_mass’ "DynaMass 3 13 14 16 Mass" 
$ Specify the total principal inertial moment about the x-axis. 
response ’Inertia’ "DynaMass Ixx" 
 
Remarks: 
 
1. The output file d3hsp must be produced by LS-DYNA. 
2. Values are summed if more than one part is specified (so only the mass value will be correct). However 

for the full model (part specification omitted) the correct values are given for all the quantities. 
 
 
14.8 Frequency of given modal shape number 
 
Command file syntax: 
DynaFreq mode_original modal_attribute 
 

Table  14.8-1: Frequency item description 

Item Description 
mode_original The number (sequence) of the baseline modal shape to be tracked. 
modal_attribute Type of modal quantity. (See table below). 

Table  14.8-2: Frequency attribute description 

Attribute Description 

FREQ Frequency of current mode corresponding in modal shape to 
baseline mode specified. 

NUMBER 
Number of current mode corresponding in modal shape to 
baseline mode specified. 
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Theory: Mode tracking is required during optimization using modal analyses as mode switching (a change 
in the sequence of modes) can occur as the optimizer modifies the design variables. In order to extract the 
frequency of a specified mode, LS-OPT performs a scalar product between the baseline modal shape (mass-
orthogonalized eigenvector) and each mode shape of the current design. The maximum scalar product 
indicates the mode most similar in shape to the original mode selected. To adjust for the mass 
orthogonalization, the maximum scalar product is found in the following manner: 
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where M  is the mass matrix (excluding all rigid bodies), φ  is the mass-orthogonalized eigenvector and the 
subscript 0 denotes the baseline mode. This product can be extracted with the GENMASS attribute (see 
Table  14.8-2). Rigid body inertia and coupling will be incorporated in a later version. 
 
Example: 
 
$ Obtain the frequency of the current mode corresponding to the 
$ baseline mode shape number 15 as the response ’Frequency’. 
response ’Frequency’ "DynaFreq 15 FREQ" 
$ Obtain the number (sequence) of the current mode corresponding to 
$ the baseline mode shape number 15 as the response ’Number of mode’. 
response ’Modal number’ "DynaFreq 15 NUMBER" 
 
Remarks: 
 
1. The user must identify which baseline mode is of interest by viewing the baseline d3eigv file in LS-

PrePost. The baseline mode number should be noted. 
 
2. The optimization run can now be started with the correct DynaFreq command (or select the Baseline 

Mode Number in the GUI). 
 
3. Additional files are generated by LS-DYNA and placed in the run directories to perform the scalar 

product and extract the modal frequency and number. 
 
4. mode_original cannot exceed 999. 
 
 
14.9 Extracting metal forming response quantities: LS-DYNA 
 
Responses directly related to sheet-metal forming can be extracted, namely the final sheet thickness (or 
thickness reduction), Forming Limit criterion and principal stress. All the quantities can be specified on a 
part basis as defined in the input deck for LS-DYNA. Mesh adaptivity can be incorporated into the 
simulation run. 
 
The user must ensure that the d3plot files are produced by the LS-DYNA simulation. Note that the 
D3plotResponse commands are an alternative.  
 
14.9.1 Thickness and thickness reduction 
Either thickness or thickness reduction can be specified as follows. 
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Command file syntax: 
DynaThick [THICKNESS|REDUCTION] p1 p2 ... pm [MIN|MAX|AVE] 

 

 

Table  14.9-1: DynaThick item description 

Item Description 
THICKNESS Final thickness of part 
REDUCTION A percentage thickness reduction of the part 
p1…pn The parts as defined in LS-DYNA. If they are omitted, all the parts 

are used. 
MIN|MAX|AVE Minimum, maximum or average computed over all the elements of 

the selected parts 
Example: 
 
Response ’Thickness 1’ "DynaThick THICK 1 2 MAXIMUM" 
Response ’Thickness 1’ "DynaThick REDU 1 2 MINIMUM" 
 
14.9.2 FLD constraint 
 
The FLD constraint is shown in Figure  14-3. 
 
Two cases are distinguished for the FLD constraint. 
 
• The values of some strain points are located above the FLD curve. In this case the constraint is 

computed as: 
 

g = dmax 
 
with dmax the maximum smallest distance of any strain point above the FLD curve to the FLD curve. 

 
• All the values of the strain points are located below the FLD curve. In this case the constraint is 

computed as: 
 

g = –dmin 
 

with dmin the minimum smallest distance of any strain value to the FLD curve (Figure  14-3). 
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Constraint Active 
 
 g = dmax 

 ε1

 ε2 

 d1 

 d2

 d3

 
a) FLD Constraint active 

Constraint Inactive 
 
 g = –dmin 

 ε1

 ε2 

 d1 

 d2

 d3

 
b) FLD Constraint inactive 

Figure  14-3: FLD curve – constraint definition 

It follows that for a feasible design the constraint should be set so that g(x) < 0. 
 
Bilinear FLD constraint 
 
The values of both the principle upper and lower surface in-plane strains are used for the FLD constraint. 
 
Command file syntax: 
DynaFLD p1 p2 ... pn intercept negative_slope positive_slope 
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The following must be defined for the model and FLD curve: 
 

Table  14.9-2: DynaFLD item description 

Item Description 
p1…pn Part numbers of the model. Omission implies the entire model. 
intercept The FLD curve value at ε2 = 0 
negative_slope The absolute value of the slope of the FLD curve value at ε2 < 0 
positive_slope The absolute value of the slope of the FLD curve value at ε2 > 0 

 
Example: 
 
$ Specify the FLD Constraint to be used 
Response ’FLD’ "DynaFLD 1 2 3 0.25 1.833 0.5" 
 
General FLD constraint 
 
A more general FLD criterion is available if the forming limit is represented by a general curve. Any of the 
upper, lower or middle shell surfaces can be considered. 
 
Remarks: 
 
1. A piece-wise linear curve is defined by specifying a list of interconnected points. The abscissae (ε2) of 

consecutive points must increase (or an error termination will occur). Duplicated points are therefore not 
allowed. 

 
2. The curve is extrapolated infinitely in both the negative and positive directions of ε2. The first and last 

segments are used for this purpose. 
 

3. The computation of the constraint value is the same as shown in (Figure  14-3). 
 
 
Command file syntax: 
DynaFLDg [LOWER|CENTER|UPPER] p1 p2 ... pn load_curve_id 
 
The following must be defined for the model and FLD curve: 

 

Table  14.9-3: DynaFLDg item description 

Item Description 
LOWER Lower surface of the sheet 
UPPER Upper surface of the sheet 
CENTER Middle surface of the sheet 
p1…pn Part numbers of the model. Omission implies the entire model. 
load_curve_id Identification number of a load curve in the LS-DYNA input file. 
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The *DEFINE_CURVE keyword must be used. Refer to the 
LS-DYNA User’s Manual for an explanation of this keyword. 

 
 
Example: 
 
$ Specify the general FLD Constraint to be used 
Response ’FLDL’ "DynaFLDg LOWER 1 2 3 23" 
Response ’FLDU’ "DynaFLDg UPPER 1 2 3 23" 
Response ’FLDC’ "DynaFLDg CENTER 23" 
 
For all three specifications load curve 23 is used. In the first two specifications, only parts 1, 2 and 3 are 
considered. 
 
Remarks: 
 
1. The interface program produces an output file FLD_curve which contains the ε1 and ε2 values in the 

first and second columns respectively. Since the program first looks for this file, it can be specified in 
lieu of the keyword specification. The user should take care to remove an old version of the 
FLD_curve if the curve specification is changed in the keyword input file. If a structured input file is 
used for LS-DYNA input data, FLD_curve must be created by the user. 

 
2. The scale factor and offset values feature of the *DEFINE_CURVE keyword are not utilized. 
 
 
14.9.3 Principal stress 
Any of the principal stresses or the mean can be computed. The values are nodal stresses. 
 
Command file syntax: 
DynaPStress [S1|S2|S3|MEAN] p1 p2 ... pn [MIN|MAX|AVE] 
 

 

Table  14.9-4: DynaPStress item description 

Item Description 
S1, S2, S3 σ1, σ 2, σ 3 
MEAN (σ1 + σ 2 + σ 3)/3 
p1 ... pn Part numbers of the model. Omission implies the entire model. 

MIN|MAX|AVE 
Minimum, maximum or average computed over all the elements of 
the selected parts 

 
 
Example: 
 
Response ’Stress 1’ "DynaPStress MEAN 14 17 MAX" 
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14.10 Userdefined interface for extracting results 
 
The user may provide an own extraction routine to output a single floating-point number to standard output. 
 
Examples of the output statement in such a program are: 
 
• The C language: 
 

printf ("%lf\n", output_value); 
 

or 
 

fprintf (stdout, "%lf\n", output_value); 
 
• The FORTRAN language: 
 

write (6,*) output_value 
 
• The Perl script language: 
 

print "$output_value\n"; 
The string “N o r m a l” must be written to the standard error file identifier (stderr in C) to signify 
a normal termination. (See Section  22.1 for an example). 
 
The command to use a user-defined program to extract a response is: 
 
Command file syntax: 

 
response response_name { scale_factor offset } command_line 

 
 
Examples: 
 
1. The user has an own executable program ”ExtractForce” which is kept in the directory 

$HOME/own/bin. The executable extracts a value from a result output file.  
 
The relevant response definition command must therefore be as follows: 
response ’Force’ "$HOME/own/bin/ExtractForce" 
 

2. If Perl is to be used to execute the user script DynaFLD2, the command may be: 
 
response ’Acc’ "$LSOPT/perl $LSOPT/DynaFLD2 0.5 0.25 1.833" 
 
Remark: 
 
1. An alias must not be used for an interface program. 
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14.11 Responses without metamodels 
In some cases it may be beneficial to create intermediate responses without associated metamodels, but still 
part of a metamodel-based analysis. For example omitting intermediate neural networks will improve 
efficiency. The selection is simply made in a check box in the “Responses” panel (labeled “Not metamodel-
linked”). Except for the metamodel linking, “Results” are identical to “Responses” and can be defined using 
a standard LS-DYNA interface, a mathematical expression or a command for a user-defined program. 
 
Command file syntax: 
result name  string 
result name math_expression 
result name command_line 
 
Remark: 
 
1. “Results” cannot be included directly in composites, since a composite relies on interpolation from a 

metamodel. 
 
 
14.12 Matrix operations 
Matrix operations can be performed by initializing a matrix, performing multiple matrix operations, and 
extracting components of the matrix as response functions or results.  
 
There are two functions available to initialize a matrix, namely Matrix3x3Init and Rotate. Both 
functions create 3×3 matrices.  
 
The component of a matrix is extracted using the format A.aij (or the 0-based A[i-1][j-1]) e.g. 
Strain.a23 (or Strain[1][2]) where i and j are limited to 1,2 or 3.  
 
The matrix operation A – I (where I is the unit matrix) is coded as A-1. 
 
Command file syntax: 
matrix name math_expression 
 
 
Examples: 
 
In the following example the user constructs a matrix from scalar results, performs matrix operations and 
uses the final matrix components in an optimization run: 
 
Constant 'X2' 0.0  
Constant 'Y2'  0.0 
Constant 'Z2' -1.0 
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Constant 'X3'  0.0 
Constant 'Y3'  0.0 
Constant 'Z3'  8.0 
$ 
$                      Extract results 
$ 
  result 'Fd11_2' "D3PlotResponse -setid 10 -tref 0.04 -coord 0 -1.858 1.858  
-res_type misc -cmp history_var#11 -select TIME -end_time 0.04" 
  result 'Fd12_2' "D3PlotResponse -setid 10 -tref 0.04 -coord 0 -1.858 1.858  
-res_type misc -cmp history_var#14 -select TIME -end_time 0.04" 
  result 'Fd13_2' "D3PlotResponse -setid 10 -tref 0.04 -coord 0 -1.858 1.858  
-res_type misc -cmp history_var#17 -select TIME -end_time 0.04" 
  result 'Fd21_2' "D3PlotResponse -setid 10 -tref 0.04 -coord 0 -1.858 1.858  
-res_type misc -cmp history_var#12 -select TIME -end_time 0.04" 
  result 'Fd22_2' "D3PlotResponse -setid 10 -tref 0.04 -coord 0 -1.858 1.858  
-res_type misc -cmp history_var#15 -select TIME -end_time 0.04" 
  result 'Fd23_2' "D3PlotResponse -setid 10 -tref 0.04 -coord 0 -1.858 1.858  
-res_type misc -cmp history_var#18 -select TIME -end_time 0.04" 
  result 'Fd31_2' "D3PlotResponse -setid 10 -tref 0.04 -coord 0 -1.858 1.858  
-res_type misc -cmp history_var#13 -select TIME -end_time 0.04" 
  result 'Fd32_2' "D3PlotResponse -setid 10 -tref 0.04 -coord 0 -1.858 1.858  
-res_type misc -cmp history_var#16 -select TIME -end_time 0.04" 
  result 'Fd33_2' "D3PlotResponse -setid 10 -tref 0.04 -coord 0 -1.858 1.858  
-res_type misc -cmp history_var#19 -select TIME -end_time 0.04" 
$ 
$                      Matrix expressions 
$ 
$           1. Initialization 
$ 
  matrix 'Fd_2' 
   {Matrix3x3Init(Fd11_2,Fd12_2,Fd13_2,Fd21_2,Fd22_2,Fd23_2,Fd31_2,Fd32_2,Fd33_2)} 
  matrix 'Fs_2' 
   {Matrix3x3Init(Fs11_2,Fs12_2,Fs13_2,Fs21_2,Fs22_2,Fs23_2,Fs31_2,Fs32_2,Fs33_2)} 
  matrix 'R_2' {Rotate(0, -1.858, 1.858,  X2,Y2,Z2,  X3,Y3,Z3)} 
$ 
$           2. Matrix operations 
$ 
$              Updated deformation gradient Fs 
  matrix 'FSD_2' {Fs_2 * inv (Fd_2)} 
$              Updated Lagrange strain using Fs and Fd 
  matrix 'epsGlobal_2' {.5 * ( tr ( FSD_2 ) * FSD_2  -  1  )} 
$              Tensor transformation to local coordinates 
  matrix 'epsCyl_2' {tr(R_2) * epsGlobal_2 * R_2} 
$ 
$           3. Extract matrix components as response surfaces 
$ 
  response 'Ell_2' expression {epsCyl_2.a11} 
  response 'Ecc_2' expression {epsCyl_2.a33} 
  response 'Elc_2' expression {epsCyl_2.a13} 
  response 'Elr_2' expression {epsCyl_2.a12} 
  response 'Ecr_2' expression {epsCyl_2.a32} 
 
 
14.12.1 Initializing a matrix 
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The command to initialize the matrix: 
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is: 
 
Matrix3x3Init(a11,a12,a13,  a21,a22,a23,  a31,a32,a33) 
 
where aij is any previously defined variable (typically a response or result).  
 
14.12.2 Creating a rotation matrix using 3 specified points 
 
The command is: 
 
Rotate(x1,y1,z1,  x2,y2,z2,  x3,y3,z3) 
 
where the three triplets represent points 1, 2 and 3 in 3-dimensional space respectively.  
 

• The vector v23 connecting points 2 and 3 forms the local X direction.  
• Z = v23 × v21  
• Y = Z × X  
 

The vectors X, Y and  Z are normalized to x , y  and z  which are used to form an orthogonal matrix: 
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15. Composite Functions 

Composite functions can be used to combine response surfaces and variables as well as other composites. 
The objectives and constraints can then be constructed using the composite functions. 
 
15.1 Introduction 
  
15.1.1 Composite vs. response expressions 
There is an important distinction between response expressions and composites. This distinction can have a 
major impact on the accuracy of the result. Response expressions are converted to response surfaces after 
applying the expression to the results of each sampling point in the design space. Composites, on the other 
hand, are computed by combining response surface results. Therefore the response expression will always 
be of the same order as the chosen response surface order while the composite can assume any complexity 
depending on the formula specified for the composite (which may be arbitrary). 
 
Example: If a response function is defined as f(x,y) = xy and linear response surfaces are used, the response 
expression will be a simple linear approximation ax + by whereas a composite expression specified as xy 
will be exact. 
 
There are three types of composites: 
 
15.2 Expression composite 
 
15.2.1 General expressions 
A general expression can be specified for a composite. The composite can therefore consist of constants, 
variables, dependent variables, responses and other composites (see Appendix D). 
 
15.2.2  Special expressions 
There is one special function for composites namely MeanSqErr (see Section  15.6).  
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15.3 Standard composite 
 

15.3.1 Targeted composite (square root of MSE) 
This is a special composite in which a target is specified for each response or variable. The composite is 
formulated as the ‘distance’ to the target using a Euclidean norm formulation. The components can be 
weighted and normalized. 
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where σ and χ are scale factors and W and ω are weight factors. These are typically used to formulate a 
multi-objective optimization problem in which F is the distance to the target values of design and response 
variables. 

 
A suitable application is parameter identification. In this application, the target values Fj are the 
experimental results that have to be reproduced by a numerical model as accurately as possible. The scale 
factors σj and χi are used to normalize the responses. The second component, which uses the variables can 
be used to regularize the parameter identification problem. Only independent variables can be included. See 
Figure  15-1 for an example of a targeted composite response definition. 
 
In the GUI this type is now selected as the “Root MSE” type. 
 
15.3.2 Mean Squared Error composite 
This special composite is the same as the targeted composite, except that the square root operation is 
omitted. This allows for composites to be added to make a larger composite (similar to the vector-based 
MeanSqErr composite in Section  15.6). 
 
15.3.3 Weighted composite 
Weighted response functions and independent variables are summed in this standard composite. Each 
function component or variable is scaled and weighted. 
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These are typically used to construct objectives or constraints in which the responses and variables appear in 
linear combination. 

 
The expression composite is a simple alternative to the weighted composite. 
 
Remarks: 
 
1. An expression composite can be a function of any other composite. 
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2. An objective definition involving more than one response or variable requires the use of a composite 

function. 
 
3. In addition to specifying more than one function per objective, multiple objectives can be defined (see 

Section  16.2). 
 

 
Figure  15-1: Definition of targeted (Root MSE) composite response in LS-OPTui 

 
15.4 Defining the composite function 
 
This command identifies the composite function. The type of composite is specified as weighted, 
targeted or expression. The expression composite type does not have to be declared and can simply 
be stated as an expression. 
 
Command file syntax: 
composite composite_name type [standardMSE|targeted|weighted] 
 
Example: 
 
composite ’Damage’ type targeted 
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composite ’Acceleration’ type weighted 
 
The expression composite is defined as follows: 
Command file syntax: 
composite composite_name math_expression 
 
The math_expression is a mathematical expression given in curly brackets (see Appendix D). 
 
The number of composite functions to be employed must be specified in the problem description. 
 
15.5 Assigning design variable or response  components to the 
composite 
 
Command file syntax: 
composite name response response_name value <1> { scale 
scale_factor <1> } 
composite name variable variable_name value { scale scale_factor 
<1> } 
 
The value is the target value for type: targeted and the weight value for the type: weighted. The 
scale_factor is a divisor. 
 
Example: 
 
composite ’damage’ type targeted 
composite ’damage’ response ’intrusion_3’ 20. scale 30. 
composite ’damage’ response ’intrusion_4’ -35. scale 25. 

for the composite function .
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The equivalent code using the expression composite is: 
 
composite ’damage’ {sqrt(((intrusion_3 - 20)/30)**2 + 
 ((intrusion_4 + 35)/25)**2)} 
 
Example: 
 
$----- x10 > x9 --------------------------- 
composite ’C9’ type weighted 
composite ’C9’ variable ’x_9’ -1. 
composite ’C9’ variable ’x_10’ 1. 
constraint ’C9’ 
Lower bound constraint ’C9’ 0. 
 
for the composite function which defines the inequality x10 > x9. 
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The equivalent code using the expression composite is: 
 
$----- x10 > x9 --------------------------- 
composite ’C9’ {x_10 - x_9} 
constraint ’C9’ 
Lower bound constraint ’C9’ 0. 
 
Needless to say, this is the preferable way to describe this composite. 
 
If weights are required for the targeted function, an additional command may be given. 
 
Command file syntax: 
weight weight value <1> 
 
Example: 
 
composite ’damage’ type targeted 
composite ’damage’ response ’intrusion_3’ 20. 
weight 1.5 
composite ’damage’ response ’intrusion_4’ -35. 
 

is used to specify ( ) ( ) .35205.1 2
4

2
3 −+−= ffdamageF  

The weight applies to the last specified composite and response. 
 
 
15.6 Mean Squared Error  
 
A special function MeanSqErr is provided to compute the Mean Squared Error: 
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It is constructed  so that Gp , p=1,…,P are the values on the target curve G and fp(x) the corresponding 
components of the computed curve f. fp(x) are represented internally by response surface values. x is the 
design vector. By using the default values, the user should obtain a dimensionless error ε of the order of 
unity. See Section  5.3.1 for more detail. 
 
 
Expression syntax: 
 
MeanSqErr (target_curve, computed_curve,   

[num_regression_points, start_point, end_point,   
weight_type, scale_type, 
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weight_value, scale_value, 
weight_curve, scale_curve])  
 

 
 
 
 

Table  15.6-1: MeanSqErr arguments. Arguments in bold are obligatory. 
 
 

Argument name Description Symbol LS-OPT Type Default 
target_curve Target 

Curve name 
G(z) History - 

computed_curve Computed 
curve name 

f(x,z) History - 

num_regression_ 
points 

Number of 
regression 
points 

P Int If P < 2 or not specified: use 
number of points in target 
curve between lower limit 
and upper limit  

lower_limit Lower limit 
on z 

zL Float z-Location of first target point 

upper_limit Upper limit 
on z 

zU Float z-Location of last target point 

weight_ type Weighting 
type 

- Reserved option 
name:           
WEIGHTVALUE 
PROPWEIGHT, 
FILEWEIGHT 

WEIGHTVALUE  
(Value=1.0) 

scale_type Scaling type - Reserved option 
name: 
SCALEVALUE, 
PROPSCALE 
MAXISCALE, 
FILESCALE 

MAXISCALE 

weight_value Weight 
value 

W Float 1 

scale_value Scale value s Float 1 
weight_curve Weights as 

a function 
of z 

W(z) History Weight.compositename

scale_curve Scale 
factors as a 
function of z 

s(z) History Scale.compositename 

 
 

Table  15.6-2: Options for MeanSqErr arguments 
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Syntax Explanation 
WEIGHTVALUE Wi = value. Default = 1.0 
PROPWEIGHT Use a different weight for each curve point p, proportional to the value of |Gp|. This 

method emphasizes the large absolute values of the response. The weights are normalized 
with respect to max |Gp| 

FILEWEIGHT Interpolate the weight from an x-y file: weight vs. z 
SCALEVALUE si = value. Default = 1.0 
MAXISCALE max |Gp|.  
PROPSCALE Use a different scale factor for each curve point, namely |Gp|. 
FILESCALE Interpolate the scale factor from an x-y file: scale vs. z 
 

 
Figure  15-2: Responses panel showing a MeanSqErr selection 

 
Note: 
 

1. The MeanSqErr function can only be used as a composite. 
2. Only points within range of both curves are included in Equation (13-3), so P will be automatically 

reduced during the evaluation if there are missing points. A warning is issued in 
WARNING_MESSAGE. 

3. If num_regression_points is unspecified, P equals the number of target points bounded by 
lower_limit and upper_limit. 
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4. The weight curve and scale curve must be predefined histories (see Section  14.1) if they are 
selected. If a weight or scale curve is selected, the name of the curve defaults to 
‘Weight.compositename’ or ‘Scale.compositename’ respectively where 
compositename is the name of the parent composite being defined. 

5. The MeanSqErr composite makes use of response surfaces to avoid the nonlinearity (quadratic 
nature) of the squared error functional. Thus if the response curve f(x) is linear in terms of the 
design variables x, the composite function will be exactly represented. 

6.  Empty or underscore (_) arguments will generate default values. 
7. The option names in Table  15.6-2 are reserved names and cannot be used as variable names. 
8. MeanSqErr composites can  be added together to make a larger MSE composite (e.g. for multiple 

test cases). 
 

The simplest case, and probably the one used most frequently, is where the user simply defines only the 
target curve and corresponding computed curve (therefore only the first two arguments). In this case all the 
points in the target curve are taken as regression points (provided they have corresponding computed 
points). The simplest target curve that can be defined has only one point.  
 
Examples: 
$ ------ CONSTANTS ------------------------------------------------------------------ 
 Constant 'Begin' 0.002 
 Constant 'End' 0.008 
 Constant 'numpoints' 4 
$ ------ HISTORIES FROM BINOUT ------------------------------------------------------ 
 history 'Force1' "BinoutHistory -res_type rcforc -cmp z_force -id 1 -side SLAVE" 
 history 'Force2' "BinoutHistory -res_type rcforc -cmp z_force -id 1 -side SLAVE" 
 history 'Disp2'  "BinoutHistory -res_type nodout -cmp z_displacement -id 288" 
$ ------ HISTORIES FROM CROSSPLOTS -------------------------------------------------- 
 history 'Force_Disp_Dflt' expression { Crossplot ("-Disp2", "Force2") } 
 history 'Force_Disp_to_Num' expression { Crossplot ("-Disp2", "Force2", 2) } 
 history 'Force_Disp_to_Beg' expression { Crossplot ("-Disp2", "Force2", 4, 0.002) } 
 history 'Force_Disp_to_End' expression { Crossplot ("-Disp2", "Force2", 4, 0.002, 
End) } 
$ ------ HISTORIES FROM FILES -------------------------------------------------------- 
 history 'Test1' file "Test1" 
 history 'Test2' file "Test2" 
 history 'Test3' file "Test3" 
 history 'Weight.Weight_Scale_Curves' file "Weight.Weight_Scale_Curves" 
 history 'Scale.Weight_Scale_Curves' file "Scale.Weight_Scale_Curves" 
 history 'Scale.Wt_Scale_Curves2' file "Scale.Weight_Scale_Curves2" 
 history 'Weight_1' file "Weight_1" 
 history 'Scale_1' file "Scale_1" 
 history 'UnitWeight' file "UnitWeight" 
$ ------ COMPOSITES ------------------------------------------------------------------ 
 composite 'Constant_weight' { MeanSqErr ( Test1, Force1,4, Begin, 8./1000, 
WEIGHTVALUE, SCALEVALUE, 2.0, 1.0) } 
 composite 'Unit_weight_curve' { MeanSqErr ( Test1, Force1,4, Begin, .008, 
WEIGHTCURVE, SCALEVALUE, 2.0, 1.0, UnitWeight) } 
 composite 'Weight_Scale_Curves' { MeanSqErr ( Test1, Force1, 4, Begin, .008, 
WEIGHTCURVE, SCALECURVE) } 
 composite 'Wt_Scale_Curves2' { MeanSqErr ( Test1, Force1, 4, Begin, .008, 
WEIGHTCURVE, SCALECURVE, _, _,Weight_1 ) } 
 composite 'Wt_Scale_Curves3' { MeanSqErr ( Test1, Force1, 4, Begin,  End, 
WEIGHTCURVE, SCALECURVE, _, _,Weight_1, Scale_1 ) } 
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 composite 'Weight_Propscale' { MeanSqErr ( Test1, Force1, 4, Begin,  End, 
WEIGHTCURVE, PROPSCALE , _, _,Weight_1) } 
 composite 'Dfltwt_Scalecurve' { MeanSqErr ( Test1, Force1, 4, Begin, End, , 
SCALECURVE, _, _,Weight_1, Scale_1 ) } 
 composite 'Dfltwt_Propscale' { MeanSqErr ( Test2, Force2, 4, 0.002, , , PROPSCALE) } 
 composite 'Dfltwt_Propscale2' { MeanSqErr ( Test2, Force2, 4, , .008, , PROPSCALE) } 
 composite 'Unitwt_Unitscale1' { MeanSqErr ( Test1, Force1, numpoints, Begin, .008, 
WEIGHTVALUE , SCALEVALUE) } 
 composite 'Unitwt_Unitscale2' { MeanSqErr ( Test2, Force2, numpoints, Begin, .008, 
WEIGHTVALUE , SCALEVALUE) } 
 composite 'Unitscale' { MeanSqErr ( Test2, Force2, 4, Begin, .008, _  , SCALEVALUE) } 
 composite 'Defaults_to_end' { MeanSqErr ( Test2, Force2, 4, Begin, .008) } 
 composite 'Defaults_to_begin' { MeanSqErr ( Test2, Force2, 4, Begin) } 
 composite 'Defaults_to_num' { MeanSqErr ( Test2, Force2, 4) } 
 composite 'Defaults1' { MeanSqErr ( Test1, Force1 ) } 
 composite 'Defaults2' { MeanSqErr ( Test2, Force2 ) } 
 composite 'Defaults3' { MeanSqErr ( Test3, Force_Disp_Dflt ) } 
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16. Objectives and Constraints 

This chapter describes the specification of objectives and constraints for the design formulation. 
 
16.1 Formulation 
 
Multi-criteria optimal design problems can be formulated. These typically consist of the following: 
 

• Multiple objectives (multi-objective formulation) 
• Multiple constraints 

 
Mathematically, the problem is defined as follows: 
 
 Minimize ),,,( 21 NΦΦΦ KF  
 subject to 
   111 UgL ≤≤  
   222 UgL ≤≤  
    M  
   mmm UgL ≤≤  
 
where F represents the multi-objective function, ),,,( 21 nii xxx KΦ=Φ  represent the various objective 
functions and ),,,( 21 njj xxxgg K=  represent the constraint functions. The symbols xi represent the n 
design variables. 
 
In order to generate a trade-off design curve involving objective functions, more than one objective iΦ  
must be specified so that the multi-objective 
 

 ∑
=

Φ=
N

k
kk

1
.ωF  ( 16.1-1) 

 
A component function must be assigned to each objective function where the component function can be 
defined as a composite function F (see Section  0) or a response function f . The number of objectives, N, 
must be specified in the problem description (see Section  8.2). 
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16.2 Defining an objective function 
 
This command identifies each objective function. The name of the objective is the same as the component, 
which can be a response or composite. 
 
Command file syntax: 

 
objective name { weight <1> } 

 
 
Examples: 
 
objective ’Intrusion_1’ 
objective ’Intrusion_2’ 2. 
objective ’Acceleration’ 3. 
 
for 
   Multi-objective = 321 32 Φ+Φ+Φ=F  

 221 32 f++= FF  
 
 
Remarks: 
 
1. The distinction between objectives is made solely for the purpose of constructing a Pareto-optimal curve 

involving multiple objectives (see Section  4.9).  
 
2. The selection to create a Pareto Optimal Frontier is done in the Strategy panel (see Section  4.5). 
 
3. Objectives can be specified in terms of composite functions and/or response functions. 
 
4. The weight applies to each objective as represented by ωk in Equation (11.1). 
 
The default is to minimize the objective function. The program can however be set to maximize the 
objective function. In LS-OPTui, maximization is activated in the Objective panel. 
 
Command file syntax: 

 
Maximize 

 
Example: 
 
Response ’Mass’ ”DynaMass 3 13 14 16 MASS” 
Maximize 
Objective ’Mass’ 
Constraint ’Acceleration’ 
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In LS-OPTui, objectives are defined in the Objective panel (Figure  16-1): 
 

 
Figure  16-1: Objective panel in LS-OPTui with maximization selection.  

 
16.3 Defining a constraint 
 
This command identifies each constraint function. The constraint has the same name as its component. A 
component can be a response or composite. 
 
Command file syntax: 

 
constraint constraint_name 

 
 
 
 
Examples: 
 
history ’displacement_1’ "DynaASCII nodout ’r_disp’ 12789 TIMESTEP 0.0 SAE 60" 
history ’displacement_2’ "DynaASCII nodout ’r_disp’ 26993 TIMESTEP 0.0 SAE 60" 
history ’Intrusion’ {displacement_2 - displacement_1} 
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response Intrusion_80 {Intrusion(80)} 
constraint ’Intrusion_80’ 
 
Remark: 
 
1. Constraints can be specified in terms of response functions or composite functions. 
 
 
In LS-OPTui, constraints are defined in the Constraints panel (Figure  16-2): 
 
 

 
Figure  16-2: Constraints panel in LS-OPTui 

 
16.4 Bounds on the constraint functions 
 
Upper and lower bounds may be placed on the constraint functions. 
 
Additionally, for Reliability Based Design Optimization, the probability of exceeding a bound on a 
constraint can be set. 
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Command file syntax: 
lower bound constraint constraint_name value <-10+30>  
upper bound constraint constraint_name value <+10+30> 
probability lower bound constraint constraint_name prob_value 
probability upper bound constraint constraint_name prob_value 
Example: 
 
Lower bound constraint ’Stress’ 1.e-6 
Upper bound constraint ’Stress’ 20.2 
 
Remark: 
 
1. A flag can be set to identify specific constraint bounds to define a reasonable design space. For this 

purpose, the move environment must be specified (See Section  13.6). 
 
16.5 Minimizing the maximum response or violation* 
 
Refer to Section  5.1 for the theory regarding strict and slack constraints. To specify hard (strict) or soft 
(slack) constraints, the following syntax is used: 
 
Command file syntax: 
strict strictness_factor <1> 
slack 
 
Each command functions as an environment. Therefore all lower bound constraint or upper 
bound constraint commands which appear after a strict/slack command will be classified as 
strict or slack. 
 
In the following example, the first two constraints are slack while the last three are strict. The purpose of the 
formulation is to compromise only on the knee forces if a feasible design cannot be found. 
 
Example: 
 
$ This formulation minimizes the average knee force but 
$ constrains the forces to 6500. 
$ If a feasible design is not available, the maximum violation 
$ will be minimized. 
$ 
$ Objective: 
$----------- 
composite ’Knee_Forces’ type weighted 
composite ’Knee_Forces’ response ’Left_Knee_Force’ 0.5 
composite ’Knee_Forces’ response ’Right_Knee_Force’ 0.5 
objective ’Knee_Forces’ 
$ 
$ Constraints: 
$------------- 
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SLACK 
Constraint ’Left_Knee_Force’ 
Upper bound constraint ’Left_Knee_Force’ 6500. 
$ 
Constraint ’Right_Knee_Force’ 
Upper bound constraint ’Right_Knee_Force’ 6500. 
$ 
STRICT 
Constraint ’Left_Knee_Displacement’ 
Lower bound constraint ’Left_Knee_Displacement’ -81.33 
$ 
Constraint ’Right_Knee_Displacement’ 
Lower bound constraint ’Right_Knee_Displacement’  -81.33 
$ 
Constraint ’Kinetic_Energy’ 
Upper bound constraint ’Kinetic_Energy’ 154000. 
 
The composite function is explained in Section  0. Note that the same response functions appear both in 
the objective and the constraint definitions. This is to ensure that the violations to the knee forces are 
minimized, but if they are both feasible, their average will be minimized (as defined by the composite). 
 
The constraint bounds of all the soft constraints can also be set to a number that is impossible to comply 
with, e.g. zero. This will force the optimization procedure to always ignore the objective and it will 
minimize the maximum response. 
 
In the following example, the objective is to minimize the maximum of ’Left Knee Force’ or ’Right 
Knee Force’. The displacement and energy constraints are strict. 
 
Example: 
 
$ This formulation minimizes the maximum knee force 
$ Because the knee forces are always positive, 
$ the objective will be ignored and the knee force 
$ minimized 
$ 
$ Objective: 
$----------- 
composite ’Knee_Forces’ type weighted 
composite ’Knee_Forces’ response ’Left_Knee_Force’ 0.5 
composite ’Knee_Forces’ response ’Right_Knee_Force’ 0.5 
objective ’Knee_Forces’ 
$ 
$ Constraints: 
$------------- 
SLACK 
Constraint ’Left_Knee_Force’ 
Upper bound constraint ’Left_Knee_Force’ 0. 
$ 
Constraint ’Right_Knee_Force’ 
Upper bound constraint ’Right_Knee_Force’ 0. 
$ 
STRICT 
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Constraint ’Left_Knee_Displacement’ 
Lower bound constraint ’Left_Knee_Displacement’ -81.33 
$ 
Constraint ’Right_Knee_Displacement’ 
Lower bound constraint ’Right_Knee_Displacement’ -81.33 
$ 
Constraint ’Kinetic_Energy’ 
Upper bound constraint ’Kinetic_Energy’ 154000. 
 
Remarks: 
 
1. The objective function is ignored if the problem is infeasible. 
 
2. The variable bounds of both the region of interest and the design space are always hard. 
 
3. Soft constraints will be strictly satisfied if a feasible design is possible. 
 
4. If a feasible design is not possible, the most feasible design will be computed. 
 
5. If feasibility must be compromised (there is no feasible design), the solver will automatically use the 

slackness of the soft constraints to try and achieve feasibility of the hard constraints. However, there is 
always a possibility that hard constraints must still be violated (even when allowing soft constraints). In 
this case, the variable bounds may be violated, which is highly undesirable as the solution will lie 
beyond the region of interest and perhaps beyond the design space. This could cause extrapolation of the 
response surface or worse, a future attempt to analyze a design which is not analyzable, e.g. a sizing 
variable might have become zero or negative. 

 
6. Soft and strict constraints can also be specified for search methods. If there are feasible designs with 

respect to hard constraints, but none with respect to all the constraints, including soft constraints, the 
most feasible design will be selected. If there are no feasible designs with respect to hard constraints, the 
problem is ‘hard-infeasible’ and the optimization terminates with an error message. 

 

16.6 Internal scaling of constraints 
 
Command file syntax: 
Constraint constraint_name scale lower bound value <1.0> 
Constraint constraint_name scale upper bound value <1.0> 
 
Constraints can be scaled internally to ensure normalized constraint violations. This may be important when 
having several constraints and an infeasible solution so that when the maximum violation over the defined 
constraints is minimized, the comparison is independent of the choice of measuring units of the constraints. 
The scale factor sj is applied internally to constraint j as follows: 
 



CHAPTER 16: OBJECTIVES AND CONSTRAINTS 

248  LS-OPT Version 3 

0
)(

≤
+−

L
j

jj

s
Lxg

;  0
)(

≤
−

U
j

jj

s
Uxg

. 

 
A logical choice for the selection of s is j

L
j Ls =  and j

U
j Us = , so that the above inequalities become 

 
 

01
)(

≤+
−

j

j

L
xg

;  01
)(

≤−
j

j

U
xg

 

internally and in the infeasible phase: 
 
 

e
L

xg

j

j ≤+
−

1
)(

;  e
U

xg

j

j ≤−1
)(

; 0≥e  

 
 
Example: 
 
Constraint ’Left_Knee_Displacement’ 
Lower bound constraint ’Left_Knee_Displacement’  -81.33 
Constraint ’Left_Knee_Displacement’ scale lower bound 81.33
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17. Running the Design Task 

This chapter explains simulation job-related information and how to execute a design task from the 
graphical user interface. 
 
The available tasks are optimization, probabilistic evaluation, and repair of an existing job. 
 
17.1 Optimization 
 
The optimization process is triggered by the iterate command in the input file or by the Run command 
in the Run panel in LS-OPTui (Figure  17-1). The optimization history is written to the 
OptimizationHistory file and can be viewed using the View panel. 
 
17.1.1 Number of optimization iterations 
 
The number of optimization iterations are specified in the appropriate field in the Run panel. If previous 
results exist, LS-OPT will recognize this (through the presence of results files in the Run directories) and 
not rerun these simulations. If the termination criteria described below are reached first, LS-OPT will 
terminate and not perform the maximum number of iterations. 
 
Command file syntax: 
iterate maximum_ number_of_iterations 
 
17.1.2 Optimization termination criteria 
 
The user can specify tolerances on both the design change (Δxi) and the objective function change (Δf) and 
whether termination is reached if either, or both these criteria are met. The default selection is and, but the 
user can modify this by selecting or. 
 
Refer to Section  20.2 for the modification of the stopping type in the Command File. 
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Figure  17-1: Run panel in LS-OPTui 

 
17.2 Probabilistic Evaluation 
 
Both a Monte Carlo and a metamodel-based Monte Carlo evaluation can be scheduled from the user 
interface. The task must be set to the relevant procedure. 
 
Section  12.4 regarding probabilistic evaluation contains more details on the available options. 
 
The results can be viewed using the View panel. The histogram, tradeoff, and covariance plots are pertinent 
to a pure Monte Carlo analysis. For a metamodel-based Monte Carlo evaluation, the accuracy, ANOVA, 
and stochastic contribution plots are relevant in addition to the histogram, tradeoff, and covariance plots. 
 
The LS-DYNA results can be investigated for possible bifurcations using the tools described in chapter  21. 
 
 
17.3 Restarting 
 
When a solution is interrupted (through the Stop button) or if a previous optimization run is to be repeated 
from a certain starting iteration, this can be specified in the appropriate field in the Run panel (Figure  17-1). 
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17.4 Job concurrency 
 
When LS-OPT is run on a multi-processor machine, the user can select how many simulations (jobs) can 
run concurrently on different processors (see Figure  17-1). Only the solver process and response extraction 
are parallellized. The preprocessor processes run serially. The number of Concurrent Jobs is ignored for jobs 
that are run by a queuing system. 
 
 
17.5 Job distribution 
 
When a queuing system is available, its operation can be specified in the Run panel (Figure  17-1). 
 
 
17.6 Job and analysis monitoring 
 
The Run panel allows a graphical indication of the job progress with the green horizontal bars linked to 
estimated completion time. This progress is only available for LS-DYNA jobs. The job monitoring is also 
visible when running remotely through a supported job distribution (queuing) system. 
 
When using LS-DYNA, the user can also view the progress (time history) of the analysis by selecting one of 
the available quantities (Time Step, Kinetic Energy, Internal Energy, etc.). 
 
 
17.7 Repair or modification of an existing job 
Several kinds of repairs and modifications are possible for an existing optimization iteration or a 
probabilistic analysis. The repair depends on the LSOPT database files as described in Section  9.7. The 
available repair tasks are: 

• Read points. The CASE/Experiments.iteration file is reconstructed from the runs executed. The 
experimental points can be extracted from the database in the job directories and the experimental  
design thereby reconstructed. 

• Augment points of a Metamodel-based analysis. Points are added to the existing experimental 
design. This option is only available for the following experimental designs types: D-Optimal, 
space-filling, random, and Latin Hypercube. The D-Optimal and space-filling experimental designs 
will be computed taking in consideration the previously computed points. Both the random and the 
Latin Hypercube experimental design points will be computed using the number of previously 
computed points as a seed to the random number generator. If an experimental design does not exist, 
new points will be created. 

• Augment Points of a Monte Carlo analysis. Points are added to the existing experimental design. 
This option is only available for the following experimental designs types: random and Latin 
Hypercube. Both the random and the Latin Hypercube experimental design points will be computed 
using the number of previously computed points as a seed to random number generator. 

• Run Jobs. The LS-DYNA jobs will be scheduled. Designs previously analyzed will not be analyzed 
again. 
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• Rerun failed jobs. The jobs that failed to run will be resubmitted. The LS-DYNA input file used will 
be regenerated from the files specified in the main directory. The preprocessor, if one is specified, 
will be rerun. 

• Extract Results. The results will be extracted from the runs. This option also allows the user to 
change the responses for an existing iteration or Monte Carlo analysis. 

• Read user results. Extract results from AnalysisResults.PRE.<casename>. The 
AnalysisResults.PRE.<casename> file will be generated if the analysis results are 
imported from a .csv or .txt file (see Section  17.9). 

• Build Metamodels.  The metamodels will be built. This option also allows revision of the 
metamodels for an existing iteration or Monte Carlo analysis. The “ExtendedResults” file will be 
updated. Metamodels can for instance be built from imported user results (see section on Read user 
results above). 

• Analyze checkpoints. Create a table with the error measures of a given set of points. See Section 
 13.9. Create a table (.csv file) with response values interpolated from a metamodel. See Section 
 13.10. 

• Optimize. The metamodels are used for metamodel optimization. A new optimum results database is 
created. The “ExtendedResults” file will be updated. 

 
All the subsequent operations must be explicitly performed for the iteration. For example, augmenting an 
experimental design will not cause the jobs to be run, the results to be extracted, or the metamodels to be 
recomputed. Each of these tasks must be executed separately. 
 
The use of *.PRE.* databases for Experiments and DesignFunctions are not supported by the repair facility. 
See Sections  13.5, and  13.6 for the use of these databases. 
 
After repair of iteration n, and if the user is conducting an optimization task, verification runs of the 
optimized result must be done by switching back to the Metamodel-based optimization task and specifying 
the starting iteration as n+1 for a new run. 
Command file syntax: 
read experiments iteration_number 
design more metamodel iteration_number 
design more monte carlo iteration_number 
run iteration_number 
run failed iteration_number 
extract results iteration_number 
read user results iteration_number 
approximate iteration_number 
check file iteration_number 
optimize iteration_number 



CHAPTER 17: RUNNING THE DESIGN TASK 
 

LS-OPT Version 3  253 

 
Figure  17-2: Repair panel 

 
 
17.8 Tools 
A number of tools are available for miscellaneous operations: 
 

• Clean. The directory structure created by LS-OPT and all files in this directory structure are deleted. 
• Gather LS-OPT database. See Section  17.10. 
• Gather LS-OPT database with the history and response files. History and response files are required 

for the DynaStats panel and to view the MeanSqErr results (comparison of the test and computed 
histories). See Section  17.10. 

 
Command file syntax: 
clean 
pack database 
pack database histories 
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17.9 Importing user-defined analysis results 
A table (in text form) of existing analysis results can be used for analysis. The command to import the file is 
given as: 
 
Command file syntax: 
solver response user filename_csv_format 
 
Example: 
 
solver response user "/home/test/ImportResults/crash2.csv" 
 
An example of a analysis results file (with 2 simulation points) is: 
 
"var1","var2","var3","Displacement","Intrusion","Acceleration" 
"dv",  "dv",  "nv",  "rs",          "rs",       "rs" 
1.23   2.445  3.456  125.448        897.2       223.0 
0.01,2.44,1.1,133.24,244,89,446.6 
 
Two header lines are required. The first header line contains the variable names. The second header line 
contains the variable types. The following lines contain the variable and response values for each design 
point. The types are defined as: 
 

Symbol Explanation 
dv Design variable 
nv Noise variable 
rs Response 
sk Ignore 

 
The parsing code looks for double quotes, commas, spaces and/or tabs as delimiters. 
 
 
The steps for importing user-defined analysis result files using the GUI are as follows: 
 
7. Solvers panel: Browse for the text file in the "Import User Results" tab. The browser has a preference 

for .csv and .txt files.  
8. Specify a name for the analysis case and "Add" the case. 
9. Variables and Responses panels. It is recommended to check the variables and responses in these 

panels. The variables and responses will be displayed and automatically associated with the correct 
analysis case. 

10. Sampling panel. Check that the number of points defined in the sampling panel is the same as the 
number of points in the user-provided file. If fewer points are available in the file, LS-OPT will 
augment the sampling points and try to run simulations. 
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11. Menu bar. Choose the "Repair" task. 
12. Run panel. In "Repair" mode, select "Read user results" and "Run". This is a critical step to convert the 

.csv format to the LS-OPT database format ready for analysis. 
13. The user can now choose the type of analysis. 

1. DOE Study: Change to the "Metamodel-based DOE Study" task and "Run". Metamodels will 
be created and the Viewer can be used to study the metamodel results. 

2. Optimization:  
a. Define the Objectives and/or constraints. For RBDO, define the distributions for the 

input variables as well as the probability of failure. 
b. Change to the "Metamodel-based Optimization" or "Metamodel-based RBDO" task, 

choose the "Single Stage" strategy and "Run". An optimization history is created. 
 
 
17.10 Saving/compressing the LS-OPT database after completing a run 
Using the Tools function, the database can be gathered up and compressed in a file called 
lsopack.tar.gz (lsopack.zip in Windows). The packed database is suitable for post-processing 
on any computer platform. The repair selection is: Gather LS-OPT database.  
 
A more sophisticated option is available to also gather the history and response files residing in the run 
directories. These files (e.g. history.0, etc.) are required to view history plots in the DynaStats panel and 
also for viewing MeanSqErr results in the Viewer. The selection is: Gather LS-OPT database + 
histories/responses. The file produced is lsopack_h.tar.gz (lsopack_h.zip in Windows). 
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18. Viewing Results 

This chapter describes the viewing of metamodeling surfaces, metamodeling accuracy, optimization history, 
trade-off plots, ANOVA results, as well as statistical plots such as histograms, stochastic contribution of the 
variables, covariance, and coefficient of correlation plots. 
 
The View panel in LS-OPTui is used to view the results of the optimization process. The results include the 
metamodelling accuracy data, optimization history of the variables, dependents, responses, constraints and 
objective(s). Trade-off data can be generated using the existing response surfaces, and ANOVA results can 
be viewed. 
 
There are three options for viewing accuracy and tradeoff (anthill plots), namely viewing data for the 
current iteration, for all previous iterations simultaneously, all iterations (see e.g. Figure  18-7). The last 
option will also show the last verification point (optimal design) in green. 
 
 
18.1 Metamodel  
 
Three-dimensional cross-sections of the metamodel surfaces and simulation points can be plotted and 
viewed from arbitrary angles. The image rotation is performed by holding down the Ctrl key while moving 
the mouse (same as LS-PREPOST). The following options are available: 
 
18.1.1 Setup 
The selection of the 2 variables and the response function is done here. The sliders allow changing of the 
variable values for unselected variables (variables not plotted). The slider for the active variables can be 
activated by selecting the “Show Predicted Value” option under the Points tab. 
 
18.1.2 Ranges 
A selection can be made to plot the surface across either the full design space or the subregion. The region 
size can also be adjusted manually. The check box prevents shrinking of the view box when changing to a 
different (usually higher) iteration. See Neural Net plot in Figure  18-3. 

 
18.1.3 Points 
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Point plotting options 
 

Selection Description 
Analysis Results Points are plotted for current iteration 
All iterations Points for previous iterations are added 
Project points to surface The points are projected on the surface to improve visibility. 

Future versions will have a transparency option. 
Residuals Shows a black vertical line connecting the computed and 

predicted values. 
Feasible runs Show feasible runs only 
Infeasible runs Show infeasible runs only 
Failed runs on surface Failed runs such as error terminations are projected to the surface 

in grey 
 
Point status 
 

Selection Description 
Feasibility Feasible points are shown in green, infeasible points in red (Figure 

 18-1). 
Previous b/w The points for the current iteration are shown in green (feasible) or 

red (infeasible). Previous points as light grey (feasible) or dark grey 
(infeasible) 

Iterations The iteration sequence is shown using a color progression from blue 
through red. See Figure  18-2. 

Optimum runs Optimal points are shown in green/red and all other points in white. 
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Figure  18-1: Metamodel plot showing feasible (green) and infeasible (red) points. The predicted point is 
shown in violet (t_hood = 4, t_bumper = 4) with the values displayed at the top left. 
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Figure  18-2: Metamodel plot showing point color coding for iteration numbers. 

 
Predicting a value 
 
Predicted values can be obtained by selecting the “Predicted Value” option and moving the sliders in the 
“Setup” menu. The predicted value is displayed in the top left corner (Figure  18-1). 
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Figure  18-3: Surface plot representing only the region of interest of the fourth iteration. 
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Figure  18-4: Plot showing isolines on the objective function as well as constraint contours and feasibility. 
Feasible regions are in green. Shade of red shows degree of infeasibility (number of violated constraints). 

Note legend describing constraints at the top right. 
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Figure  18-5: Plot showing isolines and points opposite the “Points” tab. 
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18.1.4 Fringe plot options for neural nets 
The options are function value or standard deviation of the Neural Net committee values. See Figure  18-6. 
 

 
Figure  18-6: Metamodel plot showing standard deviation of the Neural Net committee values. 

 
 
18.2 Metamodel accuracy 
 
The accuracy of the metamodel fit is illustrated in a Computed vs. Predicted plot (Figure  18-7). By clicking 
on any of the red squares, the data of the selected design point is listed. For LS-DYNA results, LS-
PREPOST can then be launched to investigate the simulation results. The results of each iteration are 
displayed separately using the slider bar. The iterations can be viewed simultaneously by selecting All 
Previous or All. The All selection shows the final verification point in green (see Figure  18-7). The error 
measures are displayed in the heading. 
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Figure  18-7: Computed vs. Predicted plot in View panel in LS-OPTui. The points are color-coded to 

represent the iteration number. 

 
 
 

18.3 Optimization history 
 
The optimization history of a variable, dependent, response, constraint, objective, multi-objective or the 
approximation error parameters of pure responses (not composites or expressions) can be plotted by clicking 
on the Optimization History button (Figure  18-8). For the variables, the upper and lower bounds (subregion) 
are also displayed. For all the dependents, responses, objectives, constraints and maximum violation, a black 
solid line indicates the predicted values, while the red squares represent the computed values at the starting 
point of each iteration. For the error parameters, only one solid red line of the optimization history is 
plotted. RMS, Maximum and R2 error indicators are available. 
 
By clicking on any of the red squares, the data of the selected design point is listed. For LS-DYNA results, 
LS-PREPOST can then be launched to investigate the simulation results. 
 
MeanSqErr composites in the history list are depicted with special icons to emphasize their additional 
functionality. By clicking near any of the iterations, the point values are given as well as a selection button 
for viewing the history comparison using LS-PREPOST. 
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Figure  18-8: Optimization History plot in View panel in LS-OPTui 

 
 
18.4 Trade-off and anthill plots 
The results of all the simulated points appear as dots on the trade-off plots. This feature allows the two-
dimensional plotting of any variable/response against any other variable/response. 
 
Trade-off studies can also be conducted based on the results of an optimization run. This is because the 
response surfaces for each response are at that stage available at each iteration for rapid evaluation. 
 
Trade-off is performed in LS-OPTui using the View panel and selecting Trade-off (Figure  18-9). 
 
Trade-off curves can be developed using either constraints or objectives. The curve can be plotted with any 
of the variables, responses, composites, constraints or objectives on either of the two axes. Care should be 
taken when selecting e.g. a certain constraint for plotting, as it may also be either a response or composite, 
and that this value maybe different from the constraint value, depending on whether the constraint is active 
during the trade-off process. The example in the picture below has Constraint: Intrusion selected for the 
X-Axis Entity, and not Composite: Intrusion. 
Solutions to the trade-off optimization problem falling outside the region of interest are connected by dotted 
lines to indicate extrapolation of the metamodel. 
 
To be able to view the results of composite functions spanning two or more disciplines or cases, the 
duplicate sampling method (Section  5.2) must be selected before starting an analysis. This also implies that 
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the number of variables must be the same for all the disciplines involved and yields coincident experimental 
designs. 
 
An example of trade-off is given in Section  22.1 and  22.2. 
 

 
Figure  18-9: Trade-off plot in View panel in LS-OPTui. The 4th dimension (HIC) is represented by point 

color. 

 

18.5 Variable screening 
 
The Analysis of Variance (ANOVA) (refer to Section  2.4) of the approximation to the experimental design 
is automatically performed if a polynomial response surface method is selected. The ANOVA information 
can be used to screen variables (remove insignificant variables) at the start of or during the optimization 
process. The ANOVA method, a more sophisticated version of what is sometimes termed ‘Sensitivities’ or 
‘DOE’, determines the significance of main and interaction effects through a partial F-test (equivalent to 
Student’s t-test)  [1]. This screening is especially useful to reduce the number of design variables for 
different disciplines (see Sections  5.2 (theory) and  22.6 (example)). 
 
If a probabilistic or an RBDO analysis is being done, then the Stochastic Contribution plots (see Section 
 18.7) are recommended. 
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The ANOVA results are viewed in bar chart format by clicking on the ANOVA button. The ANOVA panel 
is shown in Figure  18-10. 
 
 

 
Figure  18-10: ANOVA plot in View panel in LS-OPTui 

 
 
18.6 Histograms 
Histograms of the variables, dependents, responses, and composites are available. 
 
Either the simulation results directly or the metamodels together with the statistical distribution of the 
variables can be used to construct the histogram. The simulation results will be read from the 
ExtendedResults file of the relevant solver. If the use of the metamodels is selected then a Monte Carlo 
simulation using a Latin Hypercube experimental design and the statistical distributions of the variables will 
be conducted on the metamodel to obtain the desired histogram. The user can control the number of points 
in this Monte Carlo simulation; the default value should however suffice for most cases. If desired, the 
residuals of the metamodel fit can be added to results of the Monte Carlo simulation as a normal 
distribution. 
 
For optimization results, an iteration can be selected, while for probabilistic evaluations the default iteration, 
iteration 1, will automatically be selected. 
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The histogram panel is shown in Figure  18-11. 
 

 
Figure  18-11 Histogram plot 

 
18.7 Stochastic Contribution 
The stochastic contribution of the variables to the variance of the responses and composites (see Section 
 6.7) can be displayed as a bar chart. 
 
Optionally the user can elect to display the influence of the residuals from the metamodel fit and the effect 
of all the variables summed together. Contrasting these two values indicates how well the cause-effect 
relationship for the specific response is resolved. If both the residuals and the sum of the contributions are 
requested, then a total is displayed that is the sum of the contributions of all the variables as well as the 
residuals. 
 
The computations are done using the metamodels and stored in databases for visualization. 
 
Higher order effects, if any, are included in the results plotted. In the Sobol terminology, the total effect as 
opposed to the main effect is therefore plotted. See Section  6.7 for the details. 
 
For optimization the stochastic contribution is computed using the optimal design. 
 
The stochastic contribution panel is shown in Figure  18-12. 
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Figure  18-12 Stochastic Contribution plot 

 
18.8 Covariance and Correlation 
Both the covariance and the coefficient of correlation of the responses and composites with respect to the 
design variables can be displayed. 
 
Either the simulated points or the metamodels together with the statistical distribution of the variables can 
be used. If a metamodel is used then a Monte Carlo simulation using a Latin Hypercube experimental design 
and the statistical distributions of the variables will be conducted on the metamodel to obtain the desired 
results. The user can control the number of points in this Monte Carlo simulation; the default value should 
however suffice for most cases. 
 
The plots can be used to estimate the stochastic contribution for an analysis without a metamodel. 
 
The covariance panel is shown in Figure  18-13. 
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Figure  18-13 Coefficient of Correlation plot 

 
18.9 Plot generation 
 
Plots can be generated in LS-OPTui by selecting File>Export. The current supported format is postscript, 
both color and monochrome, either to a device or file. 
 
18.10 References 
 

[1] Myers, R.H. and Montgomery, D.C. Response Surface Methodology. Process and Product 
Optimization using Designed Experiments. Wiley, 1995 
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19. Applications of Optimization 

This chapter provides a brief description of some of the applications of optimization that can be performed 
using LS-OPT. It should be read in conjunction with Chapter  22, the Examples chapter, where the 
applications are illustrated with practical examples. 
 
19.1 Multidisciplinary Design Optimization (MDO) 
 
The MDO capability in LS-OPT implies that the user has the option of assigning different variables, 
experimental designs and job specification information to different solvers or disciplines. The directory 
structure change that has been incorporated in this version, separates the number of experiments that needs 
to be run for each solver by creating separate Experiments, AnalysisResults, 
DesignFunctions and ExtendedResults files in each solver directory. 
 
Command file syntax: 
mdo mdotype 
 
 
The only mdotype available is mdf, or multidisciplinary feasible. 
 
19.1.1 Command file 
 
All variable definitions are defined first, as when solving non-MDO problems, regardless of whether they 
belong to all disciplines or solvers. This means that the variable starting value, bounds (minimum and 
maximum) and range (sub-region size) are defined together. If a variable is not shared by all disciplines, 
however, i.e., it belongs to some but not all of the disciplines (solvers), then it is flagged using the syntax 
local variable_name. At this stage, no mention is made in the command file to which solver(s) the 
particular variable belongs. This reference is made under the solver context, where the syntax Solver 
variable variable_name is used.  
 
See the examples in Section  22.6 for the command file format. 
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19.2 Worst-case design 
 
The default setting in LS-OPT is that all design variables are treated as minimization variables. This means 
that the objective function is minimized (or maximized) with respect to all the variables. Maximization 
variables are selected in the Variables panel (see Figure  11-1) by toggling the required variables from 
‘Minimize’ to ‘Maximize’. 
 
19.3 Reliability-based design optimization (RBDO)* 
LS-OPT has a reliability-based design capability based on the computation of the standard deviation of any 
response. The theoretical concerns are discussed in Section  5.5. 
 
The method computes the standard deviation of the responses using the same metamodel as used for the 
deterministic optimization portion of the problem using the First Order Second Method (FOSM) or First 
Order Reliability Method (FORM) method. No additional FE runs are therefore required for the 
probabilistic computations. 
 
The method requires very little information additionally to what is required for deterministic optimization. 
Specify the following: 

1. Statistical distributions associated with the design variables 
2. Probabilistic bounds on the constraints 

 
The statistical distributions associated with the design variables are specified in the same manner as for a 
Monte Carlo analysis using a metamodel. 
 
The current GUI support is the same as for deterministic design optimization and Monte Carlo analysis. 
 
Command file syntax: 
probability upper bound constraint ’con_name’ upper_bound 
probability lower bound constraint ’con_name’ lower_bound 
iterate number_of_iterations 
 
An example is given in Section  22.2.11. 
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20. Optimization Algorithm 
Selection and Settings 

This chapter describes the parameter settings for the optimization methods, strategies and algorithms used in 
LS-OPT. The default parameters should be sufficient for most optimization applications. The following 
sections describe how to choose an optimization strategy and modify the default settings. 
 
20.1 Introduction 
 
The two basic optimization branches are Metamodel-based optimization and Direct optimization. 
Metamodel-based optimization is used to create and optimize an approximate model of the design instead of 
optimizing the design through direct simulation. The metamodel is thus created as a simple and inexpensive 
surrogate of the actual design. Once the metamodel is created it can be used to find the optimum or, in the 
case of multiple objectives, the Pareto Optimal Front.  
 
In this section different strategies for building a metamodel are discussed. The strategies depend mostly on 
whether the user wants to build a metamodel that can be used for global exploration or whether she is only 
interested in finding an optimal set of parameters. An important criterion for choosing a strategy is also 
whether the user wants to build the metamodel and solve the problem iteratively or whether he has a 
"simulation budget" i.e. a certain number of simulations and just wants to use the budget as effectively as 
possible to build a metamodel for improving the design and obtaining as much information about the design 
as possible. 
 
20.2 Selecting an optimization methodology 
 
The syntax is as follows: 
 
Command file syntax: 
Optimization method [srsm|genalg] 
 
Metamodel-based optimization (srsm) is the default. Note that the choice of the Direct Genetic Algorithm 
method may require a large number of simulations. The method selections can be made in the GUI using the 
Task button in the menu bar at the top of the GUI. 
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20.3 Selecting strategies for metamodel-based optimization 
 
Command file syntax: 
Metamodel Optimization Strategy [SINGLESTAGE|SEQUENTIAL|DOMAINREDUCTION]  

 
There are three available strategies for automating the metamodel-based optimization procedure. These 
strategies only apply to the tasks Metamodel-based Optimization and RBDO. In the GUI, the strategies are 
selected in the "Strategy" panel. The available optimization strategies are (i) Single Stage, (ii) Sequential 
and (iii) Sequential with Domain Reduction (SRSM).  
 
This is the only panel in which the Pareto Optimal Frontier (see Section  4.9.2) can be selected and the panel 
starts with this option. Selection limits the available options to the global strategies Single Stage and 
Sequential (see Figure  20-1). The remaining option (Sequential with Domain Reduction) is typically only 
used for optimization in which the user is only interested in the final optimum point (such as parameter 
identification) and not in any global exploration of the design. A strategy selection resets the Sampling 
panel (a warning is given!), Algorithms panel and Run panel with recommended selections. The strategies 
are discussed one by one.  
 

 
 

Figure  20-1: Selection to create Pareto Optimal Front showing the available two global strategies 
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20.3.1 Single stage 
In this approach, the experimental design for choosing the sampling points is done only once. The 
metamodel selection defaults to Radial Basis Function Networks with Space Filling as the sampling scheme. 
The verification run is omitted by default. The setting is shown in Figure  20-2. 
 
 

 
 

Figure  20-2: Single Stage strategy selected in the Strategy tab 
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20.3.2 Sequential strategy 
In this approach, sampling is done sequentially. A small number of points is typically chosen for each 
iteration and multiple iterations can be requested in the Run panel. The approach has the advantage that the 
iterative process can be stopped as soon as the metamodels or optimum points have achieved sufficient 
accuracy. The setting is shown in Figure  20-3. 
 

 
 

Figure  20-3: Sequential strategy selected in Strategy tab 

 
The default settings for sampling follow below (see Sampling panel):  
 

1. Radial Basis Function networks 
2. Space Filling sampling. 
3. The first iteration is Linear D-Optimal. 
4. Choose the number of points per iteration to not be less than the default for a linear approximation 

( 1)1(5.1 ++n ) where n is the number of variables. 
 
It was demonstrated in Reference  [16] that, for Space Filling, the Sequential approach had similar accuracy 
compared to the Single Stage approach, i.e. 10 × 30 points added sequentially is almost as good as 300 
points. Therefore both the Single Stage and Sequential Methods are good for design exploration using a 
metamodel. Both these strategies work better with metamodels other than polynomials because of the 
flexibility of metamodels such as RBF's to adjust to an arbitrary number of points. 
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20.3.3  Sequential strategy with domain reduction 
This approach is the same as that in  20.3.2 but, in order to accelerate convergence, the domain reduction 
strategy is used to reduce the size of the subregion. During a particular iteration, the subregion is used to 
bound the positions of new points. Figure  20-4 shows the selection of a domain reduction scheme. 
 

 
 

Figure  20-4: Sequential Strategy with Domain Reduction selected in the Strategy tab. 

 
 
The default domain reduction approach is SRSM which is the original LS-OPT design automation strategy. 
It allows the building of a new response surface (typically linear polynomial) in each iteration. The size of 
the subregion is automatically adjusted for each iteration (see Section  4.6) and points belonging to previous 
iterations are ignored. This method is only suitable for convergence to an optimum, cannot be used to 
construct a Pareto Optimal Front and is not recommended for any other type of design exploration. The 
method is ideal for system identification (see Section  5.3). 
 
The default settings for sampling are listed below (see Sampling panel):  
 

1. Linear polynomial 
2. D-optimal sampling 
3. Default number of sampling points based on the number of design variables (see Table  2.2-1). 
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20.4 Domain reduction in metamodel-based optimization 
 
20.4.1 Setting the subdomain parameters  
To automate the successive subdomain scheme for SRSM, the size of the region of interest (as defined by 
the range of each variable) is adapted based on the accuracy of the previous optimum and also on the 
occurrence of oscillation (see theory in Section  4.6). 
 
The following parameters can be adjusted (refer also to Section  4.6). A suitable default has been provided 
for each parameter and the user should not find it necessary to change any of these parameters. They can 
also be set in the GUI (see Figure  20-5). 
 

Table  20.4-1: Subdomain parameters and default values 

Default Item Parameter 
SRSM SRSM 

(NN) 
objective Tolerance on objective function 

accuracy εf 
0.01 0.01 

design Tolerance on design accuracy εx 0.01 0.01 
stoppingtype and: objective and design; 

or:  objective or design 
and and 

psi γpan 1.0 1.0 
gamma γosc 0.6 1.0 
eta Zoom parameter η 0.6 0.75 

 
* Applied when the design has not changed. 
 
Command file syntax: 
iterate param parameter_identifier value 
 
 
The iterative process is terminated if the following convergence criteria become active: 
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where x refers to the vector of design variables, d is the size of the design space, f denotes the value of the 
objective function and, (k) and (k – 1) refer to two successive iteration numbers. The stoppingtype 
parameter is used to determine whether (and) or (or) will be used, e.g. 
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iterate param design 0.001 
iterate param objective 0.001 
iterate param stoppingtype or 
 
implies that the optimization will terminate when either criterion is met. 
 
20.4.2 Changing the behavior of the subdomain 
 
Resetting the subdomain range 
It is possible to reset the subregion range to the initial range, e.g. for adding points in the full design space 
(or any specified range around the optimum) after an optimization has been conducted. This feature is 
typically only used in a restart mode. The GUI option is "Reset to Initial Range on Iteration" (Figure  20-5). 
 
Command file syntax: 
iterate param reset range iteration iteration_number 
 
Example: 
 
iterate param reset range iteration 3 
 
The point selection of iteration 3 will be conducted in the initial range around the most recent optimum 
point. Full adaptivity will be applied again starting with iteration 4. 
 
Freezing the subdomain range 
This feature allows for points to be added without changing the size of the subregion. Adaptivity can be 
frozen at a specified iteration number. The GUI option is "Freeze Range from iteration" (Figure  20-5). 
 
Command file syntax: 
iterate param adapt off iteration iteration_number 
 
Example: 
 
iterate param adapt off iteration 3 
 
Adaptivity will be applied up to the second iteration. Therefore iterations 3 and higher will have the same 
range (although the region of interest may be panning). The flag is useful for adding points to the full design 
space without any changes in the boundaries. 
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Figure  20-5: Setting the domain reduction parameters using SRSM Advanced Settings 

 
 
20.5 Selecting an algorithm for metamodel-based optimization 
 
Optimization algorithms for metamodel-based optimization can be selected in the Algorithms panel in the 
GUI (see Figure  20-6). 
 
The three core solvers that can be used for metamodel optimization are LFOPC, the Genetic Algorithm and 
Adaptive Simulated Annealing (ASA). Two hybrid algorithms may also be selected namely the Hybrid GA 
and Hybrid SA. The hybrid algorithms start with the GA or SA to find an approximate global optimum after 
which LFOPC is used to sharpen the solution. The solution to a hybrid algorithm will be at least as good as 
the one provided by the global optimizer (GA or SA). The syntax is as follows: 
 
Command file syntax: 
Optimization algorithm [lfopc|genalg|hybrid ga|simulated 
annealing|hybrid simulated annealing] 
 
LFOPC is the default. 
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20.6 Setting parameters in the LFOPC algorithm 
 
The values of the responses are scaled with the values at the initial design. The default parameters in 
LFOPC should therefore be adequate. Should the user have more stringent requirements, the following 
parameters may be set for LFOPC. These can also be set in the GUI. 
 
 
 
 

Table  20.6-1: LFOPC parameters and default values 

Item Parameter Default value Remark
mu Initial penalty value μ 1.0E+2  
mumax Maximum penalty value μ max 1.0E+4 1 
xtol Convergence tolerance εx on the step movement 1.0E-8 2 
eg Convergence tolerance εf on the norm of the gradient 1.0E-5 2 
delt Maximum step size δ See remark 3 
steps Maximum number of steps per phase 1000 1 
print Printing interval 10 4 

 
 
 
Remarks: 
 
1. For higher accuracy, at the expense of economy, the value of μ max can be increased. Since the 

optimization is done on approximate functions, economy is usually not important. The value of steps 
must then be increased as well. 

 
2. The optimization is terminated when either of the convergence criteria becomes active that is when  

 
xε<Δ )(x  

or 
ff ε<∇ )(x  

 
3. It is recommended that the maximum step size, δ, be of the same order of magnitude as the “diameter of 

the region of interest”. To enable a small step size for the successive approximation scheme, the value of 

delt has been defaulted to ∑ =
=

n

i
range

1
2)(05.0δ . 

 
4. If print = steps + 1, then the printing is done on step 0 and exit only. The values of the design 

variables are suppressed on intermediate steps if print < 0. 
 
5. The parameters can also be set in the GUI (Algorithms panel). See Figure  20-6. 
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Command file syntax: 
lfop param parameter_identifier value 
 
Example: 
 
lfop param eg 1.0e-6 
 
In the case of an infeasible optimization problem, the solver will find the most feasible design within the 
given region of interest bounded by the simple upper and lower bounds. A global solution is attempted by 
multiple starts from a set of random points. 
 
 

 
 

Figure  20-6: Selection of the LFOPC parameters 
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20.7 Setting parameters in the Genetic Algorithm 
The default parameters in the GA should be adequate for most problems. However, if the user needs to 
explore different methods, the following parameters may be set. These can also be set in the GUI (see 
Figure  20-7). 

Table  20.7-1: GA parameters and default values 

Item Parameter Default value Type Remark
popsize Population size (always even) 30/100 Integer 1 
generation Number of generations 100/250 Integer 1 
selection Selection operator: 

Tournament, Roullette, SUS 
TOURN  2 

Tourn Size Tournament size for 
tournament selection operator 

2 Integer 2 

Elitism Switch elitism for single 
objective GA: ON/OFF 

ON   

NumElites Number of elites passed to 
next generation 

2 Integer  

Encoding variable Type of encoding for a 
variable: Binary=1, Real=2 

2 Integer 2 

Numbits variable Number of bits assigned to a 
binary variable 

15 Integer 2 

Binary crossover type Type of binary crossover: One 
point, Uniform 

One Point   

Binary crossover 
probability 

Binary crossover probability 1.00 Real  

Real crossover type  Type of real crossover: SBX, 
BLX 

SBX   

Real crossover probability Real crossover probability 1.00 Real  
BLX alpha param Value of α for BLX operator 0.5 Real  
Real crossover 
distribution index 

Distribution index for SBX 
crossover operator 

10.0 Real  

Binary mutation 
probability 

Mutation probability for binary 
mutation 

1/number of 
binary digits  

Real  

Real mutation probability Mutation probability in real-
space 

1/number of 
real variables 

Real  

Real mutation distribution 
index 

Distribution index for mutation 
operator 

10.0 Real  

MOEA TYPE Multi-objective optimization 
algorithm: NSGA2, SPEA2 

NSGA2   

Restart interval Frequency of writing restart 
file. For multi-objective 
problems, this parameter 
governs the frequency of 
writing TradeOff files 

10 Integer  
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Remarks: 
 
1. Command file syntax: 
GA parameter parameter_identifier value 
 
Example: 
 
GA parameter popsize 100 
 
 For direct GA, the default population size is 30 and number of generations is 100. For SRSM, the default 
population size is 100 and number of generations is 250. 
 
2. Command file syntax: 
Encoding variable variable_name value 
 
Example: 
 
Encoding variable ‘x1’ 1 
Numbits variable ‘x1’ 20 
 

 

Figure  20-7: Selection of the GA parameters for creating a Pareto Optimal Frontier 
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20.8 Setting parameters in the Simulated Annealing algorithm 
The adaptive simulated annealing parameters can be modified in the command file manually. 
 

Table  20.8-1: ASA parameters and default values 

Item Parameter Default 
value 

Type 

Temperature ratio Ratio of minimum and 
maximum temperature 

1e-6 Real 

Annealing scale Annealing scale 1000 Integer 
Function param 
ratio 

Ratio of cost temperature ratio 
and parameter temperature ratio 

1 Integer 

Maximum simulation Maximum number of function 
evaluations  

10000 Integer 

Temperature update 
interval 

Number of function evaluations 
at some temperature 

1 Integer 

NumElites Number of elites passed to next 
generation 

2 Integer 

 
Command file syntax: 
SA parameter_identifier value 
 
Example: 
 
SA temperature ratio 1e-6 
 
The parameters can also be set in the GUI (see Figure  20-8). 
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Figure  20-8: Selection of the SA parameters 

 
 

20.9 Verification run 
After the last full iteration a verification run of the predicted optimal design is executed. This run can also 
be omitted if the user is only interested in the prediction of the optimum using the metamodel. 
 
Command file syntax: 
iterate noverify 
 
The verification run can also be omitted by setting a flag in the Run panel. 
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21. LS-DYNA Results Statistics 

The statistics of the LS-DYNA results can be displayed on the FE model. The statistics of the LS-DYNA 
d3plot results and LS-OPT history data are computed by LS-OPT for viewing in LS-PREPOST. These 
statistics shows: 

• The variation of the LS-DYNA results due to the variation of the design parameters. 
• The variation of the LS-DYNA results due to bifurcations and other stochastic process events. 

The d3plot results are computed and displayed for every node or element for every state in the d3plot 
database, while the history results are likewise computed and displayed for every timestep in the history. 
 
A more complete list of the statistics that can be computed and visualized is: 
 

• Statistics of the Monte Carlo data from the LS-DYNA jobs. These are the data from the 
experimental designs used. If the experimental design was for a Monte Carlo analysis then the 
experimental design reflects the variation of the design variables, but if the experimental design was 
for creating a metamodel then the experimental design does not reflect the statistical variation of the 
design variables. 

• Statistics of the results considering the variation of the design variables using the approximations 
(metamodels) created from the LS-DYNA jobs. The distributions of the design variables and the 
metamodels are used to compute the variation of the responses. If distributions were not assigned to 
the design variables, then the resulting variation will be zero. The metamodels allow the 
computations of the following: 

o The deterministic or parametric variation of the responses caused by the variation of the 
design variables. 

o Statistics of the residuals from the metamodels created from the LS-DYNA jobs. These 
residuals are used to find bifurcations in the structural behavior – the outliers comprise the 
displacement changes not associated with a design variable change. See Section  6.6 
regarding the computation of outliers. This is the process variation is associated with 
structural effects such as bifurcations and not with changes in the design variable values. 

o The stochastic contribution of a variable can be investigated. 
o A probabilistic safety margin with respect to a bound on the LS-DYNA  response can be 

plotted.  
• The LS-OPT histories of all the LS-DYNA runs can be plotted. 
• The correlation of d3plot results or histories with an LS-OPT response can be displayed. This can be 

used, for example, to identify the changes in displacements associated with noise in an LS-OPT 
response. 
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21.1 Working with the plots 
Use the GUI panel shown in Figure  21-1 to work with the plots. Utilise the following actions: 

• Create This creates a new plot. Note that this only create the definition of the plot. The data for the 
must be generated before it can be displayed.  

• Generate The data for a plot is generated. This is done once only per plot. More than one plot can be 
selected to be generated – there is no need to generate plots one-by-one. 

• Display Plot previously created and generated can be displayed. 
• Edit An plot can be edited or copied. This may require that the data be re-generated. 
• Bifurcation An study can be investigated for bifurcations, and the bifurcation can be plotted. 
• Delete A plot can be deleted. 

The plot definitions are stored in a file which allows re-use of a methodology in different studies (see 
Section  21.13). 
 

 
Figure  21-1 Visualization of DYNA results statistics. After a plot has been created using the plot creation 

wizard, the data for the plot must be generated by running LS-OPT, following which the plot can be 
displayed in LS-PREPOST. An existing plot can be edited, or a bifurcation in the plot can be investigated, 

or the plot can be deleted. 

 
21.2 Monte Carlo 
The statistic of the responses from a Monte Carlo procedure can be computed. 
 
This Monte Carlo task will calculate: 
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• Statistics of the response  
o Mean value of the response 
o Standard deviation of the response 
o Range of the response (maximum minus the minimum value) 
o Maximum value of the response 
o Minimum value of the response 
o ID of the LS-DYNA job where the maximum value occurred. This can be used to 

indentify the jobs likely to contain a different bifurcation. 
o ID of the LS-DYNA job where the minimum value occurred. This can be used to 

indentify the jobs likely to contain a different bifurcation. 
• The margin of safety (constraint margin) considering (i) a given bound on the response and 

(ii) the variation of the response as computed using the Monte Carlo analysis (see also 
Section  21.7). 

 
 
21.3 Metamodels and residuals 
Metamodels (approximations) can be used to predict the statistics of the responses. These metamodels 
(approximations) will be computed for all results for all nodes for all time steps. 
 
The metamodels are also useful for separating deterministic variation, caused by the variation of the design 
variables, from the process variation. The two types of variation are as shown in Figure  21-2. 
 

 
Figure  21-2 Different types of variation that can occur in a structure. The deterministic variation, predicted 
using the metamodel, is due to changes in the design variable values. The process variation, not associated 

with change in the design variable values, shows up in the residuals of the metamodel fit. 

 
Metamodels are able to distinguish the process variation because, as shown in Figure  21-3, a metamodel can 
only predict the effect of the design variables. Process variation, not predictable by the design variables, 
becomes residuals. 
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Figure  21-3 Metamodels can be used to distinguish between changes in the results due to the design variable 

changes and changes due to bifurcations. 

The metamodel task will calculate: 
• Statistics of the response due to all the variables using the metamodel 

o Mean value of the response 
o Standard deviation of the response 
o Range (four standard deviations) 
o Maximum value (mean plus two standard deviations) 
o Minimum value (mean minus two standard deviations) 

• Statistics of the residuals 
o Mean value of the residuals (always zero) 
o Standard deviation of the residuals 
o Range of the residuals (maximum minus the minimum value) 
o Maximum value of the residuals 
o Minimum value of the residuals 
o ID of the LS-DYNA job where the maximum residual occurred. This can be used to 

indentify the jobs likely to contain a different bifurcation. 
o ID of the LS-DYNA job where the minimum residual occurred. This can be used to 

indentify the jobs likely to contain a different bifurcation. 
• Stochastic contribution of each individual variable 
• The margin of safety (constraint margin) considering (i) a given bound on the response and 

(ii) the variation of the response as computed using the metamodel (see also Section  21.7). 
• All the computations as specified for the Monte Carlo procedure. The data required for this 

computation is read in for the metamodel computations, so very little time is expended 
computed these results as well. 

 
The standard deviation of the variation caused by the design variables are computed using the metamodel as 
described in Section  6.7. The maximum, minimum, and range are computed using the mean value 
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plus/minus two standard deviations. The Max Job ID and Min Job ID are not meaningfull for the metamodel 
results. 
 
The residuals are computed as the difference between the values computed using FEA and the values 
predicted using the metamodel (see Section  6.6 for more details). 
 
A linear or a quadratic response surface can be used. 
 
The metamodel processing speed is approximately 105 – 106 finite element nodes a second, where the total 
number of nodes to be processed are the number of nodes in the model times the number of states times the 
number of jobs. FLD computations, which requires the computation of the principle strains, can be a factor 
of five slower than computations using the nodal displacements. The overall speed is dominated by the time 
required to read the d3plot files from disk, which means accessing files over a network will be slow. 
 
 
 
21.4 Monte Carlo and metamodel analysis commands 
 
This section gives the commands required for the computation of the statistics from a Monte Carlo or a 
metamodel based set of LS-DYNA results. 
 
Either the LS-DYNA d3plot results or LS-OPT history results can be analyzed. The resulting output can be 
viewed in LS-PREPOST. The results will be in the solver directory with extensions of .statdb and .history. 
 
The statistic are computed for a single solver and a single iteration. 
 
Command file syntax: 
  
 
Example: 
 
dynastat order linear 
 
Command file syntax: 
  
dynastat solver ‘case_name‘ 
dynastat iteration interation_number 
dynastat order approx_order 
analyze dynastat  
analyze dynastat d3plot ‘result_type’ ‘component’ 
analyze dynastat d3plot ‘FLD’ ‘fld_component’ parameters fld_t 
fld_n 
analyze dynastat d3plot ‘FLD’ ‘fld_component’ fld_curve_id 
analyze dynastat history ‘history_name’ 
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Item Description Default 
case_name Name of analysis case The first or only case 

specified 
iteration_number Iteration number 1 
approx_order linear | quadratic Do not use a metamodel 
result_type The available result types are 

listed Appendix A 
 

component The available components are 
listed Appendix A 

 

fld_t FLD curve t coefficient  
fld_n FLD curve n coefficient  
fld_curve_id ID in the LS-DYNA file of the 

FLD curve to be used 
 

history_name Name of LS-OPT history  
 
 
Example: 
 
$ analyze displacement using a metamodel 
dynastat solver ‘CRASH’ 
dynastat iteration 1 
analyze dynastat 
dynastat order linear 
$ 
$ analyze history using a metamodel 
dynastat solver ‘CRASH’ 
dynastat iteration 1 
dynastat order linear 
analyze dynastat history ‘nHist’ 
 
 
 
 
21.5 Correlation 
21.5.1 Correlation of fringe plots or histories with responses 
The correlation of the LS-DYNA results or LS-OPT histories with a response can be computed. This 
quantity indicates whether the changes in the responses are associated with the changes in the displacement 
or history. Figure  21-4 shows examples of a positive, a negative, and a lack of correlation. 
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Figure  21-4 Correlation between X, shown in the upper left corner, and different responses Y. Different 

responses Y with a positive, a negative, and no correlation are shown. 

 
If not enough FE evaluations were conducted, the resulting fringe plot can be visually noisy. 30 or more FE 
evaluations may be required. 
 
Note that the correlation of history is with respect to a response at a single time instance. 
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Figure  21-5 Viewing the correlation between an LS-DYNA response and an LS-OPT response. 
Additionally, the correlation between an LS-OPT history and an LS-OPT response can also be viewed. 

 
Command file syntax: 
  
dynastat correlation response ’name’ 
 
 

Item Description 
name Name of response or composite  

 
 
Example: 
 
dynastat correlation response ‘node_max’ 
 
 

21.5.2 Correlation between variables 
If correlation between variables are specified as described in section  12.3.4, then this will be handled 
automatically for Monte Carlo results as well as results computed using a linear metamodel. Quadratic 
metamodels will generate an error message. 
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21.6 Stochastic contribution of a variable (Design sensitivity analysis) 
 
The contribution of  each design variable to the variation of the nodal response can also be plotted on the 
model. These results are computed as described in Section Section  6.7.  
 
The most important variable, or rather the variable responsible for the most variation of the response, can be 
plotted on the model. Actually, only the index of the variable is displayed on the model. This index is the 
same as in the list of variables as shown in the LS-DYNA results statistics GUI. 
 

 
Figure  21-6 Viewing the stochastic contribution of a single variable. 

 
21.7 Safety margin 
The safety margin as shown in Figure  21-7 can be displayed in three ways: 

• The safety margin — the difference between the bound and mean, 
• The safety margin measured (scaled) in standard deviations (sigmas), and 
• The probability of exceeding the bound.  
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Figure  21-7 The safety margin is the difference, measured in standard deviations, between the mean 

response and the constraint bound on the response. 

 
The bound must therefore be specified when the statistics are computed as shown in Figure  21-8. Obtaining 
the safety margin for a different bound requires the generation of a new plot. 
 
The probability of exceeding the bound is computed using the FOSM method (see Section  6.4.4) using the 
normal distribution together with the safety margin measured in standard deviations (sigmas). The 
computation is therefore done in the six-sigma sense interpretation — the number of sigmas (standard 
deviations) is the unit of measure. For a Monte Carlo computation of the probability is desired, then it must 
be computed using a response in viewer; if this response was not defined originally then it must be extracted 
from the d3plot database: first defining a d3plot response, do a repair/extract, and use Viewer. 
 

 
Figure  21-8 Plotting a safety margin or the probability of failure requires that the bound must be specified. 
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21.8 Visualization in LS-PREPOST 
 
The user can select the LS-PREPOST plot details in LS-OPT (Figure  21-9). The GUI options will reflect 
whether displacements or history data is being investigated and whether coefficient of correlation results are 
requested. 
 
 

 
Figure  21-9  The statistics viewing options. The statistics will be shown in LS-PREPOST using the FE 
model from the LS-DYNA job specified using the Job field. The FE models of the jobs containing the 

maximum and minimum values can be overlayed in order to identify bifurcations as described in Section 
 21.10. 

 
The Job Index field specifies the FE model used for the display of the results. Additionally, the FE models 
containing the maximum and the minimum results can be overlayed in order to spot bifurcations as 
described in a later section. 
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21.9 Viewing LS-OPT histories 
The LS-OPT histories for all the LS-DYNA run can be viewed simultaneously. See Figure  21-12 for an 
example. 
 

 
Figure  21-10 Viewing all the LS-OPT histories. 
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Figure  21-11 Statistics of an LS-OPT history. 

 

 
Figure  21-12 The LS-OPT histories of all the LS-DYNA run can be viewed simultaneously. 
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21.10 Bifurcation investigations 
 
The residuals plots are useful for finding bifurcations. The standard deviation (or range) of the residuals 
indicate regions where the changes in displacements are not explained by changes in the design variable 
values ― it is therefore a plot of the unexpected displacements or ‘surprise factor’.  The plots from a Monte 
Carlo analysis can also be used to find bifurcations similarly to the residuals from a metamodel-based 
Monte Carlo analysis. 

 
Figure  21-13 Bifurcation options. The bifurcation is found by superimposing the FE models containing the 

maximum and minimum results. The specification of a node ID associated with the bifurcation may be 
required if the extreme values in the model are not caused by the bifurcation. 

 
21.10.1 Automatic detection 
Automatic detection of the LS-DYNA jobs containing the minimum and maximum outlier can be done as 
shown in Figure  21-9.  The GUI the user must select (i) overlay of the FE models containing the maximum 
and minimum results and (ii) whether the global minimum or the minimum at specific node must be used. 
Viewing the maximum and minimum job simultaneously allows the bifurcation to be identified. See Figure 
 21-9 for an example of the resulting LS-PREPOST plot. 
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Figure  21-14 Viewing a bifurcation. The structure is a plate that can buckle either left or right. Three FE 
models are shown, and the two distinctly different solution modes are clearly visible. The creation and 
display of the plot containing all three models are automated in LS-OPT. 

 
 
21.10.2 Manual detection 
The steps for manual detection are: 

1. Plot displacement magnitude outlier Range to identify location in FE model where the bifurcation 
occurred. 

2. Identify job in which maximum value occurred using a Max Job ID plot 
3. Identify job in which minimum value occurred using a Min Job ID plot 
4. View the location in model for the jobs having the minimum and maximum value 

 
Recommendations: 

• Engineering knowledge of the structure is important. 
• Look at the x, y, and z components in addition to the displacement magnitude to understand in which 

direction the bifurcation occurred; most bifurcations are actually best identified considering a 
displacement component. 
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• The history results may be useful to find the time at which a bifurcation occurred. 
• The correlation between a response and displacements (or histories) indicates if variation of the 

displacement is linked to variation of the response. 
• Look at all of the states in the d3plot database; the bifurcation may be clearer at an earlier analysis 

time. 
 
 
21.11 Displacement magnitude issues* 
 
Approximation of the displacement magnitudes (resultants) introduces some special cases. The magnitude is 
defined as the square root of a sum of squares, which is difficult to approximate around the origin, 
especially using linear approximations. Figure  21-15 illustrates. The x, y, and z displacement components 
do not suffer from this problem. 
 

 
 

Figure  21-15 Displacement approximation scenarios. The displacement magnitude, being always larger than 
zero, cannot be approximated accurately around the origin if some of the displacement components can have 

a negative value.  

 
 
Unexpected results may occur even if the displacement magnitude is approximated correctly. The 
displacement magnitude is always a positive quantity, which, in addition to the fitting problems, can also 
cause problems when computing the coefficient of correlation with a response quantity. Figure  21-16 
illustrates two buckling modes of a flange evaluated at two locations in space. The displacement magnitude 
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variance differs for the two locations though the buckling modes are similar. The variance of the 
displacement magnitude will therefore be smaller than what would be found considering the components. 
Considering a displacement component will cure this problem, but a displacement component aligned with 
the required direction may not always exist. 
 

 
Figure  21-16 The displacement magnitude can depend on the aligment of the flange with the axis. The 

buckling will be difficult to spot if it is aligned with the position of the axis. For configuration A, the two 
vectors have nearly the same length, while for configuration B, they clearly have different lengths. 

 
Recommendations: 

• Use the x, y, and z displacement components.  
 
 
 
 
21.12 Metalforming options 
 
Metalforming has some special requirements. It is possible to: 

• Map the results from each iteration to the mesh of the base design. The results will be 
computed at a specific spatial location instead of a node (Eulerian system). This is required in 
metalforming because: 

i. The adaptivitity will result in the different iterations having different meshes. 
ii. It is more natural in metalforming to consider the results at a specific geometric 

location than at a specific node. 
This is done only for the work piece. This part must therefore be specified in the LS-OPT 
input. More detail is shown in Figure  21-17, Figure  21-18, and Figure  21-19. 
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• Specify the FLC curve to be used in the computation of the FLD responses. This can be done  
by either specifying the number of a curve in the LS-DYNA input deck or using two 
parameters similar to that being used in LS-PREPOST. 

 

 
Figure  21-17 For metal forming specify that the coordinates instead of the nodes must be followed and 

specify the part (blank) for which the results must be mapped. 

 
Figure  21-18 Interpolation of metal forming results. 
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Figure  21-19 Acuracy of of the mapping operation for element results is shown for two cases. For each case 

the results are shown as the element centroid results for the original mapped mesh, the element results 
averaged at the nodes for the original mapped mesh, and the results mapped to the nodes of the base mesh. 

For the first case it can be seen that the mapping accuracy is good if the mesh is sufficiently fine to consider 
smoothly varying results. The second case, which occur when yielding occurs in a single element, indicates 

a loss of information. But for this second case, the exact numerical value of the original results is not 
considered very accurate, so we can consider the mapped results as sufficient as long as they conserve the 
prediction of failure. For the second case the numerical values are mesh-dependent, so the prediction of 

failure is the quantity that should be mapped to another mesh. 

 
Command file syntax: 
  
dynastat map part 
analyze dynastat d3plot ‘FLD’ ‘fld_component’ parameters fld_t 
fld_n 
analyze dynastat d3plot ‘FLD’ ‘fld_component’ fld_curve_id 
 
 
 

Item Description 
part ID of part to be mapped 
fld_t FLD curve t coefficient 
fld_n FLD curve n coefficient 
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fld_curve_id ID in the LS-DYNA file of the 
FLD curve to be used 

 
 
Example: 
 
dynastat map 8 
analyze dynastat ‘FLD’ ‘lower_eps1/fldc’ parameters 0.8 0.21 
 
21.13 Re-use and persistence of an evaluation methodology* 
The definitions of the plots are saved in a filed named dynastatplots.xml. Copy this file to the directory 
where you want to re-use the definitions. The plots will be available when you restart the LS-OPT gui. The 
plots will have to be re-generated though; note that you can select all of the plots when you generate plots – 
there is no need to generate plots one-by-one. 
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22. Example Problems 

22.1 Two-bar truss (2 variables) 
 
This example has the following features: 
 
• A user-defined solver is used. 
• Extraction is performed using user-defined scripts. 
• First- and second-order response surface approximations are compared. 
• The effect of subregion size is investigated. 
• A trade-off study is performed. 
• The design optimization process is automated. 
 
22.1.1 Description of problem 
 
This example problem as shown in Figure  22-1 has one geometric and one element sizing variable. 
 

 

x2 

x1 

x2 

F 

 
Figure  22-1: The two-bar truss example 
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The problem is statically determinate. The forces on the members depend only on the geometric variable. 
 
Only one load case is considered: F = (Fx,Fy) = (24.8kN, 198.4kN). 
 
There are two design variables: x1 the cross-sectional area of the bars, and x2 half of the distance (m) 
between the supported nodes. The lower bounds on the variables are 0.2cm2 and 0.1m, respectively. The 
upper bounds on the variables are 4.0cm2 and 1.6m,  respectively. 
 
The objective function is the weight of the structure. 
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The stresses in the members are constrained to be less than 100 MPa. 
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where C1 = 1.0 and C2 = 0.124. 
 
Only the first stress constraint is considered since it will always have the larger value. 
 
The C language is used for the simulation program. The following two programs simulate the weight 
response and stress response respectively. 
 
gw.c 
#include <stdlib.h> 
#include <stdio.h> 
#include <math.h> 
 
#define NUMVAR 2 
 
main (int argc, char *argv[]) 
{ 
int i, flag; 
double x[NUMVAR], val; 
 
    for (i=0; i<NUMVAR; i++) { 
 flag = sscanf (argv[i+1], "%lf", &x[i]); 
 if (flag != 1)  { 
     printf ("Error in calculation of Objective Function\n"); 
     exit (1); 
     } 
 } 
 
    val =  x[0] * sqrt(1 + x[1]*x[1]); 
 
    printf ("%lf\n", val); 
    fprintf (stderr, "N o r m a l\n"); 
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    exit (0); 
} 
 
gs.c 
#include <stdlib.h> 
#include <stdio.h> 
#include <math.h> 
 
#define NUMVAR 2 
 
main (int argc, char *argv[]) 
{ 
int i, flag; 
double x[NUMVAR], val; 
double x2; 
 
    for (i=0; i<NUMVAR; i++) { 
 flag = sscanf (argv[i+1], "%lf", &x[i]); 
 if (flag != 1) { 
     printf ("Error in calculation of constraint1\n"); 
     exit (1); 
     } 
 } 
    x2 = 1 + x[1]*x[1];  
    val = 0.124 * sqrt (x2) * (8/x[0] + 1/x[0]/x[1]); 
 
    printf ("%lf\n", val); 
    fprintf (stderr, "N o r m a l\n"); 
 
    exit (0); 
} 
The UNIX script program 2bar_com runs the C-programs gw and gss using the design variable file 
XPoint which is resident in each run directory, as input. For practical purposes, 2bar_com, gw and gs 
have been placed in a directory above the working directory (or three directories above the run directory). 
Hence the references ../../../2bar_com, ../../../gw, etc. in the LS-OPT input file. 
 
Note the output of the string "N o r m a l" so that the completion status may be recognized. 
 
2bar_com: 
../../../gw `cat XPoint` >wt; ../../../gss `cat XPoint` >str 
 
The UNIX extraction scripts get_wt and get_str are defined as user interfaces: 
 
get_wt: 
cat wt 
 
get_str: 
cat str 
 
In Sections  22.1.2 to  22.1.4, a typical semi-automated optimization procedure is illustrated. Section  22.1.5 
shows how a trade-off study can be conducted, while the last subsection  22.1.6 shows how an automated 
procedure can be specified for this example problem. 
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22.1.2 A first approximation using linear response surfaces 
 
The first iteration is chosen to be linear. The input file for LS-OPT given below. The initial design is located 
at x = (2.0, 0.8). 
 
"2BAR1: Two-Bar Truss: A first approximation (linear)" 
$ Created on Wed Jul 10 17:41:03 2002 
$ 
$ DESIGN VARIABLES 
$ 
variables 2 
 Variable 'Area' 2 
  Lower bound variable 'Area' 0.2 
  Upper bound variable 'Area' 4 
  Range 'Area' 4 
 Variable 'Base' 0.8 
  Lower bound variable 'Base' 0.1 
  Upper bound variable 'Base' 1.6 
  Range 'Base' 1.6 
solvers 1 
responses 2 
$ 
$ NO HISTORIES ARE DEFINED 
$ 
$ 
$ DEFINITION OF SOLVER "RUNS" 
$ 
 solver own 'RUNS' 
  solver command "../../../2bar_com" 
$ 
$ RESPONSES FOR SOLVER "RUNS" 
$ 
 response 'Weight' 1 0 "cat wt" 
 response 'Weight' linear 
 response 'Stress' 1 0 "cat str" 
 response 'Stress' linear 
$ 
$ NO HISTORIES DEFINED FOR SOLVER "RUNS" 
$ 
$ 
$ OBJECTIVE FUNCTIONS 
$ 
 objectives 1 
 objective 'Weight' 1 
$ 
$ CONSTRAINT DEFINITIONS 
$ 
 constraints 1 
 constraint 'Stress' 
  upper bound constraint 'Stress' 1 
$ 
$ EXPERIMENTAL DESIGN 
$ 
 Order linear 
 Experimental design dopt 



 CHAPTER 22:  EXAMPLE PROBLEMS  

LS-OPT Version 3  313 

 Basis experiment 3toK 
 Number experiment 5 
$ 
$ JOB INFO 
$ 
 concurrent jobs 4 
 iterate param design 0.01 
 iterate param objective 0.01 
 iterate 1 
STOP 
 
The input is echoed in the file lsopt_input. 
The output is given in lsopt_output and in the View panel of LS-OPTui.  
 
A summary of the response surface statistics from the output file is given: 
 
Approximating Response 'Weight' using 5 points (ITERATION 1) 
---------------------------------------------------------------- 
          Global error parameters of response surface 
          ------------------------------------------- 
Linear Function Approximation: 
------------------------------ 
Mean response value           =     2.9413 
 
RMS error                     =     0.7569 (25.73%) 
Maximum Residual              =     0.8978 (30.52%) 
Average Error                 =     0.7131 (24.24%) 
Square Root PRESS Residual    =     2.5054 (85.18%) 
Variance                      =     0.9549 
R^2                           =     0.9217 
R^2 (adjusted)                =     0.9217 
R^2 (prediction)              =     0.1426 
Determinant of [X]'[X]        =     3.5615 
 
Approximating Response 'Stress' using 5 points (ITERATION 1) 
---------------------------------------------------------------- 
          Global error parameters of response surface 
          ------------------------------------------- 
Linear Function Approximation: 
------------------------------ 
Mean response value           =     4.6210 
 
RMS error                     =     2.0701 (44.80%) 
Maximum Residual              =     4.1095 (88.93%) 
Average Error                 =     1.6438 (35.57%) 
Square Root PRESS Residual    =     3.9077 (84.56%) 
Variance                      =     7.1420 
R^2                           =     0.8243 
R^2 (adjusted)                =     0.8243 
R^2 (prediction)              =     0.3738 
Determinant of [X]'[X]        =     3.5615 
 
The accuracy of the response surfaces can also be illustrated by plotting the predicted results vs. the 
computed results (Figure  22-2). 
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Prediction accuracy of Weight  

(Iteration 1 - Linear) 
Prediction accuracy of Stress  

(Iteration 1 - Linear) 

Figure  22-2: Prediction accuracy of Weight and Stress (Iteration 1 – Linear) 

 
The R2 values are large. However the prediction accuracy, especially for weight, seems to be poor, so that a 
higher order of approximation will be required. 
 
Nevertheless an improved design is predicted with the constraint value (stress) changing from an 
approximate 4.884 (severely violated) to 1.0 (the constraint is active). Due to inaccuracy, the actual 
constraint value of the optimum is 0.634. The weight changes from 2.776 to 4.137 (3.557 computed) to 
accommodate the violated stress: 
 
DESIGN POINT 
------------  
Variable Name                    Lower Bound   Value    Upper Bound 
--------------------------------|-----------|----------|----------- 
Area                                     0.2      3.539          4 
Base                                     0.1        0.1        1.6 
--------------------------------|-----------|----------|----------- 
 
RESPONSE FUNCTIONS: 
------------------  
                                |       Scaled        |       Unscaled      | 
                                |---------------------|---------------------| 
RESPONSE                        | Computed   Predicted| Computed   Predicted| 
--------------------------------|----------|----------|----------|----------| 
Weight                          |     3.557      4.137|     3.557      4.137| 
Stress                          |    0.6338          1|    0.6338          1| 
--------------------------------|----------|----------|----------|----------| 
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               OBJECTIVE: 
               ---------  
Computed Value  =      3.557 
Predicted Value =      4.137 
 
 
OBJECTIVE FUNCTIONS: 
-------------------  
OBJECTIVE NAME                  | Computed   Predicted  WT. 
--------------------------------|----------|----------|---- 
Weight                          |     3.557      4.137|   1 
--------------------------------|----------|----------|---- 
 
CONSTRAINT FUNCTIONS: 
--------------------  
CONSTRAINT NAME                 | Computed | Predicted|  Lower   |  Upper   |Viol? 
--------------------------------|----------|----------|----------|----------|----- 
Stress                          |    0.6338          1|    -1e+30          1|no 
--------------------------------|----------|----------|----------|----------|----- 
 
 
CONSTRAINT VIOLATIONS: 
---------------------  
                                |  Computed Violation | Predicted Violation | 
CONSTRAINT NAME                 |----------|----------|----------|----------| 
                                |  Lower   |  Upper   |  Lower   |  Upper   | 
--------------------------------|----------|----------|----------|----------| 
Stress                          |    -          -     |    -          -     | 
--------------------------------|----------|----------|----------|----------| 
 
 
MAXIMUM VIOLATION: 
------------------  
                   |         Computed          |        Predicted          | 
     Quantity      |---------------------------|---------------------------| 
                   |   Constraint      Value   |   Constraint      Value   | 
-------------------|----------------|----------|----------------|----------| 
Maximum Violation  |Stress                    0|Stress            6.995e-08| 
Smallest Margin    |Stress               0.3662|Stress            6.995e-08| 
-------------------|----------------|----------|----------------|----------| 
 

22.1.3 Updating the approximation to second order 
 
To improve the accuracy, a second run is conducted using a quadratic approximation. The following 
statements differ from the input file above: 
"2BAR2: Two-Bar Truss: Updating the approximation to 2nd order" 
response 'Weight' quadratic 
response 'Stress' quadratic 
$ 
$ EXPERIMENTAL DESIGN 
$ 
 Order quadratic 
 Experimental design dopt 
 Basis experiment 5toK 
 Number experiment 10 



CHAPTER 22:  EXAMPLE PROBLEMS  

316  LS-OPT Version 3 

The approximation results have improved considerably, but the stress approximation is still poor. 
 
 
Approximating Response 'Weight' using 10 points (ITERATION 1) 
---------------------------------------------------------------- 
          Global error parameters of response surface 
          ------------------------------------------- 
Quadratic Function Approximation: 
--------------------------------- 
Mean response value           =     2.8402 
 
RMS error                     =     0.0942 (3.32%) 
Maximum Residual              =     0.1755 (6.18%) 
Average Error                 =     0.0737 (2.59%) 
Square Root PRESS Residual    =     0.2815 (9.91%) 
Variance                      =     0.0177 
R^2                           =     0.9983 
R^2 (adjusted)                =     0.9983 
R^2 (prediction)              =     0.9851 
Determinant of [X]'[X]        =    14.6629 
 
 
 
Approximating Response 'Stress' using 10 points (ITERATION 1) 
---------------------------------------------------------------- 
          Global error parameters of response surface 
          ------------------------------------------- 
Quadratic Function Approximation: 
--------------------------------- 
Mean response value           =     3.4592 
 
RMS error                     =     1.0291 (29.75%) 
Maximum Residual              =     2.0762 (60.02%) 
Average Error                 =     0.8385 (24.24%) 
Square Root PRESS Residual    =     2.4797 (71.68%) 
Variance                      =     2.1182 
R^2                           =     0.9378 
R^2 (adjusted)                =     0.9378 
R^2 (prediction)              =     0.6387 
Determinant of [X]'[X]        =    14.6629 
 
The fit is illustrated below in Figure  22-3: 
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Prediction accuracy of Weight  

(Iteration 1 - Quadratic) 
Prediction accuracy of Stress  

(Iteration 1 - Quadratic) 

Figure  22-3: Prediction accuracy of Weight and Stress (Iteration 1 – Quadratic) 

 
An improved design is predicted with the constraint value (stress) changing from a computed 0.734 to 1.0 
(the approximate constraint becomes active). Due to inaccuracy, the actual constraint value of the optimum 
is a feasible 0.793. The weight changes from 2.561 to 1.925 (1.907 computed). 
 
DESIGN POINT 
------------  
Variable Name                    Lower Bound   Value    Upper Bound 
--------------------------------|-----------|----------|----------- 
Area                                     0.2      1.766          4 
Base                                     0.1     0.4068        1.6 
--------------------------------|-----------|----------|----------- 
 
RESPONSE FUNCTIONS: 
------------------  
                                |       Scaled        |       Unscaled      | 
                                |---------------------|---------------------| 
RESPONSE                        | Computed   Predicted| Computed   Predicted| 
--------------------------------|----------|----------|----------|----------| 
Weight                          |     1.907      1.925|     1.907      1.925| 
Stress                          |    0.7927          1|    0.7927          1| 
--------------------------------|----------|----------|----------|----------| 
 
               OBJECTIVE: 
               ---------  
Computed Value  =      1.907 
Predicted Value =      1.925 
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OBJECTIVE FUNCTIONS: 
-------------------  
OBJECTIVE NAME                  | Computed   Predicted  WT. 
--------------------------------|----------|----------|---- 
Weight                          |     1.907      1.925|   1 
--------------------------------|----------|----------|---- 
 
CONSTRAINT FUNCTIONS: 
--------------------  
CONSTRAINT NAME                 | Computed | Predicted|  Lower   |  Upper   |Viol? 
--------------------------------|----------|----------|----------|----------|----- 
Stress                          |    0.7927          1|    -1e+30          1|YES 
--------------------------------|----------|----------|----------|----------|----- 
 
 
CONSTRAINT VIOLATIONS: 
---------------------  
                                |  Computed Violation | Predicted Violation | 
CONSTRAINT NAME                 |----------|----------|----------|----------| 
                                |  Lower   |  Upper   |  Lower   |  Upper   | 
--------------------------------|----------|----------|----------|----------| 
Stress                          |    -          -     |    -       1.033e-06| 
--------------------------------|----------|----------|----------|----------| 
 
 
MAXIMUM VIOLATION: 
------------------  
                   |         Computed          |        Predicted          | 
     Quantity      |---------------------------|---------------------------| 
                   |   Constraint      Value   |   Constraint      Value   | 
-------------------|----------------|----------|----------------|----------| 
Maximum Violation  |Stress                    0|Stress            1.033e-06| 
Smallest Margin    |Stress               0.2073|Stress            1.033e-06| 
-------------------|----------------|----------|----------------|----------| 
 

22.1.4 Reducing the region of interest for further refinement 
 
It seems that further accuracy can only be obtained by reducing the size of the subregion. In the following 
analysis, the current optimum (1.766; 0.4086) was used as a starting point while the region of interest was 
cut in half. The order of the approximation is quadratic. The modified statements are: 
 
"2BAR3: Two-Bar Truss: Reducing the region of interest" 
$ Created on Thu Jul 11 07:46:24 2002 
$ 
$ DESIGN VARIABLES 
  Range 'Area' 2 
  Range 'Base' 0.8 
 
The approximations have been significantly improved: 
Approximating Response 'Weight' using 10 points (ITERATION 1) 
---------------------------------------------------------------- 
          Global error parameters of response surface 
          ------------------------------------------- 
Quadratic Function Approximation: 
--------------------------------- 
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Mean response value           =     2.0282 
 
RMS error                     =     0.0209 (1.03%) 
Maximum Residual              =     0.0385 (1.90%) 
Average Error                 =     0.0157 (0.77%) 
Square Root PRESS Residual    =     0.0697 (3.44%) 
Variance                      =     0.0009 
R^2                           =     0.9995 
R^2 (adjusted)                =     0.9995 
R^2 (prediction)              =     0.9944 
Determinant of [X]'[X]        =     0.0071 
 
Approximating Response 'Stress' using 10 points (ITERATION 1) 
---------------------------------------------------------------- 
          Global error parameters of response surface 
          ------------------------------------------- 
Quadratic Function Approximation: 
--------------------------------- 
Mean response value           =     1.2293 
 
RMS error                     =     0.0966 (7.85%) 
Maximum Residual              =     0.1831 (14.89%) 
Average Error                 =     0.0826 (6.72%) 
Square Root PRESS Residual    =     0.3159 (25.69%) 
Variance                      =     0.0186 
R^2                           =     0.9830 
R^2 (adjusted)                =     0.9830 
R^2 (prediction)              =     0.8182 
Determinant of [X]'[X]        =     0.0071 
 
The results after one iteration are as follows: 
 
DESIGN POINT 
------------  
Variable Name                    Lower Bound   Value    Upper Bound 
--------------------------------|-----------|----------|----------- 
Area                                     0.2      1.444          4 
Base                                     0.1     0.5408        1.6 
--------------------------------|-----------|----------|----------- 
 
RESPONSE FUNCTIONS: 
------------------  
                                |       Scaled        |       Unscaled      | 
                                |---------------------|---------------------| 
RESPONSE                        | Computed   Predicted| Computed   Predicted| 
--------------------------------|----------|----------|----------|----------| 
Weight                          |     1.642      1.627|     1.642      1.627| 
Stress                          |    0.9614          1|    0.9614          1| 
--------------------------------|----------|----------|----------|----------| 
 
               OBJECTIVE: 
               ---------  
Computed Value  =      1.642 
Predicted Value =      1.627 
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OBJECTIVE FUNCTIONS: 
-------------------  
OBJECTIVE NAME                  | Computed   Predicted  WT. 
--------------------------------|----------|----------|---- 
Weight                          |     1.642      1.627|   1 
--------------------------------|----------|----------|---- 
 
CONSTRAINT FUNCTIONS: 
--------------------  
CONSTRAINT NAME                 | Computed | Predicted|  Lower   |  Upper   |Viol? 
--------------------------------|----------|----------|----------|----------|----- 
Stress                          |    0.9614          1|    -1e+30          1|no 
--------------------------------|----------|----------|----------|----------|----- 
 
 
CONSTRAINT VIOLATIONS: 
---------------------  
                                |  Computed Violation | Predicted Violation | 
CONSTRAINT NAME                 |----------|----------|----------|----------| 
                                |  Lower   |  Upper   |  Lower   |  Upper   | 
--------------------------------|----------|----------|----------|----------| 
Stress                          |    -          -     |    -          -     | 
--------------------------------|----------|----------|----------|----------| 
 
An improved design is predicted with the constraint value (stress) changing from an approximate 0.8033 
(0.7928 computed) to 1.0 (the approximate constraint becomes active). Due to inaccuracy, the actual 
constraint value of the optimum is a feasible 0.961. This value is now much closer to the value of the 
simulation result. The weight changes from 1.909( 1.907 computed) to 1.627 (1.642 computed). 
 
 
22.1.5 Conducting a trade-off study 
 
The present region of interest (2; 0.8) is chosen in order to conduct a study in which the weight is traded off 
against the stress constraint. The trade-off is performed by selecting the Trade-off option in the View panel 
of LS-OPTui.  
 
The upper bound of the stress constraint is varied from 0.2 to 2.0 with 20 increments. Select Constraint as 
the Trade-off option and enter the bounds and number of increments. Generate the trade-off. This initiates 
the solution of a series of optimization problems using the response surface generated in Section  22.1.4, 
with the constraint in each (constant coefficient of the constraint response surface polynomial) being varied 
between the limits selected. The resulting curve is also referred to as a Pareto optimality curve. When 
plotting, select the ‘Constraint’ Stress, and not the ‘Response’ Stress, as the latter represents only the left-
hand side of the constraint equation (17.2). 
 
The resulting trade-off diagram (Figure  22-4) shows the compromise in weight when the stress constraint is 
tightened. 
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Figure  22-4: Trade-off of stress and weight 

 
22.1.6 Automating the design process 
 
This section illustrates the automation of the design process for both a linear and a quadratic response 
surface approximation order. 10 iterations are performed for the linear approximation, with only 5 iterations 
performed for the more expensive quadratic approximation. 
 
The modified statements in the input file are as follows: 
 
Variable 'Area' 2 
  Range 'Area' 4 
 Variable 'Base' 0.8 
  Range 'Base' 1.6 
$ 
$ EXPERIMENTAL DESIGN 
$ 
Order linear 
Number experiment 5 
$ 
$ JOB INFO 
$ 
iterate 10 
 
for the linear approximation, and 
$ 
$ EXPERIMENTAL DESIGN 
$ 
 Order quadratic 
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 Number experiment 10 
$ 
$ JOB INFO 
$ 
iterate 5 
 
The final results of the two types of approximations are as follows: 
 
 
 
Table  22.1-1: Summary of final results (2-bar truss) 

 Linear Quadratic 
Number of iterations 10 5 

Number of simulations 51 51 
Area 1.414 1.408 
Base 0.3737 0.3845 

Weight 1.51 1.509 
Stress 0.9993 1.000 

 
 
The optimization histories have been plotted to illustrate convergence in Figure  22-5. 
 
  

  
a) Optimization history of Area (Linear) b) Optimization history of Area (Quadratic) 
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c) Optimization history of Base (Linear) d) Optimization history of Base (Quadratic) 

  
e) Optimization history of Weight (Linear) f) Optimization history of Weight (Quadratic) 
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g) Optimization history of Stress (Linear) h) Optimization history of Stress (Quadratic) 

Figure  22-5: Optimization history of design variables and responses (Linear and Quadratic) 

 
Remarks: 
 

1. Note that the more accurate but more expensive quadratic approximation converges in about 3 
design iterations (30 simulations), while it takes about 7 iterations (35 simulations) for the objective 
of the linear case to converge. 

 
2. In general, the lower the order of the approximation, the more iterations are required to refine the 

optimum. 
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22.2 Small car crash (2 variables) 
 
This example has the following features: 
 
• An LS-DYNA explicit crash simulation is performed. 
• Extraction is performed using standard LS-DYNA interfaces. 
• First- and second-order response surface approximations are compared. 
• The design optimization process is automated. 
• A trade-off study is performed using both a quadratic and neural network approximation. 
• A limited reliability-based design optimization study is performed. 
 
22.2.1 Introduction 
 
This example considers the crashworthiness of a simplified small car model. A simplified vehicle moving at 
a constant velocity of 15.64m.s-1 (35mph) impacts a rigid pole. See Figure  22-6. The thickness of the front 
nose above the bumper is specified  as part of the hood. LS-DYNA is used to perform a simulation of the 
crash for a simulation duration of 50ms. 

 

a) deformed (50ms) b) undeformed 

Figure  22-6: Small car impacting a pole 

 
22.2.2 Design criteria and design variables 
 
The objective is to minimize the Head Injury Criterion (HIC) over a 15ms interval of a selected point 
subject to an intrusion constraint of 550mm of the pole into the vehicle at 50ms. The HIC is based on linear 
head acceleration and is widely used in occupant safety regulations in the automotive industry as a brain 
injury criterion. In summary, the criteria of interest are the following: 
 
• Head injury criterion (HIC) of a selected point (15ms) 
• Peak acceleration of a chosen point filtered at 60Hz (SAE). 

Bumper 

Hood 
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• Component Mass of the structural components (bumper, front, hood and underside) 
• Intrusion computed using the relative motion of two points 
 
Units are in mm and sec 
 
The design variables are the shell thickness of the car front (t_hood ) and the shell thickness of the bumper 
(t_bumper) (see Figure  22-6). 

 

22.2.3 Design formulation 
 
The design formulation is as follows: 
 
Minimize 
 HIC (15ms)  ( 22.2-1) 
subject to 

Intrusion (50ms) < 550mm 
 

The intrusion is measured as the difference between the displacement of nodes 167 and 432.  
 
Remark: 
 
• The mass is computed but not constrained. This is useful for monitoring the mass changes. 
 
22.2.4 Modeling 
 
The simulation is performed using LS-DYNA. An extract from the parameterized input deck is shown 
below. Note how the design variables are labeled for substitution through the characters << >>. The cylinder 
for impact is modeled as a rigid wall. 
 
$ 
$ DEFINITION OF MATERIAL     1 
$ 
*MAT_PLASTIC_KINEMATIC 
1,1.000E-07,2.000E+05,0.300,400.,0.,0. 
0.,0.,0. 
*HOURGLASS 
1,0,0.,0,0.,0. 
*SECTION_SHELL 
1,2,0.,0.,0.,0.,0 
2.00,2.00,2.00,2.00,0. 
*PART 
material type # 3 (Kinematic/Isotropic Elastic-Plastic)                          
1,1,1,0,1,0 
$ 
$ DEFINITION OF MATERIAL     2 
$ 
*MAT_PLASTIC_KINEMATIC 
2,7.800E-08,2.000E+05,0.300,400.,0.,0. 
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0.,0.,0. 
*HOURGLASS 
2,0,0.,0,0.,0. 
*SECTION_SHELL 
2,2,0.,0.,0.,0.,0 
<<t_bumper>>,<<t_bumper>>,<<t_bumper>>,<<t_bumper>>,0. 
*PART 
material type # 3 (Kinematic/Isotropic Elastic-Plastic)                          
2,2,2,0,2,0 
$ 
$ DEFINITION OF MATERIAL     3 
$ 
*MAT_PLASTIC_KINEMATIC 
3,7.800E-08,2.000E+05,0.300,400.,0.,0. 
0.,0.,0. 
*HOURGLASS 
3,0,0.,0,0.,0. 
*SECTION_SHELL 
3,2,0.,0.,0.,0.,0 
<<t_hood>>,<<t_hood>>,<<t_hood>>,<<t_hood>>,0. 
*PART 
material type # 3 (Kinematic/Isotropic Elastic-Plastic)                          
3,3,3,0,3,0 
$ 
$ DEFINITION OF MATERIAL     4 
$ 
*MAT_PLASTIC_KINEMATIC 
4,7.800E-08,2.000E+05,0.300,400.,0.,0. 
0.,0.,0. 
*HOURGLASS 
4,0,0.,0,0.,0. 
*SECTION_SHELL 
4,2,0.,0.,0.,0.,0 
<<t_hood>>,<<t_hood>>,<<t_hood>>,<<t_hood>>,0. 
*PART 
material type # 3 (Kinematic/Isotropic Elastic-Plastic)                          
4,4,4,0,4,0 
$ 
$ DEFINITION OF MATERIAL     5 
$ 
*MAT_PLASTIC_KINEMATIC 
5,7.800E-08,2.000E+05,0.300,400.,0.,0. 
0.,0.,0. 
*HOURGLASS 
5,0,0.,0,0.,0. 
*SECTION_SHELL 
5,2,0.,0.,0.,0.,0 
<<t_hood>>,<<t_hood>>,<<t_hood>>,<<t_hood>>,0. 
*PART 
material type # 3 (Kinematic/Isotropic Elastic-Plastic)                          
5,5,5,0,5,0 
$ 
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22.2.5 First linear iteration 
 
A design space of [1; 5] is used for both design variables with no range specified. This means that the range 
defaults to the whole design space. The LS-OPT input file is as follows: 
 
"Small Car Problem: EX4a" 
$ Created on Mon Aug 26 19:11:06 2002 
solvers 1 
responses 5 
$ 
$ NO HISTORIES ARE DEFINED 
$ 
$ 
$ DESIGN VARIABLES 
$ 
variables 2 
 Variable 't_hood' 1 
  Lower bound variable 't_hood' 1 
  Upper bound variable 't_hood' 5 
 Variable 't_bumper' 3 
  Lower bound variable 't_bumper' 1 
  Upper bound variable 't_bumper' 5 
$ 
$ DEFINITION OF SOLVER "1" 
$ 
 solver dyna '1' 
  solver command "lsdyna" 
  solver input file "car5.k" 
  solver append file "rigid2" 
  solver order linear 
  solver experiment design dopt 
  solver number experiments 5 
  solver basis experiment 3toK 
  solver concurrent jobs 1 
$ 
$ RESPONSES FOR SOLVER "1" 
$ 
 response 'Acc_max' 1 0 "DynaASCII Nodout X_ACC   432 Max SAE 60" 
 response 'Acc_max' linear 
 response 'Mass' 1 0 "DynaMass 2 3 4 5 MASS" 
 response 'Mass' linear 
 response 'Intru_2' 1 0 "DynaASCII Nodout X_DISP 432 Timestep" 
 response 'Intru_2' linear 
 response 'Intru_1' 1 0 "DynaASCII Nodout X_DISP 167 Timestep" 
 response 'Intru_1' linear 
 response 'HIC' 1 0 "DynaASCII Nodout HIC15 9810. 1 432" 
 response 'HIC' linear 
$ 
$ NO HISTORIES DEFINED FOR SOLVER "1" 
$ 
$ 
$ HISTORIES AND RESPONSES DEFINED BY EXPRESSIONS 
$ 
 composites 1 
 composite 'Intrusion' type weighted 
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  composite 'Intrusion' response 'Intru_2' -1 scale 1 
  composite 'Intrusion' response 'Intru_1' 1 scale 1 
$ 
$ OBJECTIVE FUNCTIONS 
$ 
 objectives 1 
 objective 'HIC' 1 
$ 
$ CONSTRAINT DEFINITIONS 
$ 
 constraints 1 
 constraint 'Intrusion' 
  upper bound constraint 'Intrusion' 550 
$ 
$ JOB INFO 
$ 
 iterate param design 0.01 
 iterate param objective 0.01 
 iterate 1 
STOP 
 
The computed vs. predicted HIC and Intru_2 responses are given in Figure  22-7. The corresponding R2 
value for HIC is 0.9248, while the RMS error is 27.19%.  For Intru_2, the R2 value is 0.9896, while the 
RMS error is 0.80%. 
 

  
a) HIC response b) Intru_2 response 

Figure  22-7: Computed vs. predicted responses – Linear approximation 

 
The summary data for the first iteration is: 
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Baseline: 
 
--------------------------------------- 
ITERATION NUMBER (Baseline)             
--------------------------------------- 
 
 
DESIGN POINT 
------------  
Variable Name                    Lower Bound   Value    Upper Bound 
--------------------------------|-----------|----------|----------- 
t_hood                                     1          1          5 
t_bumper                                   1          3          5 
--------------------------------|-----------|----------|----------- 
 
 
RESPONSE FUNCTIONS: 
------------------  
                                |       Scaled        |       Unscaled      | 
                                |---------------------|---------------------| 
RESPONSE                        | Computed   Predicted| Computed   Predicted| 
--------------------------------|----------|----------|----------|----------| 
Acc_max                         | 8.345e+04  1.162e+05| 8.345e+04  1.162e+05| 
Mass                            |    0.4103     0.4103|    0.4103     0.4103| 
Intru_2                         |    -736.7       -738|    -736.7       -738| 
Intru_1                         |      -161     -160.7|      -161     -160.7| 
HIC                             |     68.26      74.68|     68.26      74.68| 
--------------------------------|----------|----------|----------|----------| 
 
and 1st optimum: 
 
DESIGN POINT 
------------  
Variable Name                    Lower Bound   Value    Upper Bound 
--------------------------------|-----------|----------|----------- 
t_hood                                     1      1.549          5 
t_bumper                                   1          5          5 
--------------------------------|-----------|----------|----------- 
 
RESPONSE FUNCTIONS: 
------------------  
                                |       Scaled        |       Unscaled      | 
                                |---------------------|---------------------| 
RESPONSE                        | Computed   Predicted| Computed   Predicted| 
--------------------------------|----------|----------|----------|----------| 
Acc_max                         | 1.248e+05  1.781e+05| 1.248e+05  1.781e+05| 
Mass                            |    0.6571      0.657|    0.6571      0.657| 
Intru_2                         |    -713.7     -711.4|    -713.7     -711.4| 
Intru_1                         |    -164.6     -161.4|    -164.6     -161.4| 
HIC                             |     126.7      39.47|     126.7      39.47| 
--------------------------------|----------|----------|----------|----------| 
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22.2.6 First quadratic iteration 
 
The LS-OPT input file is modified as follows (the response approximations are all quadratic (not 
shown)): 
 
Order quadratic 
 Experimental design dopt 
 Basis experiment 5toK 
 Number experiment 10 
 
For very expensive simulations, if previous extracted simulation is available, as, e.g., from the previous 
linear iteration in Section  22.2.5, then these points can be used to reduce the computational cost of this 
quadratic approximation. To do this, the previous AnalysisResults.1 file is copied to the current 
work directory and renamed AnalysisResults.PRE.1.  
 
As is shown in the results below, the computed vs. predicted HIC and Intru_2 responses are is now 
improved from the linear approximation. The accuracy of the HIC and Intru_2 responses are given in 
Figure  22-8. The corresponding R2 value for HIC is 0.9767, while the RMS error is 10.28%. For Intru_2, 
the R2 value is 0.9913, while the RMS error is 0.61%. When conducting trade-off studies, a higher-order 
approximation like the current one will be preferable. See trade-off of HIC versus intrusion in a range 
450mm to 600mm, in Figure  22-8c). 

 

  
a) HIC response b) Intru_2 response 
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c) Trade-off of HIC versus Intrusion 

Figure  22-8: Computed vs. predicted responses and trade-off – Quadratic approximation 

 
The summary data for the first iteration is: 
 
Baseline: 
--------------------------------------- 
ITERATION NUMBER (Baseline)             
--------------------------------------- 
 
DESIGN POINT 
------------  
Variable Name                    Lower Bound   Value    Upper Bound 
--------------------------------|-----------|----------|----------- 
t_hood                                     1          1          5 
t_bumper                                   1          3          5 
--------------------------------|-----------|----------|----------- 
 
RESPONSE FUNCTIONS: 
------------------  
                                |       Scaled        |       Unscaled      | 
                                |---------------------|---------------------| 
RESPONSE                        | Computed   Predicted| Computed   Predicted| 
--------------------------------|----------|----------|----------|----------| 
Acc_max                         | 8.345e+04  1.385e+05| 8.345e+04  1.385e+05| 
Mass                            |    0.4103     0.4103|    0.4103     0.4103| 
Intru_2                         |    -736.7       -736|    -736.7       -736| 
Intru_1                         |      -161     -160.3|      -161     -160.3| 
HIC                             |     68.26      10.72|     68.26      10.72| 
--------------------------------|----------|----------|----------|----------| 
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and 1st optimum: 
 
DESIGN POINT 
------------  
Variable Name                    Lower Bound   Value    Upper Bound 
--------------------------------|-----------|----------|----------- 
t_hood                                     1      1.653          5 
t_bumper                                   1      3.704          5 
--------------------------------|-----------|----------|----------- 
 
RESPONSE FUNCTIONS: 
------------------  
                                |       Scaled        |       Unscaled      | 
                                |---------------------|---------------------| 
RESPONSE                        | Computed   Predicted| Computed   Predicted| 
--------------------------------|----------|----------|----------|----------| 
Acc_max                         | 1.576e+05  1.985e+05| 1.576e+05  1.985e+05| 
Mass                            |    0.6017     0.6018|    0.6017     0.6018| 
Intru_2                         |    -712.7     -711.9|    -712.7     -711.9| 
Intru_1                         |    -163.3     -161.9|    -163.3     -161.9| 
HIC                             |     171.4      108.2|     171.4      108.2| 
--------------------------------|----------|----------|----------|----------| 
 
22.2.7 Automated run 
 
An automated optimization is performed with a linear approximation. The LS-OPT input file is modified as 
follows: 
 
Order linear 
 Experimental design dopt 
 Basis experiment 3toK 
 Number experiment 5 
 
iterate 8 
 
It can be seen in Figure  22-9 that the objective function (HIC) and intrusion constraint are approximately 
optimized at the 5th iteration. It takes about 8 iterations for the approximated (solid line) and computed 
(square symbols) HIC to correspond. The approximation improves through the contraction of the subregion. 
As the variable t_hood never moves to the edge of the subregion during the optimization process, the 
heuristic in LS-OPT enforces pure zooming (see Figure  22-10). For t_bumper, panning occurs as well due 
to the fact that the linear approximation predicts a variable on the edge of the subregion. 
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a) Optimization history of HIC b) Optimization history of Intrusion 

Figure  22-9: Optimization history of HIC and Intrusion 
 

  
a) Optimization history of t_hood b) Optimization history of t_bumper 

Figure  22-10: Optimization history of design variables 
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22.2.8 Trade-off using neural network approximation 
 
In order to build a more accurate response surface for trade-off studies, the Neural Net method is chosen 
under the ExpDesign panel. This results in a feedforward (FF) neural network (Section  3.1) being solved for 
the points selected. The recommended point selection scheme (Space Filling) is used. One iteration is 
performed to analyze only one experimental design with 25 points. The modifications to the command input 
file are as follows: 
 
$ 
$ DEFINITION OF SOLVER "1" 
$ 
 solver dyna '1' 
  solver command "lsdyna" 
  solver input file "car5.k" 
  solver append file "rigid2" 
  solver order FF 
  solver update doe 
  solver experiment design space_filling 
  solver number experiments 25 
iterate 1 
 
The response surface accuracy is illustrated in Figure  22-11 for the HIC and Intru_2 responses. The HIC 
has more scatter than Intru_2 for the 25 design points used.  
 

  
a) HIC response b) Intru_2 constraint 

Figure  22-11: Response surface accuracy using neural network approximation 

A trade-off study considers a variation in the Intrusion constraint (originally fixed at 550mm) between 450 
and 600mm, the same as in  Figure  22-8c). The experimental design used for the responses in Figure  22-11 
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is shown in Figure  22-12. The effect of the Space-Filling algorithm in maximizing the minimum distance 
between the experimental design points can clearly be seen from the evenly distributed design. The resulting 
Pareto optimality curves for HIC and the two design variables (t_hood and t_bumper) can be seen in 
Figure  22-13. It can be seen that a tightening of the Intrusion constraint increases the HIC value through an 
increase of the hood thickness in the optimal design. 
 

 
Figure  22-12: Experimental design points used for trade-off  
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a) Objective (HIC) versus Intrusion constraint b) t_bumper versus Intrusion constraint 

 
c) t_hood versus Intrusion constraint 

Figure  22-13: Trade-off results – Small car (2 variables) 

 
 
22.2.9 Mixed-discrete optimization 
Mixed discrete optimization is achieved simply by setting the t_hood variable to be discrete with possible 
values of 1.0, 2.0, 3.0, 4.0, and 5.0.  The input file commands describing the variables are: 
$ 
$ DESIGN VARIABLES 
$ 
variables 2 
 Variable 't_bumpr' 1 
  Lower bound variable 't_bumpr' 1 
  Upper bound variable 't_bumpr' 5 
  Range 't_bumpr' 4 
 Variable 't_hood' 1 
  Variable 't_hood' discrete {1 2 3 4 5 } 
$ 
 
The results design variables histories are shown in Figure  22-14.  
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Figure  22-14 Mixed-discrete variable histories. 

 
22.2.10 Optimization using Direct GA simulation 
The same problem is solved using a direct GA simulation. For illustration, the population size is taken as 6 
(Popsize) and number of generations is limited to 5 (Generation). The continuous variable ‘bumper 
thickness’ is treated as binary variable (Encoding variable), where 20 bits are used to discretize the variable 
(Number of bits). The Stochastic Universal Sampling method is used as selection operator (Selection). 
Elitism is switched on (Elitism) and two elite members (NumElites) are used in each generation. Since, both 
real and binary encoding is used for different variables, the operators have to be specified in both genotype 
spaces. For real crossover, SBX operator is used (Real Crossover Type) with a distribution index of 5 (Real 
Crossover Distribution Index) and crossover probability of 0.99 (Real Crossover Probability). Uniform 
crossover operator is used for binary variables (Binary Crossover Type), with a crossover probability of 1.0 
(Binary Crossover Probability). While the real mutation probability (Real Mutation Probability) is 1.0, 
binary mutation probability (Binary Mutation Probability) is 0.05.  
 
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ 
$      OPTIMIZATION METHOD    
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ 
$ 
Optimization Method GA 
 
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ 
$ Genetic Algorithm Parameters 
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ 
 GA Parameter Popsize 6 
 GA Parameter Generation 5 
 Encoding Variable 't_bumper' 2 
 Number of Bits variable 't_bumper' 20 
 GA Parameter Selection 3 
 GA Parameter Elitism 1 
 GA Parameter NumElites 2 
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 GA Parameter Real Crossover Type 1 
 GA Parameter Real Crossover Probability 0.99 
 GA Parameter Real Crossover Distribution Index 5.0 
 GA Parameter Binary Crossover Type 2 
 GA Parameter Binary Crossover Probability 1.0 
 GA Parameter Real Mutation Probability 1.0 
 GA Parameter Real Mut Dist Index 5.0 
 GA Parameter Binary Mutation Probability 0.05 
 GA Parameter Restart Status 0 
 GA Parameter Seed 854526 
 
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ 
The outcome of the optimization is shown in Figure  22-15. In the chosen example, there is small variation in 
the optimized results with generation. The discrete variable was fixed at 2 units and the variations in the 
bumper thickness were very small. Consequently, the reduction in HIC and intrusion values are not visible 
in the optimization history, though there were small improvements. Note that the optimization history treats  
‘generation’ as ‘iteration’ to display results. 
 

 
A) Variable thood    B) Variable tbumper 

 
C) Objective HIC    D) Constraint Intrusion 

Figure  22-15 Optimization history of mixed-discrete variable optimization using direct GA simulation. 
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22.2.11 RBDO (Reliability-based design optimization) using FOSM (First Order 
Second Moment Method)* 
 
The First Order Second Moment reliability-based design optimization in LS-OPT is illustrated in this 
example. The optimization problem is modified as follows: 
 
Minimize 
 HIC ( 22.2-2) 
 
subject to  Probability[Intrusion > 550mm ] < 610−  
 
The formulation in Eq. HIC ( 22.2-2 implies that the car is made safer by 6 standard deviations of the 
intrusion.  
 
The following commands must be added to the LS-OPT input file used for the automated run (Section 
 22.2.7): 
 
$ 
$ Define distributions 
$ 
Distributions 2 
 distribution ‘hood_dist’ UNIFORM –0.05 0.05 
 distribution ‘bumper_dist’ UNIFORM –0.05 0.05 
$ 
$ Assign distributions to variables 
$ 
variable 't_hood' distribution ‘hood_dist’ 
variable 't_bumper' distribution ‘bumper_dist’ 
$ 
$ Assign probabilistic bounds to constraints 
$ 
 probability upper bound constraint ‘Intrusion’ 1e-6 
 
The results are: x = <1.78, 3.44>, a HIC value of 182, and an intrusion of 545 with a standard deviation of 
1.06. 
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22.3 Impact of a cylinder (2 variables) 
 
This example has the following features: 
 
• An LS-DYNA explicit impact simulation is performed. 
• An independent parametric preprocessor is used to incorporate shape optimization. 
• Extraction is performed using standard ASCII LS-DYNA interfaces. 
• Second-order response surface approximations are compared using different subregions. 
• The design optimization process is automated. 
• Noisy response variables are improved using filtering. 
 
The example in this chapter is modeled on one by Yamazaki  [1]. 
 
 
22.3.1 Problem statement 
 
The problem consists of a tube impacting a rigid wall as shown in Figure  22-16. The energy absorbed is 
maximized subject to a constraint on the rigid wall impact force. The cylinder has a constant mass of 0.54 
kg with the design variables being the mean radius and thickness. The length of the cylinder is thus 
dependent on the design variables because of the mass constraint. A concentrated mass of 500 times the 
cylinder weight is attached to the end of the cylinder not impacting the rigid wall. The deformed shape at 
20ms is shown in Figure  22-17 for a typical design. 
 

 

x1 x2 

 l 

10m/s

 
Figure  22-16: Impacting cylinder 
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Figure  22-17: Deformed finite element model (time = 20ms) 

 
The optimization problem is stated as: 
 

Maximize 02.021internal ),( =txxE  
 
subject to 

 
00070),( 21 ≤average

wall
normal xxF  

212
52.0)(

xx
xl

πρ
=  

 
where the design variables x1 and x2 are the radius and the thickness of the cylinder respectively. 

02.0internal )( =txE  is the objective function and constraint functions average
wall

normal xF )(  and l(x) are the average 
normal force on the rigid wall and the length of the cylinder, respectively. 
 
The problem is simulated using LS-DYNA. The following TrueGrid input file including the <<name>> 
statements is used to create the FE input deck with the FE model as shown in Figure  22-17. Note that the 
design variables have been scaled. 
 
c cyl2 - crush cylinder - constant volume 
lsdyna3d keyword 
lsdyopts secforc .00002 rwforc .00002 ; 
lsdyopts endtim .02 d3plot dtcycl .0001 ; ; 
lsdyopts thkchg 2 ; 
lsdyopts elout 0.001 
lsdyopts glstat 0.001 
lsdymats 1 3 rho 2880 shell elfor bt tsti 4 
  e 71.38e9 pr .33 sigy 102.0e6 etan 0.2855e9 ; 
lsdymats 2 20 rho 14.3e6 e 7.138e10 pr .33 cmo con 4 7 shell elfor bt tsti 4; 
para 
 r [<<Radius>>/1000.0] 
 l [3.0e+1/<<Radius>>/<<Wall_Thickness>>] 
 h [<<Wall_Thickness>>/1000.0] 
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 l2 [75.0/<<Radius>>*0.02] 
 h2 .002 
 v0 10. 
 n .33 
 pi 3.14159 
; 
plane 1 0 0 -.002 0 0 1 .001 ston pen 2. stick ; 
sid 1 lsdsi 13 slvmat 1;scoef .4 dcoef .4 sfsps 1.5 ; ; ; 
c ************** part 1 mat 1 ************* shell 
cylinder 
-1; 1 60; 1 50 51; 
%r 
0 360 
0 %l [%l2+%l] 
dom 1 1 1 1 2 3 
  x=x+.01*%h*sin(%pi*z*57.3/(%pi*(%r*%r*%h*%h/(12*(1-%n*%n)))**.25)) 
thick %h 
thi ;;2 3; %h2 
c bi ; ;-3 0 -3; dx 1 dy 1  rx 1 ry 1 rz 1 ; 
c interrupt 
swi ;; ;1 
velocity 0 0 [-%v0] 
mate 1 
mti ;; 2 3; 2 
c element spring block 
epb 1 1 1 1 2 3 
endpart 
merge 
stp .000001 
write 
end 
 

22.3.2 A first approximation 
 
In the first iteration, a quadratic approximation is chosen from the beginning. The ASCII database is suitable 
for this analysis as the energy and impact force can be extracted from the glstat and rwforc databases 
respectively. Five processors are available. The region of interest is arbitrarily chosen to be about half the 
size of the design space. 
 
The following LS-OPT command input deck was used to find the approximate optimum solution: 
 
"Cylinder Impact Problem" 
$ Created on Thu Jul 11 11:37:33 2002 
$ 
$ DESIGN VARIABLES 
$ 
variables 2 
 Variable 'Radius' 75 
  Lower bound variable 'Radius' 20 
  Upper bound variable 'Radius' 100 
  Range 'Radius' 50 
 Variable 'Wall_Thickness' 3 
  Lower bound variable 'Wall_Thickness' 2 
  Upper bound variable 'Wall_Thickness' 6 
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  Range 'Wall_Thickness' 2 
solvers 1 
responses 2 
$ 
$ NO HISTORIES ARE DEFINED 
$ 
$ 
$ DEFINITION OF SOLVER "RUN1" 
$ 
 solver dyna960 'RUN1' 
  solver command "lsdyna" 
  solver input file "trugrdo" 
  prepro truegrid 
  prepro command "/net/src/ultra4_4/common/hp/tg2.1/tg" 
  prepro input file "cyl2" 
$ 
$ RESPONSES FOR SOLVER "RUN1" 
$ 
 response 'Internal_Energy' 1 0 "DynaASCII Glstat I_Ener 0 Timestep" 
 response 'Internal_Energy' quadratic 
 response 'Rigid_Wall_Force' 1 0 "DynaASCII rwforc normal 1 ave" 
 response 'Rigid_Wall_Force' quadratic 
$ 
$ NO HISTORIES DEFINED FOR SOLVER "RUN1" 
$ 
$ 
$ OBJECTIVE FUNCTIONS 
$ 
 objectives 1 
 maximize 
 objective 'Internal_Energy' 1 
$ 
$ CONSTRAINT DEFINITIONS 
$ 
 constraints 1 
 constraint 'Rigid_Wall_Force' 
  upper bound constraint 'Rigid_Wall_Force' 70000 
$ 
$ EXPERIMENTAL DESIGN 
$ 
 Order quadratic 
 Experimental design dopt 
 Basis experiment 5toK 
 Number experiment 10 
$ 
$ JOB INFO 
$ 
 concurrent jobs 5 
 iterate param design 0.01 
 iterate param objective 0.01 
 iterate 1 
STOP 
 
The curve-fitting results below show that the internal energy is approximated reasonably well whereas the 
average force is poorly approximated. The accuracy plots confirm this result (Figure  22-18). 
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Approximating Response 'Internal_Energy' using 10 points (ITERATION 1) 
---------------------------------------------------------------- 
          Global error parameters of response surface 
          ------------------------------------------- 
Quadratic Function Approximation: 
--------------------------------- 
Mean response value           = 10686.0081 
 
RMS error                     =   790.3291 (7.40%) 
Maximum Residual              =  1538.9208 (14.40%) 
Average Error                 =   654.4415 (6.12%) 
Square Root PRESS Residual    =  2213.7994 (20.72%) 
Variance                      = 1249240.2552 
R^2                           =     0.9166 
R^2 (adjusted)                =     0.9166 
R^2 (prediction)              =     0.3453 
Determinant of [X]'[X]        =     1.3973 
 
 
Approximating Response 'Rigid_Wall_Force' using 10 points (ITERATION 1) 
---------------------------------------------------------------- 
          Global error parameters of response surface 
          ------------------------------------------- 
Quadratic Function Approximation: 
--------------------------------- 
Mean response value           = 121662.9474 
 
RMS error                     = 24730.1732 (20.33%) 
Maximum Residual              = 48569.4162 (39.92%) 
Average Error                 = 21111.3307 (17.35%) 
Square Root PRESS Residual    = 75619.5531 (62.15%) 
Variance                      = 1223162932.2092 
R^2                           =     0.8138 
R^2 (adjusted)                =     0.8138 
R^2 (prediction)              =    -0.7406 
Determinant of [X]'[X]        =     1.3973 
 
The initial design below shows that the constraint is severely exceeded. 
 
DESIGN POINT 
------------  
Variable Name                    Lower Bound   Value    Upper Bound 
--------------------------------|-----------|----------|----------- 
Radius                                    20         75        100 
Wall_Thickness                             2          3          6 
--------------------------------|-----------|----------|----------- 
 
RESPONSE FUNCTIONS: 
------------------  
                                |       Scaled        |       Unscaled      | 
                                |---------------------|---------------------| 
RESPONSE                        | Computed   Predicted| Computed   Predicted| 
--------------------------------|----------|----------|----------|----------| 
Internal_Energy                 | 1.296e+04  1.142e+04| 1.296e+04  1.142e+04| 
Rigid_Wall_Force                | 1.749e+05  1.407e+05| 1.749e+05  1.407e+05| 
--------------------------------|----------|----------|----------|----------| 
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Figure  22-18: Prediction accuracy of Internal Energy and Rigid Wall Force (One Quadratic iteration) 
 
 
Despite the relatively poor approximation a prediction of the optimum is made based on the approximation 
response surface. The results are shown below. The fact that the optimal Radius is on the lower bound of 
the subregion specified (Range = 50), suggests an optimal value below 50. 
 
DESIGN POINT 
------------  
Variable Name                    Lower Bound   Value    Upper Bound 
--------------------------------|-----------|----------|----------- 
Radius                                    20         50        100 
Wall_Thickness                             2      2.978          6 
--------------------------------|-----------|----------|----------- 
 
RESPONSE FUNCTIONS: 
------------------  
                                |       Scaled        |       Unscaled      | 
                                |---------------------|---------------------| 
RESPONSE                        | Computed   Predicted| Computed   Predicted| 
--------------------------------|----------|----------|----------|----------| 
Internal_Energy                 |      7914       8778|      7914       8778| 
Rigid_Wall_Force                | 4.789e+04      7e+04| 4.789e+04      7e+04| 
--------------------------------|----------|----------|----------|----------| 
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22.3.3 Refining the design model using a second iteration 
 
During the previous optimization step, the Radius variable was reduced from 75 to 50 (on the boundary 
of the region of interest). It was also apparent that the approximations were fairly inaccurate. Therefore, in 
the new iteration, the region of interest is reduced from [50;2] to [35;1.5] while retaining a quadratic 
approximation order. The starting point is taken as the current optimum: (50,2.978). The modified 
commands in the input file are as follows: 
 
$ 
$ DESIGN VARIABLES 
$ 
variables 2 
 Variable 'Radius' 50 
  Lower bound variable 'Radius' 20 
  Upper bound variable 'Radius' 100 
  Range 'Radius' 35 
 Variable 'Wall_Thickness' 2.9783 
  Lower bound variable 'Wall_Thickness' 2 
  Upper bound variable 'Wall_Thickness' 6 
  Range 'Wall_Thickness' 1.5 
 
As shown below, the accuracy of fit improves but the average rigid wall force is still inaccurate. 
 
Approximating Response 'Internal_Energy' using 10 points (ITERATION 1) 
---------------------------------------------------------------- 
          Global error parameters of response surface 
          ------------------------------------------- 
Quadratic Function Approximation: 
--------------------------------- 
Mean response value           =  8640.2050 
 
RMS error                     =   526.9459 (6.10%) 
Maximum Residual              =   890.0759 (10.30%) 
Average Error                 =   388.4472 (4.50%) 
Square Root PRESS Residual    =  1339.4046 (15.50%) 
Variance                      = 555344.0180 
R^2                           =     0.9632 
R^2 (adjusted)                =     0.9632 
R^2 (prediction)              =     0.7622 
Determinant of [X]'[X]        =     0.0556 
 
Approximating Response 'Rigid_Wall_Force' using 10 points (ITERATION 1) 
---------------------------------------------------------------- 
          Global error parameters of response surface 
          ------------------------------------------- 
Quadratic Function Approximation: 
--------------------------------- 
Mean response value           = 82483.2224 
 
RMS error                     = 19905.3990 (24.13%) 
Maximum Residual              = 35713.1794 (43.30%) 
Average Error                 = 17060.6074 (20.68%) 
Square Root PRESS Residual    = 54209.4513 (65.72%) 
Variance                      = 792449819.5138 
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R^2                           =     0.8949 
R^2 (adjusted)                =     0.8949 
R^2 (prediction)              =     0.2204 
Determinant of [X]'[X]        =     0.0556 
 
The goodness of fit diagrams are shown in Figure  22-19. 
 

  
 

Figure  22-19: Prediction accuracy of Internal Energy and Rigid Wall Force (One Quadratic iteration) 
 
Nevertheless an optimization is conducted of the approximate subproblem, yielding a much improved 
feasible result. The objective function increases to 9575 (9777 computed) whereas the constraint is active at 
70 000. The computed constraint is lower at 64 170. However the Wall_Thickness is now on the upper 
bound, suggesting an optimal value larger than 3.728. 
 
DESIGN POINT 
------------  
Variable Name                    Lower Bound   Value    Upper Bound 
--------------------------------|-----------|----------|----------- 
Radius                                    20      42.43        100 
Wall_Thickness                             2      3.728          6 
--------------------------------|-----------|----------|----------- 
 
RESPONSE FUNCTIONS: 
------------------  
                                |       Scaled        |       Unscaled      | 
                                |---------------------|---------------------| 
RESPONSE                        | Computed   Predicted| Computed   Predicted| 
--------------------------------|----------|----------|----------|----------| 
Internal_Energy                 |      9777       9575|      9777       9575| 
Rigid_Wall_Force                | 6.417e+04      7e+04| 6.417e+04      7e+04| 
--------------------------------|----------|----------|----------|----------| 
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22.3.4 Third iteration 
 
Because of the large change in the Wall_Thickness on to the upper bound of the region of interest, a 
third iteration is conducted, keeping the region of interest the same. The starting point is the previous 
optimum: 
 
Variable 'Radius' 42.43 
Variable 'Wall_Thickness' 3.728 
 
The approximation improves as shown below: 
 
Approximating Response 'Internal_Energy' using 10 points (ITERATION 1) 
---------------------------------------------------------------- 
          Global error parameters of response surface 
          ------------------------------------------- 
Quadratic Function Approximation: 
--------------------------------- 
Mean response value           =  9801.0070 
 
RMS error                     =   439.8326 (4.49%) 
Maximum Residual              =   834.5960 (8.52%) 
Average Error                 =   372.3133 (3.80%) 
Square Root PRESS Residual    =  1451.3233 (14.81%) 
Variance                      = 386905.5050 
R^2                           =     0.9618 
R^2 (adjusted)                =     0.9618 
R^2 (prediction)              =     0.5842 
Determinant of [X]'[X]        =     0.0131 
 
Approximating Response 'Rigid_Wall_Force' using 10 points (ITERATION 1) 
---------------------------------------------------------------- 
          Global error parameters of response surface 
          ------------------------------------------- 
Quadratic Function Approximation: 
--------------------------------- 
Mean response value           = 81576.0534 
 
RMS error                     = 12169.4703 (14.92%) 
Maximum Residual              = 26348.0687 (32.30%) 
Average Error                 = 10539.2275 (12.92%) 
Square Root PRESS Residual    = 37676.3033 (46.19%) 
Variance                      = 296192016.4365 
R^2                           =     0.9301 
R^2 (adjusted)                =     0.9301 
R^2 (prediction)              =     0.3303 
Determinant of [X]'[X]        =     0.0131 
 
Because the size of the region of interest remained the same, the curve-fitting results show only a slight 
change (because of the new location), in this case an improvement. However, as the optimization results 
below show, the design is much improved, i.e. the objective value has increased whereas the approximate 
constraint is active. Unfortunately, due to the poor fit of the Rigid_Wall_Force, the simulation result 
exceeds the force constraint by about 10kN (14%). Further reduction of the region of interest is required to 
reduce the error, or filtering of the force can be considered to reduce the noise on this response. 
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DESIGN POINT 
------------  
Variable Name                    Lower Bound   Value    Upper Bound 
--------------------------------|-----------|----------|----------- 
Radius                                    20      36.51        100 
Wall_Thickness                             2      4.478          6 
--------------------------------|-----------|----------|----------- 
 
RESPONSE FUNCTIONS: 
------------------  
                                |       Scaled        |       Unscaled      | 
                                |---------------------|---------------------| 
RESPONSE                        | Computed   Predicted| Computed   Predicted| 
--------------------------------|----------|----------|----------|----------| 
Internal_Energy                 | 1.129e+04  1.075e+04| 1.129e+04  1.075e+04| 
Rigid_Wall_Force                | 8.007e+04      7e+04| 8.007e+04      7e+04| 
--------------------------------|----------|----------|----------|----------| 
 
 
The table below gives a summary of the three iterations of the step-by-step procedure. 

 

Table  22.3-1: Comparison of results (Cylinder impact) 

Variable Initial Iteration 1 Iteration 2 Iteration 3 
Radius 75 50 42.43 36.51 
Wall_thickness 3 2.978 3.728 4.478 
Energy (Computed) 12960 7914 9777 11290 
Force (Computed) 174900 47890 64170 80070 
 
It is apparent that the result of the second iteration is a dramatic improvement on the starting design and a 
good approximation to the converged optimum design. 
 
22.3.5 Response filtering: using the peak force as a constraint 
 
Because of the poor accuracy of the response surface fit for the rigid wall force above, it was decided to 
modify the force constraint so that the peak filtered force is used instead. Therefore, the previous response 
definition for Rigid_Wall_Force is replaced with a command that extracts the maximum rigid wall 
force from a response from which frequencies exceeding 300Hz are excluded. 
 
The upper bound of the force constraint is changed to 80000. 
 
response ’Rigid_Wall_Force’ "DynaASCII RWForc Normal 1 Max SAE 300" 
 
20 iterations are specified with a 1% tolerance for convergence. 
 
As expected, the response histories (Figure  22-20) show that the baseline design is severely infeasible (the 
first peak force is about 1.75 x 106 vs. the constraint value of 0.08 x 106. A steady reduction in the error of 
the response surfaces is observed up to about iteration 5. The optimization terminates after 16 iterations, 
having reached the 1% threshold for both objective and design variable changes.  
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e) RMS error of Internal_Energy f) RMS error of Rigid_Wall_Force 

 
Figure  22-20: Optimization history of automated design (filtered force) 

 
The optimization process steadily reduces the infeasibility, but the force constraint is still slightly violated 
when convergence is reached. The internal energy is significantly lower than previously: 
 
DESIGN POINT 
------------  
Variable Name                    Lower Bound   Value    Upper Bound 
--------------------------------|-----------|----------|----------- 
Radius                                    20      20.51        100 
Wall_Thickness                             2      4.342          6 
--------------------------------|-----------|----------|----------- 
 
RESPONSE FUNCTIONS: 
------------------  
                                |       Scaled        |       Unscaled      | 
                                |---------------------|---------------------| 
RESPONSE                        | Computed   Predicted| Computed   Predicted| 
--------------------------------|----------|----------|----------|----------| 
Internal_Energy                 |      8344       8645|      8344       8645| 
Rigid_Wall_Force                | 8.112e+04      8e+04| 8.112e+04      8e+04| 
--------------------------------|----------|----------|----------|----------| 
 
Figure  22-21 below confirms that the final design is only slightly infeasible when the maximum filtered 
force exceeds the specified limit for a short duration at around 9ms. 
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Figure  22-21: Cylinder: Constrained rigid wall force: F(t) < 80000 (SAE 300Hz filtered) 
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22.4 Sheet-metal forming (3 variables) 
A sheet-metal forming example in which the design involves thinning and FLD criteria is demonstrated in 
this chapter. The example has the following features: 
 
• The maximum of all the design variables is minimized. 
• Adaptive meshing is used in the finite element analysis. 
• The binary LS-DYNA database is used. 
• The example employs the sheet metal forming interface utilities. 
• Composite functions are used. 
• An appended file containing extra input is used. 
• The example utilizes the independent parametric preprocessor, Truegrid15. 
 
22.4.1 Problem statement 
 
The design parameterization for the sheet metal forming example is shown in Figure  22-22. 
 

 t 

F1 

F2 

 r1 

 r3 

 r2 
 die 

 punch 

 
Figure  22-22: Parameterization of cross-section 

 

                                                 
15 Registered Trademark of XYZ Scientific Applications Inc. 
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The FE model is shown in Figure  22-23. 
 

 
Figure  22-23: Quarter segment of FE model: tools and blank 

 
The design problem is formulated to minimize the maximum tool radius while also specifying an FLD 
constraint and a maximum thickness reduction of 20% (thinning constraint). Since the user wants to enforce 
the FLD and thinning constraints strictly, these constraints are defined as strict. To minimize the 
maximum radius, a small upper bound for the radii has been specified (arbitrarily chosen as a number close 
to the lower bound of the design space, namely 1.1). The optimization solver will then minimize the 
maximum difference between the radii and their respective bounds. The radius constraints must not be 
enforced strictly. This translates to the following mathematical formulation: 
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The design variables r1, r2 and r3 are the radii of the work piece as indicated in Figure  22-22. Δt is the 
thickness reduction which is positive when the thickness is reduced. The FLD constraint is feasible when 
smaller than zero. 
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22.4.2 First Iteration 
 
The initial run is a quadratic analysis designed as an initial investigation of the following issues: 
 
• The dependency of the through thickness strain constraint on the radii. 
 
• The dependency of the FLD constraint on the radii. 
 
• The location of the optimal design point. 
 
The subregion considered for this study is 2.0 large in r1, r2 and r3 and is centered about (1.5, 1.5, 1.5)T. 
The FLD constraint formulation tested in this phase is based on the maximum perpendicular distance of a 
point violating the FLD constraint to the FLD curve (see Section  14.9.2). 
 
The LS-OPT command file used to run the problem is: 
 
"Sheet: Minimization of Maximum Tool Radius" 
Author "Aaron Spelling" 
$ Created on Wed May 29 19:23:20 2002 
$ 
$ DESIGN VARIABLES 
$ 
variables 3 
 Variable 'Radius_1' 1.5 
  Lower bound variable 'Radius_1' 1 
  Upper bound variable 'Radius_1' 4.5 
  Range 'Radius_1' 4 
 Variable 'Radius_2' 1.5 
  Lower bound variable 'Radius_2' 1 
  Upper bound variable 'Radius_2' 4.5 
  Range 'Radius_2' 4 
 Variable 'Radius_3' 1.5 
  Lower bound variable 'Radius_3' 1 
  Upper bound variable 'Radius_3' 4.5 
  Range 'Radius_3' 4 
solvers 1 
responses 2 
$ 
$ NO HISTORIES ARE DEFINED 
$ 
$ 
$ DEFINITION OF SOLVER "DYNA1" 
$ 
 solver dyna 'DYNA1' 
  solver command "lsdyna" 
  solver input file "trugrdo" 
  solver append file "ShellSetList" 
  prepro truegrid 
  prepro command "/net/src/ultra4_4/common/hp/tg2.1/tg" 
  prepro input file "m3.tg.opt" 
$ 
$ RESPONSES FOR SOLVER "DYNA1" 
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$ 
 response 'Thinning' 1 0 "DynaThick REDUCTION MAX" 
 response 'Thinning' linear 
 response 'FLD' 1 0 "DynaFLDg CENTER 1 2 3 90" 
 response 'FLD' linear 
$ 
$ NO HISTORIES DEFINED FOR SOLVER "DYNA1" 
$ 
$ 
$ HISTORIES AND RESPONSES DEFINED BY EXPRESSIONS 
$ 
 composites 4 
 composite 'Rad1' type weighted 
  composite 'Rad1' variable 'Radius_1' 1 scale 1 
 composite 'Rad2' type weighted 
  composite 'Rad2' variable 'Radius_2' 1 scale 1 
 composite 'Rad3' type weighted 
  composite 'Rad3' variable 'Radius_3' 1 scale 1 
 composite 'Thinning_scaled' {Thinning/100} 
$ 
$ NO OBJECTIVES DEFINED 
$ 
 objectives 0 
$ 
$ CONSTRAINT DEFINITIONS 
$ 
 constraints 5 
 constraint 'FLD' 
  strict 
  upper bound constraint 'FLD' 0.0 
 constraint 'Rad1' 
  slack 
  upper bound constraint 'Rad1' 1.1 
 constraint 'Rad2' 
  upper bound constraint 'Rad2' 1.1 
 constraint 'Rad3' 
  upper bound constraint 'Rad3' 1.1 
 constraint 'Thinning_scaled' 
  strict 
  upper bound constraint 'Thinning_scaled' 0.2 
$ 
$ EXPERIMENTAL DESIGN 
$ 
 Order quadratic 
 Experimental design dopt 
 Basis experiment 3toK 
 Number experiment 16 
$ 
$ JOB INFO 
$ 
 concurrent jobs 8 
 iterate param design 0.01 
 iterate param objective 0.01 
 iterate 1 
STOP 
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The file ShellSetList contains commands for LS-DYNA in addition to the preprocessor output. It is 
slotted into the input file. Adaptive meshing is chosen as an analysis feature for the simulation. The FLD 
curve data is also specified in this file. The extra commands are: 
 
*DATABASE_BINARY_RUNRSF 
70 
*DATABASE_EXTENT_BINARY 
0, 0, 0, 1, 0, 0, 0, 1 
0, 0, 0, 0, 0, 0 
$ 
$ SLIDING INTERFACE DEFINITIONS 
$ 
$ TrueGrid Sliding Interface # 1 
$ 
*CONTACT_FORMING_ONE_WAY_SURFACE_TO_SURFACE 
$ workpiece vs punch 
0.1000000              0.000   0.000 
 1 2 3 3           1        
 

  0.0 
$ 
*CONTACT_FORMING_ONE_WAY_SURFACE_TO_SURFACE 
$ workpiece vs die 
 1 3 3 3           1       1 
   0.1000000              0.000     0.000 

   0.0 
$ 
*CONTACT_FORMING_ONE_WAY_SURFACE_TO_SURFACE 
$ workpiece vs blankholder 
 1 4 3 3           1       1 
   0.1000000              0.000     0.000 

   0.0 
$ 
*CONTROL_ADAPTIVE 
$ ADPFREQ   ADPTOL   ADPOPT   MAXLVL    TBIRTH    TDEATH LCADP IOFLAG 
0.100E-03    5.000        2      3 0.000E+00 1.0000000      0      1 
$ ADPSIZE   ADPASS   IREFLG   ADPENE 
0.0000000       1     0 3.0000 
*LOAD_RIGID_BODY 
 
$    rbID  dir     lcID     scale 

  2    3     2 1.0000000 
*LOAD_RIGID_BODY 
$    rbID  dir     lcID     scale 

  4    3  3 1.0000000 
*DEFINE_CURVE 
$   FLD curve 
90 
$ 
-1,2.083 
0,.25 
1,.75 
*END 
 
The input file (file m3.tg.opt) used to generate the FE mesh in Truegrid is: 
 
c generate LS-DYNA input deck for sheet metal example 
lsdyna keyword 
lsdyopts endtim .0009  nodout 1.e-6 d3plot dtcycl .0001 ; ; 
lsdyopts istupd 1 ; 
c lsdymats 1 37 shell elfor bt rho 7.8e-9 e 2.e5 pr .28  
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c     sigy 200. etan 572 er 1.4 ; 
lsdymats 2 20 shell elfor bt rho 7.8e-9 e 2.e5 pr .28 shth .1   
    cmo con 4 7; 
lsdymats 3 20 shell elfor bt rho 7.8e-9 e 2.e5 pr .28 shth .1   
    cmo con 7 7 ; 
lsdymats 4 20 shell elfor bt rho 7.8e-9 e 2.e5 pr .28 shth .1   
    cmo con 4 7; 
plane 2 0 0 0 1 0 0 .01 symm ; 
plane 3 0 0 0 0 1 0 0.01 symm ; 
c  sid 1 lsdsi a10 slvmat 1;mstmat 2;scoef .1 ; ; ; 
c  sid 2 lsdsi a10 slvmat 1;mstmat 3;scoef .1 ; ; ; 
c  sid 3 lsdsi a10 slvmat 1;mstmat 4;scoef .1 ; ; ; 
c 
lcd 1  
     0.000000000E+00     0.275600006E+03 
     0.665699990E-04     0.276100006E+03 
     0.136500006E-03     0.276700012E+03 
 
   . 
   .  
   . 
 
     0.312799990E+00     0.481799988E+03 
     0.469900012E+00     0.517200012E+03 
     0.705600023E+00     0.555299988E+03 
; 
c 
c die cross-section 
para 
c 
 r1 <<Radius_1>> c upper radius  minimum = 2. 
 r2 <<Radius_2>> c middle radius minimum = 2. 
 r3 <<Radius_3>> c lower radius  minimum = 2. 
 load2 -100000 
 load3 -20000 
 th1 1.0          c thickness of blank 
 th3 .00          c thickness of die and punch 
 th2 [1.001*%th1] 
 l1  20           c length of draw (5-40) 
c 
 z5 [%l1-22] 
c Position of workpiece 
 z4   [%z5+1.001*%th1/2.+%th3/2] 
c Position of blankholder 
 z3   [%z4+1.001*%th1/2.+%th3/2] 
 n1 [25+4.0*%l1] 
 n2 [25+8.0*%l1] 
c part 2 
 z6 [%z5+4+%th2] 
 z7 [%z5+%l1+4+%th2] 
; 
c 
c die cross-section 
 
   . 
   . 
   . 
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 c punch cross-section (closed configuration) 
ld 2 
 lod 1 [%th2+%th3] 
    
c punch cross-section (withdrawn configuration) 
ld 3 lstl 2 0 [%z5+26] 
 
   . 
   . 
   . 
 
endpart 
c ***************** part 2 mat 2 ********* punch  
cylinder 
1 8 35 40 67 76 [76+%n1] [70+%n1+10]; 1 41 ; -1 ; 
.001 17. 23. 36. 44. 50. 75. 100. 
0. 90. 
%z7 
 
   . 
   . 
   . 
 
thick %th3 
mate 2 
endpart 
 
c *********** part 3 mat 4 ********* blankholder  
cylinder 
1 10 ; 1 41 ; -1 ; 
80. 100. 
0. 90. 
[%z3] 
b 0 0 0 0 0 0 dx 1 dy 1 rx 1 ry 1 rz 1; 
thick %th3 
mate 4 
endpart 
   
c *********** part 4 mat 1 workpiece  
block 
1 21 ; 1 21 ; -1 ; 
0. 100. 
0. 100. 
[%z4] 
thick [%th1] 
mate 1 
endpart 
merge 
write 
end 
 
 
The error parameters for the fitted functions are given in the following output (from lsopt_output 
file): 
 
Approximating Response 'Thinning' using 16 points (ITERATION 1) 
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---------------------------------------------------------------- 
          Global error parameters of response surface 
          ------------------------------------------- 
Quadratic Function Approximation: 
--------------------------------- 
Mean response value           =    27.8994 
 
RMS error                     =     0.6657 (2.39%) 
Maximum Residual              =     1.2932 (4.64%) 
Average Error                 =     0.5860 (2.10%) 
Square Root PRESS Residual    =     2.0126 (7.21%) 
Variance                      =     1.0130 
R^2                           =     0.9913 
R^2 (adjusted)                =     0.9826 
R^2 (prediction)              =     0.9207 
Determinant of [X]'[X]        =  2231.5965 
 
Approximating Response 'FLD' using 16 points (ITERATION 1) 
---------------------------------------------------------------- 
          Global error parameters of response surface 
          ------------------------------------------- 
Quadratic Function Approximation: 
--------------------------------- 
Mean response value           =     0.0698 
 
RMS error                     =     0.0121 (17.33%) 
Maximum Residual              =     0.0247 (35.35%) 
Average Error                 =     0.0103 (14.74%) 
Square Root PRESS Residual    =     0.0332 (47.59%) 
Variance                      =     0.0003 
R^2                           =     0.9771 
R^2 (adjusted)                =     0.9542 
R^2 (prediction)              =     0.8272 
Determinant of [X]'[X]        =  2231.5965 
 
The thinning has a reasonably accurate response surface but the FLD approximation requires further 
refinement. 
The initial design has the following response surface results which fail the criteria for maximum thinning, 
but not for FLD: 
 
DESIGN POINT 
------------  
Variable Name                    Lower Bound   Value    Upper Bound 
--------------------------------|-----------|----------|----------- 
Radius_1                                   1        1.5        4.5 
Radius_2                                   1        1.5        4.5 
Radius_3                                   1        1.5        4.5 
--------------------------------|-----------|----------|----------- 
 
CONSTRAINT FUNCTIONS: 
--------------------  
CONSTRAINT NAME                 | Computed | Predicted|  Lower   |  Upper   |Viol? 
--------------------------------|----------|----------|----------|----------|----- 
FLD                             |   0.09123     0.1006|    -1e+30          0|YES 
Rad1                            |       1.5        1.5|    -1e+30        1.1|YES 
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Rad2                            |       1.5        1.5|    -1e+30        1.1|YES 
Rad3                            |       1.5        1.5|    -1e+30        1.1|YES 
Thinning_scaled                 |    0.2957     0.3078|    -1e+30        0.2|YES 
--------------------------------|----------|----------|----------|----------|----- 
CONSTRAINT VIOLATIONS: 
---------------------  
                                |  Computed Violation | Predicted Violation | 
CONSTRAINT NAME                 |----------|----------|----------|----------| 
                                |  Lower   |  Upper   |  Lower   |  Upper   | 
--------------------------------|----------|----------|----------|----------| 
FLD                             |    -         0.09123|    -          0.1006| 
Rad1                            |    -             0.4|    -             0.4| 
Rad2                            |    -             0.4|    -             0.4| 
Rad3                            |    -             0.4|    -             0.4| 
Thinning_scaled                 |    -         0.09567|    -          0.1078| 
--------------------------------|----------|----------|----------|----------| 
 
As shown below, after 1 iteration, a feasible design is generated. The simulation response of the optimum is 
closely approximated by the response surface. 
 
DESIGN POINT 
------------  
Variable Name                    Lower Bound   Value    Upper Bound 
--------------------------------|-----------|----------|----------- 
Radius_1                                   1      3.006        4.5 
Radius_2                                   1      3.006        4.5 
Radius_3                                   1      3.006        4.5 
--------------------------------|-----------|----------|----------- 
 
CONSTRAINT FUNCTIONS: 
--------------------  
CONSTRAINT NAME                 | Computed | Predicted|  Lower   |  Upper   |Viol? 
--------------------------------|----------|----------|----------|----------|----- 
FLD                             |  -0.04308   -0.03841|    -1e+30          0|no 
Rad1                            |     3.006      3.006|    -1e+30        1.1|YES 
Rad2                            |     3.006      3.006|    -1e+30        1.1|YES 
Rad3                            |     3.006      3.006|    -1e+30        1.1|YES 
Thinning_scaled                 |    0.2172        0.2|    -1e+30        0.2|no 
--------------------------------|----------|----------|----------|----------|----- 
 
CONSTRAINT VIOLATIONS: 
---------------------  
                                |  Computed Violation | Predicted Violation | 
CONSTRAINT NAME                 |----------|----------|----------|----------| 
                                |  Lower   |  Upper   |  Lower   |  Upper   | 
--------------------------------|----------|----------|----------|----------| 
FLD                             |    -          -     |    -          -     | 
Rad1                            |    -           1.906|    -           1.906| 
Rad2                            |    -           1.906|    -           1.906| 
Rad3                            |    -           1.906|    -           1.906| 
Thinning_scaled                 |    -         0.01718|    -          -     | 
--------------------------------|----------|----------|----------|----------| 
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22.4.3 Automated design 
 
The optimization process can also be automated so that no user intervention is required. The starting design, 
lower and upper bounds, and region of interest is modified from the 1 iteration study above. 
 
The input file is modified as follows: 
 
The variable definitions are as follows: 
 
Variable 'Radius_1' 1.5 
  Lower bound variable 'Radius_1' 1 
  Upper bound variable 'Radius_1' 4.5 
  Range 'Radius_1' 1 
 Variable 'Radius_2' 1.5 
  Lower bound variable 'Radius_2' 1 
  Upper bound variable 'Radius_2' 4.5 
  Range 'Radius_2' 1 
 Variable 'Radius_3' 1.5 
  Lower bound variable 'Radius_3' 1 
  Upper bound variable 'Radius_3' 4.5 
  Range 'Radius_3' 1 
 
The number of D-optimal experiments is reduced because of the linear approximation used: 
 
Order linear 
 Experimental design dopt 
 Basis experiment 3toK 
 Number experiment 7 
 
The optimization is run for 10 iterations: 
iterate 10 
 
The optimization history is shown in Figure  22-24 for the design variables and responses: 
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a) Optimization history of variable ‘Radius_1’ b) Optimization history of variable ‘Radius_2’ 

  
c) Optimization history of variable ‘Radius_3’ d) Optimization history of response ‘Thinning’ 
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e) Optimization history of response FLD 

 

Figure  22-24: Optimization history of design variables and responses (automated design) 

 
The details of the 10th iteration have been extracted: 
 
DESIGN POINT 
------------  
Variable Name                    Lower Bound   Value    Upper Bound 
--------------------------------|-----------|----------|----------- 
Radius_1                                   1      2.653        4.5 
Radius_2                                   1      2.286        4.5 
Radius_3                                   1      2.004        4.5 
--------------------------------|-----------|----------|----------- 
 
RESPONSE FUNCTIONS: 
------------------  
                                |       Scaled        |       Unscaled      | 
                                |---------------------|---------------------| 
RESPONSE                        | Computed   Predicted| Computed   Predicted| 
--------------------------------|----------|----------|----------|----------| 
Thinning                        |     19.92       19.6|     19.92       19.6| 
FLD                             | -0.000843  -0.002907| -0.000843  -0.002907| 
--------------------------------|----------|----------|----------|----------| 
 
A comparison between the starting and the final values is tabulated below: 
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Table  22.4-1: Comparison of results (Sheet-metal forming) 

Variable Start (Computed) Optimal (Predicted) Optimal (Computed) 
Thinning 29.57 19.92 19.6 
FLD 0.09123 -0.000843 -0.002907 
Radius_1 1.5 2.653  
Radius_2 1.5 2.286  
Radius_3 1.5 2.004  

 
The FLD diagrams (Figure  22-25) for the baseline design and the optimum illustrate the improvement of the 
FLD feasibility: 

Baseline FLD diagram FLD diagram of 10th iteration 

Figure  22-25: FLD diagrams of baseline and 10th iteration 

 
A typical deformed state is depicted in Figure  22-26 below. 

 
Figure  22-26: Deformed state 
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22.5 System identification (elastoplastic material) (2 variables) 
 
A methodology for deriving system or material parameters from experimental results, known as system 
identification, is applied here using optimization. The example has the following features: 
 
• The MeanSqErr composite function is used 
• The Crossplot history is used  
• The Min-Max formulation is demonstrated 
• Multiple test cases are employed 
• The confidence intervals of the optimal parameters is reported. 
 
22.5.1 Problem statement 

 
Figure  22-27: Sample of elastoplastic material subjected to a controlled vertical displacement 

 
The material parameters of a foam material must be determined from experimental results, namely the 
resultant reaction force vs. displacement history of a cubic sample on a rigid base (see Figure  22-27). The 
problem is solved by minimizing the mean squared residual force (rcforc binary database) with the 
material parameters Young's modulus E and Yield stress Y as the unknown optimization variables.  
 
The “experimental” resultant forces vs. displacements are shown below. The results were generated from an 
LS-DYNA run with the parameters ( 610=E , 310=Y ). Samples are taken at times 2, 4, 6 and 8 ms:   
 
Test1.txt 
   
  0.36168 10162 
  0.72562 12964 
  1.0903  14840 
  1.4538  17672 
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Test2.txt 
 
  0.36168 17393 
  0.72562 19559 
  1.0903  22098 
  1.4538  26833 
 
The finite element models for the two cases are represented in the keyword files foam1.k and foam2.k 
respectively. 
 
 
Mean Squared Error (MSE) formulation 
 
The LS-OPT command file is given below. The displacement and force histories are used to construct a 
force vs. displacement crossplot for the two cases. The mean squared residual error (MSE) between each 
crossplot and the corresponding test data is then computed. The two MSE values are simply added to find 
the objective value. Although only four test points are given for each case, 10 points at constant intervals are 
interpolated for use in the MeanSqErr (Section  15.6) composite: 
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where P=10, 1=ps  and 1=pW . The representative MSE command is: 
 

composite 'MSE1' { MeanSqErr ( Test1, Force_vs_Disp1, 10 ) } 
 
"Example 6" 
$ Created on Mon Nov 28 10:42:41 2005 
solvers 2 
$ 
$ WARNING -- NO RESPONSES ARE DEFINED 
$ 
histories 8 
$ 
$ DESIGN VARIABLES 
$ 
variables 2 
 Variable 'Youngs_Modulus' 700000 
  Lower bound variable 'Youngs_Modulus' 500000 
  Upper bound variable 'Youngs_Modulus' 2e+06 
  Local 'Youngs_Modulus' 
 Variable 'Yield_Stress' 1500 
  Lower bound variable 'Yield_Stress' 500 
  Upper bound variable 'Yield_Stress' 2000 
$ 
$ CONSTANTS 
$ 
constants 3 
 Constant 'Begin' 0.002 
 Constant 'End' 0.008 
 Constant 'numpoints' 4 
 
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ 
$      OPTIMIZATION METHOD    
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ 
$ 
Optimization Method SRSM 
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$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ 
$      SOLVER "Case1" 
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ 
$ 
$ DEFINITION OF SOLVER "Case1" 
$ 
 solver dyna960 'Case1' 
  solver command "ls970.single" 
  solver input file "foam1.k" 
$ ------ Pre-processor -------- 
$   NO PREPROCESSOR SPECIFIED 
$ ------ Sampling ------------- 
  solver order linear 
  solver experiment design dopt 
  solver basis experiment 5toK 
$ ------ Job information ------ 
  solver concurrent jobs 1 
$ 
$ WARNING - NO RESPONSES DEFINED FOR SOLVER "Case1" 
$ 
$ 
$ HISTORIES FOR SOLVER "Case1" 
$ 
 history 'Force1' "BinoutHistory -res_type rcforc -cmp z_force -id 1 -side SLAVE" 
 history 'Disp1' "BinoutHistory -res_type nodout -cmp z_displacement -id 296" 
$ 
$ HISTORY EXPRESSIONS FOR SOLVER "Case1" 
$ 
 history 'Force_vs_Disp1' expression { Crossplot ("-Disp1", "Force1") } 
 
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ 
$      SOLVER "Case2" 
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ 
$ 
$ DEFINITION OF SOLVER "Case2" 
$ 
 solver dyna960 'Case2' 
  solver command "ls970.single" 
  solver input file "foam2.k" 
$ ------ Pre-processor -------- 
$   NO PREPROCESSOR SPECIFIED 
$ ------ Sampling ------------- 
  solver order linear 
  solver experiment design dopt 
  solver basis experiment 5toK 
$ ------ Job information ------ 
  solver concurrent jobs 1 
$ 
$ LOCAL DESIGN VARIABLES FOR SOLVER "Case2" 
$ 
  solver variable 'Youngs_Modulus' 
$ 
$ WARNING - NO RESPONSES DEFINED FOR SOLVER "Case2" 
$ 
$ 
$ HISTORIES FOR SOLVER "Case2" 
$ 
 history 'Force2' "BinoutHistory -res_type rcforc -cmp z_force -id 1 -side SLAVE" 
 history 'Disp2' "BinoutHistory -res_type nodout -cmp z_displacement -id 288" 
$ 
$ HISTORY EXPRESSIONS FOR SOLVER "Case2" 
$ 
 history 'Force_vs_Disp2' expression { Crossplot ("-Disp2", "Force2") } 
 
$ 
$ HISTORIES FROM FILES 
$ 
 history 'Test1' file "Test1.txt" 
 history 'Test2' file "Test2.txt" 
composites 3 
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$ 
$ COMPOSITE EXPRESSIONS 
$ 
 composite 'MSE1' { MeanSqErr ( Test1, Force_vs_Disp1, 10 ) } 
 composite 'MSE2' { MeanSqErr ( Test2, Force_vs_Disp2, 10 ) } 
 composite 'MSE' { sqrt(MSE1 + MSE2) } 
$ 
$ OBJECTIVE FUNCTIONS 
$ 
 objectives 2 
 objective 'MSE1' 1 
 objective 'MSE2' 1 
$ 
$ THERE ARE NO CONSTRAINTS!!! 
$ 
 constraints 0 
$ 
$ JOB INFO 
$ 
 concurrent jobs 1 
 iterate param design 0.01 
 iterate param objective 0.01 
 iterate param stoppingtype and 
 iterate 2 
STOP 
 
 
Maximum residual formulation 
 
In this formulation, the deviations from the respective target values are incorporated as constraint violations, 
so that the optimization problem for parameter identification becomes: 
 

Minimize  e, 
subject to 

e
s

Gf

j

jj ≤
−)(x

;   j = 1,…,8 

e ≥ 0 
 

This formulation is automatically activated in LS-OPT by specifying the individual responses in equality 
constraints, i.e. without specifying the objective function as the maximum constraint violation. This is due 
to the fact LS-OPT automatically minimizes the infeasibility e , ignoring the objective function until a 
feasible design is found. When used in parameter identification, all the constraints are in general never 
completely satisfied due to typically over-determined systems that are used and therefore the objective 
function specification may be omitted. 
 
As a method of second choice, the Minmax method presently requires a more laborious input preparation 
than the MSE approach. It will be simplified, using a single command, in a later version of LS-OPT. 
 
 
 
"Example 6c" 
$ Created on Sun Apr  4 18:00:20 2004 
solvers 2 
responses 8 
histories 2 
$ 
$ DESIGN VARIABLES 
$ 
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variables 2 
 Variable 'Youngs_Modulus' 700000 
  Lower bound variable 'Youngs_Modulus' 500000 
  Upper bound variable 'Youngs_Modulus' 2e+06 
 Variable 'Yield_Stress' 1500 
  Lower bound variable 'Yield_Stress' 500 
  Upper bound variable 'Yield_Stress' 2000 
 
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ 
$      OPTIMIZATION METHOD    
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ 
$ 
Optimization Method SRSM 
 
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ 
$      SOLVER "Case1" 
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ 
$ 
$ DEFINITION OF SOLVER "Case1" 
$ 
 solver dyna960 'Case1' 
  solver command "ls970.single" 
  solver input file "foam1.k" 
  solver order linear 
  solver experiment design dopt 
  solver number experiments 5 
  solver basis experiment 3toK 
  solver concurrent jobs 1 
$ 
$ WARNING - NO RESPONSES DEFINED FOR SOLVER "Case1" 
$ 
$ 
$ HISTORIES FOR SOLVER "Case1" 
$ 
 history 'Force1' "BinoutHistory -res_type rcforc -cmp z_force -id 1  -side SLAVE " 
$ 
$ RESPONSE EXPRESSIONS FOR SOLVER "Case1" 
$ 
 response 'F1_1' expression {Force1(0.002)} 
 response 'F2_1' expression {Force1(0.004)} 
 response 'F3_1' expression {Force1(0.006)} 
 response 'F4_1' expression {Force1(0.008)} 
 
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ 
$      SOLVER "Case2" 
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ 
$ 
$ DEFINITION OF SOLVER "Case2" 
$ 
 solver dyna960 'Case2' 
  solver command "ls970.single" 
  solver input file "foam2.k" 
  solver order linear 
  solver experiment duplicate 'Case1' 
  solver concurrent jobs 1 
$ 
$ WARNING - NO RESPONSES DEFINED FOR SOLVER "Case2" 
$ 
$ 
$ HISTORIES FOR SOLVER "Case2" 
$ 
 history 'Force2' "BinoutHistory -res_type rcforc -cmp z_force -id 1  -side SLAVE " 
$ 
$ RESPONSE EXPRESSIONS FOR SOLVER "Case2" 
$ 
 response 'F1_2' expression {Force2(0.002)} 
 response 'F2_2' expression {Force2(0.004)} 
 response 'F3_2' expression {Force2(0.006)} 
 response 'F4_2' expression {Force2(0.008)} 
 
composites 1 
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$ 
$ COMPOSITE RESPONSES 
$ 
 composite 'Residual' type targeted 
  composite 'Residual' response 'F1_1' 10162 scale 1 
   weight 1 
  composite 'Residual' response 'F2_1' 12964 scale 1 
   weight 1 
  composite 'Residual' response 'F3_1' 14840 scale 1 
   weight 1 
  composite 'Residual' response 'F4_1' 17672 scale 1 
   weight 1 
  composite 'Residual' response 'F1_2' 17393 scale 1 
   weight 1 
  composite 'Residual' response 'F2_2' 19559 scale 1 
   weight 1 
  composite 'Residual' response 'F3_2' 22098 scale 1 
   weight 1 
  composite 'Residual' response 'F4_2' 26833 scale 1 
   weight 1 
$ 
$ NO OBJECTIVES DEFINED 
$ 
 objectives 0 
$ 
$ CONSTRAINT DEFINITIONS 
$ 
 constraints 8 
 constraint 'F1_1' 
  lower bound constraint 'F1_1' 10162 
  upper bound constraint 'F1_1' 10162 
 constraint 'F2_1' 
  lower bound constraint 'F2_1' 12964 
  upper bound constraint 'F2_1' 12964 
 constraint 'F3_1' 
  lower bound constraint 'F3_1' 14840 
  upper bound constraint 'F3_1' 14840 
 constraint 'F4_1' 
  lower bound constraint 'F4_1' 17672 
  upper bound constraint 'F4_1' 17672 
 constraint 'F1_2' 
  lower bound constraint 'F1_2' 17393 
  upper bound constraint 'F1_2' 17393 
 constraint 'F2_2' 
  lower bound constraint 'F2_2' 19559 
  upper bound constraint 'F2_2' 19559 
 constraint 'F3_2' 
  lower bound constraint 'F3_2' 22098 
  upper bound constraint 'F3_2' 22098 
 constraint 'F4_2' 
  lower bound constraint 'F4_2' 26833 
  upper bound constraint 'F4_2' 26833 
$ 
$ JOB INFO 
$ 
 iterate param design 0.01 
 iterate param objective 0.01 
 iterate param stoppingtype or 
 iterate 5 
STOP 
 

 
22.5.2 Results 
 
The results for both methods are compared below. Note that the optimum Young’s modulus differs slightly 
due to its relative insignificance in the optimization as depicted in the following ANOVA plot representing 
the 4th point of the history plot and demonstrated by the size of its confidence interval (see table). 
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Mean Squared Error (MSE) formulation 
 
Printout of the lsopt_report file: 
 
========================================================================= 
            M E A N   S Q U A R E D   E R R O R   V A L U E S             
 
                              ITERATION 5 
========================================================================= 
 
-------------------------------------------- 
Objective name                      MSE 
-------------------------------------------- 
MSE1                             .000221574 
MSE2                             .000175544 
-------------------------------------------- 
Total                            .000397118 
-------------------------------------------- 
 
 
========================================================================= 
            M E A N   S Q U A R E D   E R R O R   R E S I D U A L S         
 
                            ITERATION 5 
========================================================================= 
 
 
   COMPOSITE : MSE1 
 
     "Force_vs_Disp1"  calibrated to  "Test1" 
---------------------------------------------------------------------------------------------- 
 
     Computed MSE Value  = 0.00026367 
     Predicted MSE Value = 0.000221574 
 
---------------------------------------------------------------------------------------------- 
       TEST DATA            |             COMPUTED RESULTS              |                      
------|----------|----------|----------|----------|----------|----------|----------|---------- 
 Point  Point       Target  | Computed   Computed | Predicted  Predicted|  Weight     Scale    
 No.    Location    Value   | Value      Error    | Value      Error    |  Value      Value    
------|----------|----------|----------|----------|----------|----------|----------|---------- 
     1     0.3617  1.016e+04| 1.027e+04      107.9| 1.026e+04      98.01|         1  1.767e+04 
     2      0.483   1.11e+04|  1.08e+04     -298.9|  1.08e+04     -299.4|         1  1.767e+04 
     3     0.6044  1.203e+04| 1.143e+04     -605.1| 1.157e+04       -458|         1  1.767e+04 
     4     0.7257  1.296e+04| 1.283e+04     -129.6| 1.276e+04     -204.2|         1  1.767e+04 
     5     0.8471  1.359e+04| 1.317e+04     -422.7| 1.314e+04       -447|         1  1.767e+04 
     6     0.9684  1.421e+04| 1.397e+04       -240| 1.397e+04     -242.4|         1  1.767e+04 
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     7       1.09  1.484e+04|  1.49e+04      58.49|  1.49e+04      58.67|         1  1.767e+04 
     8      1.211  1.578e+04| 1.592e+04      136.1| 1.591e+04        131|         1  1.767e+04 
     9      1.332  1.673e+04| 1.688e+04      148.9| 1.674e+04      16.58|         1  1.767e+04 
    10      1.454  1.767e+04| 1.743e+04     -243.2| 1.742e+04     -248.4|         1  1.767e+04 
---------------------------------------------------------------------------------------------- 
 
 
   COMPOSITE : MSE2 
 
     "Force_vs_Disp2"  calibrated to  "Test2" 
---------------------------------------------------------------------------------------------- 
 
     Computed MSE Value  = 9.06349e-05 
     Predicted MSE Value = 0.000175544 
 
---------------------------------------------------------------------------------------------- 
       TEST DATA            |             COMPUTED RESULTS              |                      
------|----------|----------|----------|----------|----------|----------|----------|---------- 
 Point  Point       Target  | Computed   Computed | Predicted  Predicted|  Weight     Scale    
 No.    Location    Value   | Value      Error    | Value      Error    |  Value      Value    
------|----------|----------|----------|----------|----------|----------|----------|---------- 
     1     0.3617  1.739e+04| 1.753e+04      138.8| 1.762e+04      223.9|         1  2.683e+04 
     2      0.483  1.812e+04| 1.823e+04      112.7| 1.824e+04      127.4|         1  2.683e+04 
     3     0.6044  1.884e+04| 1.897e+04      130.5| 1.896e+04      121.3|         1  2.683e+04 
     4     0.7257  1.956e+04| 1.973e+04      170.2| 1.972e+04      165.1|         1  2.683e+04 
     5     0.8471   2.04e+04| 2.053e+04      120.7| 2.052e+04      118.2|         1  2.683e+04 
     6     0.9684  2.125e+04| 2.137e+04      123.3| 2.137e+04      119.3|         1  2.683e+04 
     7       1.09  2.209e+04| 2.228e+04        184| 2.228e+04      184.3|         1  2.683e+04 
     8      1.211  2.367e+04| 2.438e+04      705.9| 2.471e+04       1037|         1  2.683e+04 
     9      1.332  2.525e+04| 2.519e+04     -59.33| 2.539e+04      132.9|         1  2.683e+04 
    10      1.454  2.683e+04| 2.674e+04     -95.55| 2.684e+04      5.068|         1  2.683e+04 
---------------------------------------------------------------------------------------------- 
 
========================================================================= 
 
========================================================================= 
                 C O N F I D E N C E   I N T E R V A L S                  
 
                              ITERATION 5 
========================================================================= 
 
------------------------------------------------------------ 
 90% Confidence intervals for individual optimal parameters 
------------------------------------------------------------ 
Name                  Value              Confidence     
                                          Interval      
                                      Lower      Upper  
------------------------------------------------------------ 
Youngs_Modulus   739559.415      72970.5803 1406148.25 
Yield_Stress     1009.14575      978.501323 1039.79017 
------------------------------------------------------------ 
 
========================================================================= 
 
 
 
 



 CHAPTER 22:  EXAMPLE PROBLEMS  

LS-OPT Version 3  375 

 
 
 

Figure  22-28: Optimization history of MSE2. The history plots comparing the response to the test data are 
selected by clicking near the selected iteration on the plot and then on the MeanSqErr button. 

 
 

 
 
 

Figure  22-29: Comparison of force-displacement and data from Test1 (baseline) 



CHAPTER 22:  EXAMPLE PROBLEMS  

376  LS-OPT Version 3 

 

Figure  22-30: Comparison of force-displacement and data from Test1 (optimum) 

 
 
Maximum residual formulation 
 
DESIGN POINT 
------------  
Variable Name                    Lower Bound   Value    Upper Bound 
--------------------------------|-----------|----------|-----------|-------- 
Youngs_Modulus                         5e+05  7.083e+05       2e+06  
Yield_Stress                             500       1001        2000  
--------------------------------|-----------|----------|-----------|-------- 
 
RESPONSE FUNCTIONS: 
------------------  
                                |       Scaled        |       Unscaled      | 
                                |---------------------|---------------------| 
RESPONSE                        | Computed   Predicted| Computed   Predicted| 
--------------------------------|----------|----------|----------|----------| 
F1_1                            |  1.02e+04   1.02e+04|  1.02e+04   1.02e+04| 
F2_1                            | 1.273e+04  1.295e+04| 1.273e+04  1.295e+04| 
F3_1                            | 1.478e+04  1.477e+04| 1.478e+04  1.477e+04| 
F4_1                            | 1.735e+04  1.748e+04| 1.735e+04  1.748e+04| 
F1_2                            | 1.743e+04  1.748e+04| 1.743e+04  1.748e+04| 
F2_2                            | 1.957e+04  1.956e+04| 1.957e+04  1.956e+04| 
F3_2                            |  2.21e+04  2.234e+04|  2.21e+04  2.234e+04| 
F4_2                            | 2.653e+04  2.678e+04| 2.653e+04  2.678e+04| 
--------------------------------|----------|----------|----------|----------| 
 
COMPOSITE FUNCTIONS: 
-------------------- 
COMPOSITE NAME                  | Computed | Predicted| 
--------------------------------|----------|----------| 
Residual                        |     505.2      332.9| 
--------------------------------|----------|----------| 
 
 
CONSTRAINT FUNCTIONS: 
--------------------  
CONSTRAINT NAME                 | Computed | Predicted|  Lower   |  Upper   |Viol? 
--------------------------------|----------|----------|----------|----------|----- 
F1_1                            |  1.02e+04   1.02e+04| 1.016e+04  1.016e+04|YES 
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F2_1                            | 1.273e+04  1.295e+04| 1.296e+04  1.296e+04|YES 
F3_1                            | 1.478e+04  1.477e+04| 1.484e+04  1.484e+04|YES 
F4_1                            | 1.735e+04  1.748e+04| 1.767e+04  1.767e+04|YES 
F1_2                            | 1.743e+04  1.748e+04| 1.739e+04  1.739e+04|YES 
F2_2                            | 1.957e+04  1.956e+04| 1.956e+04  1.956e+04| 
F3_2                            |  2.21e+04  2.234e+04|  2.21e+04   2.21e+04|YES 
F4_2                            | 2.653e+04  2.678e+04| 2.683e+04  2.683e+04|YES 
--------------------------------|----------|----------|----------|----------|----- 
 
 
CONSTRAINT VIOLATIONS: 
---------------------  
                                |  Computed Violation | Predicted Violation | 
CONSTRAINT NAME                 |----------|----------|----------|----------| 
                                |  Lower   |  Upper   |  Lower   |  Upper   | 
--------------------------------|----------|----------|----------|----------| 
F1_1                            |    -            37.3|    -           35.91| 
F2_1                            |     230.2     -     |     10.99     -     | 
F3_1                            |     61.33     -     |     65.56     -     | 
F4_1                            |     326.2     -     |     194.5     -     | 
F1_2                            |    -           40.46|    -           85.06| 
F2_2                            |    -           10.74|    0.9383     -     | 
F3_2                            |    -           2.992|    -           240.1| 
F4_2                            |     298.1     -     |     49.21     -     | 
--------------------------------|----------|----------|----------|----------| 
 
 
MAXIMUM VIOLATION: 
------------------  
                   |         Computed          |        Predicted          | 
     Quantity      |---------------------------|---------------------------| 
                   |   Constraint      Value   |   Constraint      Value   | 
-------------------|----------------|----------|----------------|----------| 
Maximum Violation  |F4_1                  326.2|F3_2                  240.1| 
Smallest Margin    |F3_2                  2.992|F2_2                 0.9383| 
-------------------|----------------|----------|----------------|----------| 
 
 

 
22.6 Large vehicle crash and vibration (MDO/MOO) (7 variables) 
 
(Example by courtesy of DaimlerChrysler) 
 
This example has the following features: 
 
• LS-DYNA is used for both explicit full frontal crash and implicit NVH simulations. 
• Multidisciplinary design optimization (MDO) and Multi-objective optimization (MOO) are illustrated 

with a realistic full vehicle example. 
• Extraction is performed using standard LS-DYNA interfaces. 
 
This example illustrates a realistic application of Multidisciplinary Design Optimization (MDO) and 
concerns the coupling of the crash performance of a large vehicle with one of its Noise Vibration and 
Harshness (NVH) criteria, namely the torsional mode frequency  [2].  
 
 
22.6.1 FE Modeling 
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The crashworthiness simulation considers a model containing approximately 30,000 elements of a National 
Highway Transportation and Safety Association (NHTSA) vehicle  [3] undergoing a full frontal impact. A 
modal analysis is performed on a so-called ‘body-in-white’ model containing approximately 18,000 
elements. The crash model for the full vehicle is shown in Figure  22-31 for the undeformed and deformed 
(time = 78ms) states, and with only the structural components affected by the design variables, both in the 
undeformed and deformed (time = 72ms) states, in Figure  22-32. The NVH model is depicted in Figure 
 22-33 in the first torsion vibrational mode. Only body parts that are crucial to the vibrational mode shapes 
are retained in this model. The design variables are all thicknesses or gages of structural components in the 
engine compartment of the vehicle (Figure  22-32), parameterized directly in the LS-DYNA input file. 
Twelve parts are affected, comprising aprons, rails, shotguns, cradle rails and the cradle cross member 
(Figure  22-32). LS-DYNA v.971 is used for both the crash and NVH simulations, in explicit and implicit 
modes respectively. 
 

 
 

 
(a)       (b) 

Figure  22-31: Crash model of vehicle showing road and wall 

(a) Undeformed (b) Deformed (78ms) 
 

 
(a) (b) 

 

Figure  22-32: Structural components affected by design variables – 

Left and right 
apron 

Inner and 
outer rail Front cradle upper and 

lower cross members 

Left and right 
cradle rails 

Shotgun outer 
 and inner 
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(a) Undeformed and (b) deformed (time = 72ms) 
 
 

 
Figure  22-33: Body-in-white model of vehicle in torsional vibration mode (38.7Hz) 

 
22.6.2 Design formulation 
 
This example illustrates the following: 
 
• Multidisciplinary optimization 
• Discrete optimization 
• Multi-objective optimization 
• Complex mathematical expressions 
 
The formulation is as follows: 
 
 
 
Minimize  Mass 
Minimize Maximum intrusion 
  
subject to 
  Maximum intrusion(xcrash) < 551.27mm 

 
 Stage 1 pulse(xcrash) > 14.51g 
 Stage 2 pulse(xcrash) > 17.59g 
 Stage 3 pulse(xcrash) > 20.75g 
 
 41.38Hz < Torsional mode frequency(xNVH) < 42.38Hz 

 
Variables: 
xcrash  = [rail_inner, rail_outer, cradle_rails, aprons, shotgun_inner, shotgun_outer, cradle_crossmember]T 
xNVH = [rail_inner, rail_outer, cradle_rails, aprons, shotgun_inner, shotgun_outer, cradle_crossmember]T. 
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The three stage pulses are calculated from the SAE filtered (60Hz) acceleration and displacement of a left 
rear sill node in the following fashion: 
 

Stage i pulse = ∫−
− 2

1

d
12

d

d

xa
dd

k  ;  

 
k = 0.5 for i = 1, 1.0 otherwise; 

 
with the limits [d1;d2] = [0;184]; [184;334]; [334;Max(displacement)] for i = 1,2,3 respectively, all 
displacement units in mm and the minus sign to convert acceleration to deceleration. The Stage 1 pulse is 
represented by a triangle with the peak value being the value used. 
 
The constraints are scaled using the target values to balance the violations of the different constraints. This 
scaling is only important in cases where multiple constraints are violated as in the current problem. 
However, it is a good idea to apply scaling of constraints as a rule. 
 
22.6.3 Input preparation 
 
The MDO and MOO features are specified as follows: 
  

• MDO. The two disciplines (crash and NVH) are treated separately. Variables are flagged as local 
with the Local variable_name statement, and then linked to a solver using the Solver 
variable variable_name command. 

• MOO. Two design objectives (Intrusion and mass) are stated. The weight of the mass has been set to 
1.0 whereas the weight on the intrusion has been set to 0.0. These weights are specified in the 
“Objectives” panel of the GUI. This implies that the optimization path is based on minimal mass 
alone while the Pareto optimal front is constructed based on both objectives. The GA must be 
selected (also in the Objectives panel) as metamodel optimizer to obtain the Pareto optimal front. 

• Discrete variables. These are specified as an array of space delimited values. 
 
The command file is given below: 
 
"Taurus Full Vehicle MDO : Crash and NVH, all variables" 
Author "Ken Craig" 
$ Created on Fri Feb  1 17:43:39 2008 
solvers 2 
responses 15 
histories 2 
$ 
$ DESIGN VARIABLES 
$ 
variables 7 
 Variable 'cradle_rails' 1.93 
  Lower bound variable 'cradle_rails' 1 
  Upper bound variable 'cradle_rails' 3 
 Variable 'cradle_csmbr' 1.93 
  Lower bound variable 'cradle_csmbr' 1 
  Upper bound variable 'cradle_csmbr' 3 
  Local 'cradle_csmbr' 
 Variable 'shotgun_inner' 1.3 
  Lower bound variable 'shotgun_inner' 1 
  Upper bound variable 'shotgun_inner' 2.5 
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  Local 'shotgun_inner' 
 Variable 'shotgun_outer' 1.3 
  Lower bound variable 'shotgun_outer' 1 
  Upper bound variable 'shotgun_outer' 2.5 
  Local 'shotgun_outer' 
 Variable 'rail_inner' 2 
  Variable 'rail_inner' discrete {1 1.25 1.5 1.75 2 2.25 2.5 2.75 3 } 
 Variable 'rail_outer' 1.5 
  Variable 'rail_outer' discrete {1 1.25 1.5 1.75 2 2.25 2.5 2.75 3 } 
 Variable 'aprons' 1.3 
  Lower bound variable 'aprons' 1 
  Upper bound variable 'aprons' 2.5 
$ 
Optimization Method SRSM 
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ 
$      SOLVER "CRASH" 
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ 
$ 
$ DEFINITION OF SOLVER "CRASH" 
$ 
 solver dyna960 'CRASH' 
  solver command "ls971_single" 
  solver input file "taurus_mod.dyn" 
  solver check output on  
  solver compress d3plot off  
$ ------ Pre-processor -------- 
$   NO PREPROCESSOR SPECIFIED 
$ ------ Metamodeling --------- 
  solver order RBF 
  solver experiment design space_filling 
   solver update doe 
   solver alternate experiment 1 
$ ------ Job information ------ 
  solver concurrent jobs 4 
$ 
$ RESPONSES FOR SOLVER "CRASH" 
$ 
 response 'Disp' 1 0 "BinoutResponse -res_type nodout -cmp x_displacement -id 26730  -select MAX " 
$ 
$ HISTORIES FOR SOLVER "CRASH" 
$ 
 history 'XDISP' "BinoutHistory -res_type nodout  -cmp x_displacement -id 26730" 
 history 'XACCEL' "BinoutHistory -res_type nodout  -cmp x_acceleration -id 26730 -filter SAE -filter_freq 
60.0000" 
$ 
$ RESPONSE EXPRESSIONS FOR SOLVER "CRASH" 
$ 
 response 'time_to_184' expression {Lookup("XDISP(t)",184)} 
 response 'time_to_334' expression {Lookup("XDISP(t)",334)} 
 response 'time_to_max' expression {LookupMax("XDISP(t)")} 
 response 'Integral_0_184' expression {Integral("XACCEL(t)",0,time_to_184,"XDISP(t)")} 
 response 'Integral_184_334' expression {Integral("XACCEL(t)",time_to_184,time_to_334,"XDISP(t)")} 
 response 'Integral_334_max' expression {Integral("XACCEL(t)",time_to_334,time_to_max,"XDISP(t)")} 
 response 'Stage1Pulse' expression {(Integral_0_184/(-9810))*2/184} 
 response 'Stage2Pulse' expression {(Integral_184_334/(-9810))/(334-184)} 
 response 'Stage3Pulse' expression {(Integral_334_max/(-9810))/(Disp-334)} 
 
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ 
$      SOLVER "NVH" 
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ 
$ 
$ DEFINITION OF SOLVER "NVH" 
$ 
 solver dyna960 'NVH' 
  solver command "ls971_double" 
  solver input file "taurus_biw.dyn" 
  solver check file "/nexus4_1/nielen/LSOPT/___3.3___/RELEASE/TAURUS/CHECKPOINTS/NVH/AnalysisResults.1" 
  solver check output on  
  solver compress d3plot off  
$ ------ Pre-processor -------- 
$   NO PREPROCESSOR SPECIFIED 



CHAPTER 22:  EXAMPLE PROBLEMS  

382  LS-OPT Version 3 

$ ------ Metamodeling --------- 
  solver order RBF 
  solver experiment design space_filling 
   solver update doe 
   solver alternate experiment 1 
$ ------ Job information ------ 
  solver concurrent jobs 2 
$ 
$ LOCAL DESIGN VARIABLES FOR SOLVER "NVH" 
$ 
  solver variable 'cradle_csmbr' 
  solver variable 'shotgun_inner' 
  solver variable 'shotgun_outer' 
$ 
$ RESPONSES FOR SOLVER "NVH" 
$ 
 response 'Vehicle_Mass_NVH' 2204.62 0 "DynaMass 29 30 32 33 34 35 79 81 82 83 MASS" 
 response 'Frequency' 1 0 "DynaFreq 2 FREQ" 
 response 'Mode' 1 0 "DynaFreq 2 NUMBER" 
 response 'Generalized_Mass' 1 0 "DynaFreq 2 GENMASS" 
$ 
$ RESPONSE EXPRESSIONS FOR SOLVER "NVH" 
$ 
 response 'Mass_scaled' expression {Vehicle_Mass_NVH/99.078} 
 
composites 5 
$ 
$ COMPOSITE RESPONSES 
$ 
 composite 'Disp_scaled' type targeted 
  composite 'Disp_scaled' response 'Disp' 0 scale 551.27 
 composite 'Frequency_scaled' type targeted 
  composite 'Frequency_scaled' response 'Frequency' 0 scale 41.8831 
$ 
$ COMPOSITE EXPRESSIONS 
$ 
 composite 'Stage1Pulse_scaled' {Stage1Pulse/14.512408} 
 composite 'Stage2Pulse_scaled' {Stage2Pulse/17.586303} 
 composite 'Stage3Pulse_scaled' {Stage3Pulse/20.745213} 
$ 
$ OBJECTIVE FUNCTIONS 
$ 
 objectives 2 
 optimization algorithm GA 
 objective 'Disp' 0 
 objective 'Vehicle_Mass_NVH' 1 
$ 
$ CONSTRAINT DEFINITIONS 
$ 
 constraints 5 
 constraint 'Disp_scaled' 
  upper bound constraint 'Disp_scaled' 1 
 constraint 'Frequency_scaled' 
  lower bound constraint 'Frequency_scaled' 0.9881 
  upper bound constraint 'Frequency_scaled' 1.0119 
 constraint 'Stage1Pulse_scaled' 
  lower bound constraint 'Stage1Pulse_scaled' 1 
 constraint 'Stage2Pulse_scaled' 
  lower bound constraint 'Stage2Pulse_scaled' 1 
 constraint 'Stage3Pulse_scaled' 
  lower bound constraint 'Stage3Pulse_scaled' 1 
$ 
$ JOB INFO 
$ 
 concurrent jobs 4 
 iterate param design 0 
 iterate param objective 0 
 iterate param stoppingtype and 
 iterate 10 
STOP 
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22.6.4 Variable screening 
 
The plots below show the ANOVA charts for the 7 design responses. The plots are based on a single 
iteration with a linear approximation and D-optimality criterion as sampling scheme. From these plots, the 
most important subsets of variables are chosen. All the variables are kept for the NVH analysis because of 
its relatively small computational cost.  
 
xcrash = [rail_inner, rail_outer, cradle_rails, aprons]T; 
xNVH = [rail_inner, rail_outer, cradle_rails, aprons, shotgun_inner, shotgun_outer, cradle_crossmember]T. 
 
 

  
Intrusion Stage 1 Pulse 

 
Stage 2 Pulse Stage 3 Pulse 
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Frequency Mass 

 
22.6.5 Optimization history results and Pareto optimal front 
 
The figure shows the optimization history of the mass (objective function). For the purpose of comparison, 
two optimization runs were conducted, one with the full variable set and the other with the screened 
variables. Note the similarity of the minimal mass for both cases (Note: Scale of y-axis is different). The 
history of the cradle rails is also shown. The blue lines represent the upper and lower bounds of the region 
of interest for this variable. The plot (bottom right) shows the Pareto optimal front for the two objectives. 
The final two plots depict the Mass function in the [inner rail, outer rail] and [aprons, outer rail] spaces 
respectively with constraint isolines. The feasible region is green whereas the infeasible regions have 
increasingly darker shades of red as more constraints are violated. 
 

 
Optimization history of mass for full set of variables  Optimization history of mass for screened variables 



 CHAPTER 22:  EXAMPLE PROBLEMS  

LS-OPT Version 3  385 

 

Optimization history of cradle_rails variable Pareto optimal front: Mass vs. Intrusion 

  
Constraint isolines superimposed on Mass 
approximation. Feasible region in green. Darker red 
shades for increasing number of violations. Space 
shown in [inner rail; outer rail] 

Constraint isolines superimposed on Mass 
approximation. Feasible region in green. Darker red 
shades for increasing number of violations. Space 
shown in [aprons; outer rail] 

 
 
 
22.6.6 Summary of results 
 
The file reported below is the lsopt_report file which is viewable using the View→Summary GUI 
selection in the top menu bar and can also be found in the main working directory. The gradient information 
(derivatives of the responses with respect to the variables)  is also available from the file, but is omitted here 
for brevity. 
 
 
LS-OPT Version        : 3.3 
LS-OPT Revision       : 42875 
LS-OPT Version Date   : Feb 1, 2008 
 
File name             : lsopt_report 
This file created on  : Fri Feb  1 19:51:07 2008 
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Project Command File  : lsopt_db 
 
*************************************************************************** 
Problem description: 
 Taurus Full Vehicle MDO : Crash and NVH, all variables 
*************************************************************************** 
 
--------------------------------------------------------------------------- 
               N U M B E R S   O F   E A C H   E N T I T Y 
--------------------------------------------------------------------------- 
Number of design variables ..............................     7 
Number of response functions ............................    15 
Number of constraint functions ..........................     5 
Number of objective functions ...........................     2 
--------------------------------------------------------------------------- 
                   D E S I G N   V A R I A B L E   D A T A                  
--------------------------------------------------------------------------- 
 
Continuous Variables  
--------------------------------------------| 
Variable Name     Lower Bound   Upper Bound   
----------------|-------------|-------------| 
cradle_rails               1           3 
cradle_csmbr               1           3 
shotgun_inner              1         2.5 
shotgun_outer              1         2.5 
aprons                     1         2.5 
--------------------------------------------------------------------------- 
 
Discrete Variables 
------------------------------------- 
Variable Name    Discrete Values 
---------------|--------------------- 
rail_inner       1 1.25 1.5 1.75 2 2.25 2.5 2.75 3  
rail_outer       1 1.25 1.5 1.75 2 2.25 2.5 2.75 3  
---------------------------------------------------------------------------- 
 
--------------------------------------------------------------------------- 
                    O B J E C T I V E   F U N C T I O N S                   
--------------------------------------------------------------------------- 
Objective ...................... MINIMIZE 
 
-------------------------------------------- 
Objective name                   Weights 
-------------------------------------------- 
Disp                             0           
Vehicle_Mass_NVH                 1           
 
-------------------------------------------- 
 
--------------------------------------------------------------------------- 
                   C O N S T R A I N T    F U N C T I O N S                 
--------------------------------------------------------------------------- 
Constraint name                  Lower Bound Upper Bound 
--------------------------------------------------------------------------- 
Disp_scaled                      -1e+30      1           
Frequency_scaled                 0.9881      1.012       
Stage1Pulse_scaled               1           1e+30       
Stage2Pulse_scaled               1           1e+30       
Stage3Pulse_scaled               1           1e+30       
--------------------------------------------------------------------------- 
--------------------------------------------------------------------------- 
                      O P T I M I Z A T I O N   A L G O R I T H M  
--------------------------------------------------------------------------- 
 Method ............................ Sequential Response Surface Method 
 Optimization Algorithm ............ Genetic Algorithm 
--------------------------------------------------------------------------- 
 
================================================================== 
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              ------------------------------ 
              | Evaluating Starting Design | 
              |        ITERATION  1        | 
              ------------------------------ 
 
 
          C O M P U T E D  vs.  P R E D I C T E D 
          --------------------------------------- 
 
Using Metamodel of Iteration 1  
 
--------------------------------------------- 
 
 
DESIGN POINT 
------------  
Variable Name                    Lower Bound   Value    Upper Bound 
--------------------------------|-----------|----------|-----------|-------- 
cradle_rails                               1       1.93           3  
cradle_csmbr                               1       1.93           3  
shotgun_inner                              1        1.3         2.5  
shotgun_outer                              1        1.3         2.5  
rail_inner                                 1          2           3  
rail_outer                                 1        1.5           3  
aprons                                     1        1.3         2.5  
--------------------------------|-----------|----------|-----------|-------- 
 
 
RESPONSE FUNCTIONS: 
------------------  
RESPONSE                        | Computed   Predicted| 
--------------------------------|----------|----------| 
Disp                            |     551.6      552.4| 
time_to_184                     |   0.01476    0.01476| 
time_to_334                     |   0.02893    0.02883| 
time_to_max                     |   0.07095    0.06982| 
Integral_0_184                  |-1.318e+07 -1.308e+07| 
Integral_184_334                |-2.609e+07 -2.472e+07| 
Integral_334_max                |-4.407e+07 -4.539e+07| 
Stage1Pulse                     |     14.61       14.5| 
Stage2Pulse                     |     17.73       16.8| 
Stage3Pulse                     |     20.65      21.24| 
Vehicle_Mass_NVH                |     99.06      99.06| 
Frequency                       |     41.88      40.83| 
Mode                            |         2      2.022| 
Generalized_Mass                |         1     0.9825| 
Mass_scaled                     |    0.9998     0.9998| 
--------------------------------|----------|----------| 
 
COMPOSITE FUNCTIONS: 
-------------------- 
COMPOSITE NAME                  | Computed | Predicted| 
--------------------------------|----------|----------| 
Disp_scaled                     |     1.001      1.002| 
Frequency_scaled                |         1     0.9748| 
Stage1Pulse_scaled              |     1.007     0.9988| 
Stage2Pulse_scaled              |     1.008     0.9554| 
Stage3Pulse_scaled              |    0.9952      1.024| 
--------------------------------|----------|----------| 
 
 
               OBJECTIVE: 
               ---------  
Computed Value  =      99.06 
Predicted Value =      99.06 
 
 
OBJECTIVE FUNCTIONS: 
-------------------  
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OBJECTIVE NAME                  | Computed   Predicted  WT. 
--------------------------------|----------|----------|---- 
Disp                            |     551.6      552.4|   0 
Vehicle_Mass_NVH                |     99.06      99.06|   1 
--------------------------------|----------|----------|---- 
 
CONSTRAINT FUNCTIONS: 
--------------------  
CONSTRAINT NAME                 | Computed | Predicted|  Lower   |  Upper   |Viol? 
--------------------------------|----------|----------|----------|----------|----- 
Disp_scaled                     |     1.001      1.002|    -1e+30          1|YES 
Frequency_scaled                |         1     0.9748|    0.9881      1.012| 
Stage1Pulse_scaled              |     1.007     0.9988|         1      1e+30| 
Stage2Pulse_scaled              |     1.008     0.9554|         1      1e+30| 
Stage3Pulse_scaled              |    0.9952      1.024|         1      1e+30|YES 
--------------------------------|----------|----------|----------|----------|----- 
 
 
CONSTRAINT VIOLATIONS: 
---------------------  
                                |  Computed Violation | Predicted Violation | 
CONSTRAINT NAME                 |----------|----------|----------|----------| 
                                |  Lower   |  Upper   |  Lower   |  Upper   | 
--------------------------------|----------|----------|----------|----------| 
Disp_scaled                     |    -       0.0006012|    -        0.002016| 
Frequency_scaled                |    -          -     |   0.01335     -     | 
Stage1Pulse_scaled              |    -          -     |   0.00118     -     | 
Stage2Pulse_scaled              |    -          -     |   0.04461     -     | 
Stage3Pulse_scaled              |  0.004776     -     |    -          -     | 
--------------------------------|----------|----------|----------|----------| 
 
 
MAXIMUM VIOLATION: 
------------------ 
                   |         Computed          |        Predicted          | 
     Quantity      |---------------------------|---------------------------| 
                   |   Constraint      Value   |   Constraint      Value   | 
-------------------|----------------|----------|----------------|----------| 
Maximum Violation  |Stage3Pulse_scaled   0.004776|Stage2Pulse_scaled    0.04461| 
Smallest Margin    |Disp_scaled       0.0006012|Stage1Pulse_scaled    0.00118| 
-------------------|----------------|----------|----------------|----------| 
 
============================================================================= 
   E R R O R   M E A S U R E S   F O R   R E S P O N S E S 
                                                                              
     ITERATION 10 
============================================================================= 
 
----------------------------------------------------------------------------------------------------------- 
 Response Name                   |Metamodel | RMS      |RMS Error | Maximum  | Sq. Root | Sq. Root | R-Sq.  
                                 | type     | Error    |  (% of   | Residual | PRESS    | PRESS (% |        
                                 |          |          |   mean)  |          |          | of mean) |        
---------------------------------|----------|---------------------|----------|---------------------|------- 
 Disp                             RBF Net          3.53      0.658       10.7       4.44      0.826  0.967 
 time_to_184                      RBF Net      1.64e-06     0.0111   1.09e-05    6.8e-06      0.046  0.989 
 time_to_334                      RBF Net      2.81e-05     0.0964   8.69e-05   4.03e-05      0.138  0.987 
 time_to_max                      RBF Net      0.000511       0.75    0.00102   0.000734       1.08  0.945 
 Integral_0_184                   RBF Net      5.24e+04       0.38   3.12e+05    1.2e+05      0.869  0.992 
 Integral_184_334                 RBF Net      2.73e+05       1.03   7.28e+05   4.48e+05       1.69  0.985 
 Integral_334_max                 RBF Net       2.7e+05      0.629   7.12e+05   3.78e+05      0.881  0.989 
 Stage1Pulse                      RBF Net        0.0581       0.38      0.345      0.133      0.873  0.992 
 Stage2Pulse                      RBF Net         0.186       1.03      0.502      0.304       1.68  0.985 
 Stage3Pulse                      RBF Net         0.344       1.59      0.872       0.42       1.94  0.871 
 Vehicle_Mass_NVH                 RBF Net       0.00707    0.00691     0.0187    0.00743    0.00726      1 
 Frequency                        RBF Net        0.0463      0.111      0.148      0.139      0.332  0.994 
 Mode                             RBF Net          0.14       6.47      0.594      0.236       10.9  0.822 
 Generalized_Mass                 RBF Net        0.0434       4.43      0.247     0.0465       4.75  0.313 
 Mass_scaled                      RBF Net      7.14e-05    0.00691   0.000189    7.5e-05    0.00726      1 
---------------------------------|----------|---------------------|----------|---------------------|------- 
 
================================================ 
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           F I N A L   D E S I G N               
           ITERATION 11   
================================================ 
 
 
DESIGN POINT 
------------  
Variable Name                    Lower Bound   Value    Upper Bound 
--------------------------------|-----------|----------|-----------|-------- 
cradle_rails                               1      1.576           3  
cradle_csmbr                               1          1           3 Active 
shotgun_inner                              1      1.584         2.5  
shotgun_outer                              1      1.416         2.5  
rail_inner                                 1        2.5           3  
rail_outer                                 1        1.5           3  
aprons                                     1      1.054         2.5  
--------------------------------|-----------|----------|-----------|-------- 
 
RESPONSE FUNCTIONS: 
------------------  
RESPONSE                        | Computed   Predicted| 
--------------------------------|----------|----------| 
Disp                            |     537.4      540.2| 
time_to_184                     |   0.01479    0.01479| 
time_to_334                     |   0.02908    0.02904| 
time_to_max                     |   0.06765    0.06839| 
Integral_0_184                  |-1.418e+07 -1.415e+07| 
Integral_184_334                | -2.58e+07 -2.588e+07| 
Integral_334_max                | -4.32e+07  -4.32e+07| 
Stage1Pulse                     |     15.71      15.68| 
Stage2Pulse                     |     17.53      17.59| 
Stage3Pulse                     |     21.65       21.4| 
Vehicle_Mass_NVH                |     93.72      93.71| 
Frequency                       |     41.37      41.41| 
Mode                            |         2      2.008| 
Generalized_Mass                |    0.9933     0.9925| 
Mass_scaled                     |    0.9459     0.9458| 
--------------------------------|----------|----------| 
 
COMPOSITE FUNCTIONS: 
-------------------- 
COMPOSITE NAME                  | Computed | Predicted| 
--------------------------------|----------|----------| 
Disp_scaled                     |    0.9748     0.9798| 
Frequency_scaled                |    0.9878     0.9888| 
Stage1Pulse_scaled              |     1.083      1.081| 
Stage2Pulse_scaled              |     0.997          1| 
Stage3Pulse_scaled              |     1.044      1.032| 
--------------------------------|----------|----------| 
 
 
               OBJECTIVE: 
               ---------  
Computed Value  =      93.72 
Predicted Value =      93.71 
 
 
OBJECTIVE FUNCTIONS: 
-------------------  
OBJECTIVE NAME                  | Computed   Predicted  WT. 
--------------------------------|----------|----------|---- 
Disp                            |     537.4      540.2|   0 
Vehicle_Mass_NVH                |     93.72      93.71|   1 
--------------------------------|----------|----------|---- 
 
CONSTRAINT FUNCTIONS: 
--------------------  
CONSTRAINT NAME                 | Computed | Predicted|  Lower   |  Upper   |Viol? 
--------------------------------|----------|----------|----------|----------|----- 
Disp_scaled                     |    0.9748     0.9798|    -1e+30          1| 
Frequency_scaled                |    0.9878     0.9888|    0.9881      1.012|YES 
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Stage1Pulse_scaled              |     1.083      1.081|         1      1e+30| 
Stage2Pulse_scaled              |     0.997          1|         1      1e+30|YES 
Stage3Pulse_scaled              |     1.044      1.032|         1      1e+30| 
--------------------------------|----------|----------|----------|----------|----- 
 
 
CONSTRAINT VIOLATIONS: 
---------------------  
                                |  Computed Violation | Predicted Violation | 
CONSTRAINT NAME                 |----------|----------|----------|----------| 
                                |  Lower   |  Upper   |  Lower   |  Upper   | 
--------------------------------|----------|----------|----------|----------| 
Disp_scaled                     |    -          -     |    -          -     | 
Frequency_scaled                | 0.0003405     -     |    -          -     | 
Stage1Pulse_scaled              |    -          -     |    -          -     | 
Stage2Pulse_scaled              |  0.003032     -     |    -          -     | 
Stage3Pulse_scaled              |    -          -     |    -          -     | 
--------------------------------|----------|----------|----------|----------| 
 
 
MAXIMUM VIOLATION: 
------------------  
                   |         Computed          |        Predicted          | 
     Quantity      |---------------------------|---------------------------| 
                   |   Constraint      Value   |   Constraint      Value   | 
-------------------|----------------|----------|----------------|----------| 
Maximum Violation  |Stage2Pulse_scaled   0.003032|Disp_scaled               0| 
Smallest Margin    |Frequency_scaled  0.0003405|Stage2Pulse_scaled  0.0001336| 
-------------------|----------------|----------|----------------|----------| 
 
 
                           ANALYSIS COMPLETED 
 
                                            Sat Feb  2 18:33:23 2008 
 

 
22.6.7 Multi-objective optimization using Direct GA simulation 
 
Next, this MDO problem is solved to study the trade-off between mass and intrusion. The problem 
statement is given as: 
 
Minimize  Mass 
Minimize Maximum intrusion 
  
subject to 

  
 Stage 1 pulse(xcrash) > 14.51g 
 Stage 2 pulse(xcrash) > 17.59g 
 Stage 3 pulse(xcrash) > 20.75g 
 
 41.38Hz < Torsional mode frequency(xNVH) < 42.38Hz (Fully-shared variables) 

 
The problem is solved using direct GA simulations. For this problem, all seven design variables were used 
for both disciplines. The NSGA-II algorithm (MOEA) was used in conjunction with real encoding of design 
variables. Tournament selection operator (Selection), with a tournament size of two (Tourn Size), was used 
to remove individuals with low fitness values. The simulated binary crossover (Real Crossover Type) and 
mutation operators were used to create child populations. The distribution index for crossover and mutation 
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were taken as 5 (Crossover Distribution Index, Mutation Distribution Index). The trade-off files were 
generated at each generation (Restart Interval). The GA parameters are implemented as follows: 
 
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ 
$      OPTIMIZATION METHOD    
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ 
$ 
Optimization Method GA 
 
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ 
$ Genetic Algorithm Parameters 
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ 
 GA Parameter Popsize 80 
 GA Parameter Generation 100 
 GA Parameter MOEA 1 
 GA Parameter Selection 1 
 GA Parameter Tourn Size 2 
 GA Parameter Real Crossover Type 1 
 GA Parameter Real Crossover Probability 0.99 
 GA Parameter Real Crossover Distribution Index 5.0 
 GA Parameter Real Mutation Probability 0.15 
 GA Parameter Real Mut Dist Index 5.0 
 GA Parameter Restart Status 0 
 GA Parameter Restart Interval 1 
 GA Parameter Seed 854526 
 
$ 
$ COMPOSITE RESPONSES 
$ 
 composite 'Disp_scaled' type targeted 
  composite 'Disp_scaled' response 'Disp' 0 scale 551.27 
 composite 'Frequency_scaled' type targeted 
  composite 'Frequency_scaled' response 'Frequency' 0 scale 41.8831 
$ 
$ COMPOSITE EXPRESSIONS 
$ 
 composite 'Stage1Pulse_scaled' {Stage1Pulse/14.512408} 
 composite 'Stage2Pulse_scaled' {Stage2Pulse/17.586303} 
 composite 'Stage3Pulse_scaled' {Stage3Pulse/20.745213} 
$ 
$ OBJECTIVE FUNCTIONS 
$ 
 objectives 2 
 objective 'Mass_scaled' 1 
 objective 'Disp_scaled' 1 
$ 
$ CONSTRAINT DEFINITIONS 
$ 
 constraints 4 
 constraint 'Frequency_scaled' 
  lower bound constraint 'Frequency_scaled' 0.9881 
  upper bound constraint 'Frequency_scaled' 1.0119 
 constraint 'Stage1Pulse_scaled' 
  lower bound constraint 'Stage1Pulse_scaled' 1 
 constraint 'Stage2Pulse_scaled' 
  lower bound constraint 'Stage2Pulse_scaled' 1 
 constraint 'Stage3Pulse_scaled' 
  lower bound constraint 'Stage3Pulse_scaled' 1 
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ 
 

The outcome of the optimization is shown in Figure  22-34. Initial population did not have any feasible 
design but after running for 100 generations, the population resulted into 81 unique candidate Pareto optimal 
designs. These designs are shown by blue dots (connected by the line) on the left hand-side. 
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Initial population – no feasible design Final population after 100 generations 

Figure  22-34: Tradeoff between mass and scaled intrusion (displacement) – Initial population is shown on 
the left hand side and the final population is shown on the right hand side graph. The non-dominated 

solutions are shown by blue triangles (connected by a line on right hand side graph). 

The results show that the potential of improvement by using multi-objective optimization. Trade-off 
between the two objectives show that intrusion can be reduced by increasing the mass. The trade-off curve 
clearly illustrates that reduction in intrusion (from 0.922 to 0.976) might require proportionate increase in 
mass (from 0.974 to 1.14). A trade-off design (0.974, 0.976) can achieve nearly 2.5% reduction in both 
objectives. 
  
The optimal design variables corresponding to different designs on the candidate Pareto optimal front are 
shown in Figure  22-35. Quite interestingly, the variations in different design variables is fairly small. 
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Aprons  
 

Figure  22-35: Scaled intrusion (displacement) (x-axis) vs. design variables (y-axis) at final generation. 
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22.7 Knee impact with variable screening (11 variables) 
 
(Example by courtesy of Visteon and Ford Motor Company) 
 
This example has the following new features: 
 
• A sequential optimization is done using a constant region of interest 
• An independent parametric preprocessor is used 
• The minimum of two maxima is obtained in the objective (multi-criteria or multi-objective problem). 

The LFOPC metamodel optimization algorithm (the default algorithm) is used for this purpose. 
• A pre-processor is used for shape parameterization. 
 
22.7.1 FE modeling 
 
Figure  22-36 shows the finite element model of a typical automotive instrument panel (IP)  [4]. For model 
simplification and reduced per-iteration computational times, only the driver's side of the IP is used in the 
analysis, and consists of around 25,000 shell elements. Symmetry boundary conditions are assumed at the 
centerline, and to simulate a bench component "Bendix" test, body attachments are assumed fixed in all 6 
directions. Also shown in Figure  22-36 are simplified knee forms which move in a direction as determined 
from prior physical tests. As shown in the figure, this system is composed of a knee bolster (steel, plastic or 
both) that also serves as a steering column cover with a styled surface, and two energy absorption (EA) 
brackets (usually steel) attached to the cross vehicle IP structure. The brackets absorb a significant portion 
of the lower torso energy of the occupant by deforming appropriately. Sometimes, a steering column 
isolator (also known as a yoke) may be used as part of the knee bolster system to delay the wrap-around of 
the knees around the steering column. The last three components are non-visible and hence their shape can 
be optimized.  The 11 design variables are shown in Figure  22-37. The three gauges and the yoke cross-
sectional radius are also considered in a separate sizing (4 variable) optimization. 
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Figure  22-36: Typical instrument panel prepared for a "Bendix" component test 
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Figure  22-37: Typical major components of a knee bolster system and definition of design variables 
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The simulation is carried out for a 40 ms duration by which time the knees have been brought to rest.  It 
may be mentioned here that the Bendix component test is used mainly for knee bolster system development; 
for certification purposes, a different physical test representative of the full vehicle is performed. Since the 
simulation used herein is at a subsystem level, the results reported here may be used mainly for illustration 
purposes. 
 
22.7.2 Design formulation 
 
The optimization problem is defined as follows: 
 
Minimize     ( max (Knee_Force_Left, Knee_Force_Right) ) 
Subject to 

Left Knee intrusion < 115mm
Right Knee intrusion < 115mm
Yoke displacement <  85mm 

 
Minimization over both knee forces is achieved by constraining them to impossibly low values. The LFOPC 
optimization algorithm must be selected since it will therefore always try to minimize the maximum knee 
force. The constraints other than the knee forces need to be set to “strict” so that if violations occur, only the 
knee forces will be violated. The “Constraints” panel of the GUI is shown below. 
 

 
 
 
The knee forces have been filtered, SAE 60 Hz, to improve the approximation accuracy. 
 
22.7.3 Input preparation 
 
Truegrid is used to parameterize the geometry. The section of the Truegrid input file (s7.tg) where the 
design variables are substituted, is shown below. 
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para 
  w1 <<L_Flange_Width>> c Left EA flange width 
  w2 <<R_Flange_Width>> c Right EA flange width 
  thick1 <<L_Bracket_Gauge>> c Left bracket gauge 
  thick2 <<R_Bracket_Gauge>> c Right bracket gauge 
  thick3 <<Bolster_gauge>> c Knee bolster gauge 
  f1  <<T_Flange_Depth>> c Left EA Depth Top 
  f2  <<F_Flange_Depth>> c Left EA Depth Front 
  f3  <<B_Flange_Depth>> c Left EA Depth Bottom 
  f4  <<I_Flange_Width>> c Left EA Inner Flange Width 
  r1  <<Yoke_Radius>> c Yoke bar radius 
  r2  <<R_Bracket_Radius>> c Oblong hole radius 
 
The LS-OPT input file is shown below for the 11-variable shape optimization case: 
 
"Knee impact with 11 variables" 
$ Created on Tue Feb  5 15:43:40 2008 
solvers 1 
responses 7 
$ 
$ NO HISTORIES ARE DEFINED 
$ 
$ 
$ DESIGN VARIABLES 
$ 
variables 11 
 Variable 'L_Bracket_Gauge' 1.1 
  Lower bound variable 'L_Bracket_Gauge' 0.7 
  Upper bound variable 'L_Bracket_Gauge' 3 
 Variable 'T_Flange_Depth' 28.3 
  Lower bound variable 'T_Flange_Depth' 20 
  Upper bound variable 'T_Flange_Depth' 50 
 Variable 'F_Flange_Depth' 27.5 
  Lower bound variable 'F_Flange_Depth' 20 
  Upper bound variable 'F_Flange_Depth' 50 
 Variable 'B_Flange_Depth' 22.3 
  Lower bound variable 'B_Flange_Depth' 15 
  Upper bound variable 'B_Flange_Depth' 50 
 Variable 'I_Flange_Width' 7 
  Lower bound variable 'I_Flange_Width' 5 
  Upper bound variable 'I_Flange_Width' 25 
 Variable 'L_Flange_Width' 32 
  Lower bound variable 'L_Flange_Width' 20 
  Upper bound variable 'L_Flange_Width' 50 
 Variable 'R_Bracket_Gauge' 1.1 
  Lower bound variable 'R_Bracket_Gauge' 0.7 
  Upper bound variable 'R_Bracket_Gauge' 3 
 Variable 'R_Flange_Width' 32 
  Lower bound variable 'R_Flange_Width' 20 
  Upper bound variable 'R_Flange_Width' 50 
 Variable 'R_Bracket_Radius' 15 
  Lower bound variable 'R_Bracket_Radius' 10 
  Upper bound variable 'R_Bracket_Radius' 25 
 Variable 'Bolster_gauge' 3.5 
  Lower bound variable 'Bolster_gauge' 1 
  Upper bound variable 'Bolster_gauge' 6 
 Variable 'Yoke_Radius' 4 
  Lower bound variable 'Yoke_Radius' 2 
  Upper bound variable 'Yoke_Radius' 8 
 
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ 
$      OPTIMIZATION METHOD    
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ 
$ 
Optimization Method SRSM 
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$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ 
$      SOLVER "1" 
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ 
$ 
$ DEFINITION OF SOLVER "1" 
$ 
 solver dyna960 '1' 
  solver command "ls971_single" 
  solver input file "ford7.k" 
  solver check output off  
  solver compress d3plot off  
$ ------ Pre-processor -------- 
  prepro truegrid 
  prepro command "cp ../../curves .; cp ../../node .; cp ../../elem .; cp ../../elem-bar .; /truegrid/tg" 
  prepro input file "s7.tg" 
$ ------ Metamodeling --------- 
  solver order RBF 
  solver experiment design space_filling 
   solver update doe 
   solver alternate experiment 1 
$ ------ Job information ------ 
  solver concurrent jobs 4 
$ 
$ RESPONSES FOR SOLVER "1" 
$ 
 response 'L_Knee_Force' 0.000153846 0 "BinoutResponse -res_type RCForc -cmp force -invariant MAGNITUDE   
        -id 1  -side MASTER -select MAX -start_time 0.0000 -filter SAE  -filter_freq 60.0000" 
 response 'R_Knee_Force' 0.000153846 0 "BinoutResponse -res_type RCForc -cmp force -invariant MAGNITUDE   
        -id 2  -side MASTER -select MAX -start_time 0.0000 -filter SAE  -filter_freq 60.0000" 
 response 'L_Knee_Disp' 0.00869565 0 "BinoutResponse -res_type Nodout  -cmp displacement  
        -invariant MAGNITUDE -id 24897 -select MAX -start_time 0.0000" 
 response 'R_Knee_Disp' 0.00869565 0 "BinoutResponse -res_type Nodout  -cmp displacement  
        -invariant MAGNITUDE -id 25337 -select MAX -start_time 0.0000" 
 response 'Yoke_Disp' 0.0117647 0 "BinoutResponse -res_type Nodout  -cmp displacement  
        -invariant MAGNITUDE -id 28816 -select MAX -start_time 0.0000" 
 response 'Kinetic_Energy' 6.49351e-06 0 "BinoutResponse -res_type GLStat -cmp kinetic_energy -select TIME " 
 response 'Mass' 638.162 0 "DynaMass 7 8 48 62 MASS" 
 
$ 
$ OBJECTIVE FUNCTIONS 
$ 
 objectives 1 
 objective 'Mass' 1 
$ 
$ CONSTRAINT DEFINITIONS 
$ 
 constraints 6 
 constraint 'L_Knee_Force' 
  upper bound constraint 'L_Knee_Force' 0.5 
 constraint 'R_Knee_Force' 
  upper bound constraint 'R_Knee_Force' 0.5 
$ 
$ Strict constraints 
$ 
 constraint 'L_Knee_Disp' 
  strict 
  upper bound constraint 'L_Knee_Disp' 1 
 constraint 'R_Knee_Disp' 
  slack 
  strict 
  upper bound constraint 'R_Knee_Disp' 1 
 constraint 'Yoke_Disp' 
  slack 
  strict 
  upper bound constraint 'Yoke_Disp' 1 
 constraint 'Kinetic_Energy' 
  slack 
  strict 
  upper bound constraint 'Kinetic_Energy' 1 
$ 
$ JOB INFO 
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$ 
 concurrent jobs 4 
 iterate param design 0.01 
 iterate param objective 0.01 
$ 
$ Switch off domain reduction 
$ 
 iterate param adapt off iteration 1 
 iterate param stoppingtype and 
 iterate 10 
STOP 
 
 

22.7.4 Variable screening 
 
A single iteration is done with a linear approximation to generate the ANOVA charts. The charts are shown 
in the figure below. Note the large confidence intervals (low confidence levels) on some of the responses, 
especially the Left Knee Force and Yoke Displacement.  
 
 

 
Left Knee Force Right Knee Force 

 
Left Knee Intrusion Right Knee Intrusion 
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Yoke displacement Kinetic Energy 

 

Mass  
 
The variables chosen from the charts are: 
 
x=[L_Bracket_Gauge,T_Flange_Depth,R_Bracket_Gauge,R_Flange_Width,Bolster_gauge,Yoke_Radius]T; 
 
The changes in the input file are as follows: 
 
variables 6 
 Variable 'L_Bracket_Gauge' 1.1 
  Lower bound variable 'L_Bracket_Gauge' 0.7 
  Upper bound variable 'L_Bracket_Gauge' 3 
 Variable 'T_Flange_Depth' 28.3 
  Lower bound variable 'T_Flange_Depth' 20 
  Upper bound variable 'T_Flange_Depth' 50 
 Variable 'R_Bracket_Gauge' 1.1 
  Lower bound variable 'R_Bracket_Gauge' 0.7 
  Upper bound variable 'R_Bracket_Gauge' 3 
 Variable 'R_Flange_Width' 32 
  Lower bound variable 'R_Flange_Width' 20 
  Upper bound variable 'R_Flange_Width' 50 
 Variable 'Bolster_gauge' 3.5 
  Lower bound variable 'Bolster_gauge' 1 
  Upper bound variable 'Bolster_gauge' 6 
 Variable 'Yoke_Radius' 4 
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  Lower bound variable 'Yoke_Radius' 2 
  Upper bound variable 'Yoke_Radius' 8 
$ 
$ CONSTANTS 
$ 
constants 5 
 Constant 'F_Flange_Depth' 27.5 
 Constant 'B_Flange_Depth' 22.3 
 Constant 'I_Flange_Width' 7 
 Constant 'L_Flange_Width' 32 
 Constant 'R_Bracket_Radius' 15 
 
 
22.7.5 Optimization strategy 
 
In contrast to the strategy of the full vehicle example, a sequential strategy in which the region of interest is 
kept constant, is chosen. The reader is also referred to  [5] for a discussion of the accuracy and purpose of the 
various sequential sampling strategies available in LS-OPT. LFOPC (the default algorithm) is chosen as the 
core solver because of the requirement to minimize the maximum knee force. 
 
22.7.6 Optimization history results 
 
The plots below show optimization history  and accuracy as well as a plot of the metamodel in a 2-
dimensional subspace. Note the steep gradient of the left knee force with respect to the Left Bracket Gauge. 
A contour plot shows the constraint isolines superimposed on the Left Knee Force approximation. Note that 
for this example, there are no feasible regions, since the problem formulation attempts to minimize the 
maximum constraint violation with respect to both the knee force targets (= 0.5). The darker the shade of 
red, the more constraints are violated. 
 

Optimization history of Maximum Constraint 
Violation Optimization history of Left Knee Force 
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Optimization history of Right Knee Force 

Constraint isolines (green) superimposed on 
contoured (in black) Left Knee Force in the space: 
[Left Bracket Gauge; Right Bracket Gauge]. Lightest 
shade is most feasible 

 

 

Left Knee Force: Computed values vs. values 
predicted from metamodel. Optimum shown in green.  

 
 
22.7.7 Summary of results 
 
The following is an edited version of the lsopt_report file (also viewable by selecting 
View→Summary). 
 
 
Continuous Variables  
--------------------------------------------| 
Variable Name     Lower Bound   Upper Bound   
----------------|-------------|-------------| 
L_Bracket_Gauge          0.7           3 
T_Flange_Depth            20          50 
R_Bracket_Gauge          0.7           3 
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R_Flange_Width            20          50 
Bolster_gauge              1           6 
Yoke_Radius                2           8 
--------------------------------------------------------------------------- 
 
--------------------------------------------------------------------------- 
                    O B J E C T I V E   F U N C T I O N S                   
--------------------------------------------------------------------------- 
Objective ...................... MINIMIZE 
 
-------------------------------------------- 
Objective name                   Weights 
-------------------------------------------- 
Mass                             1           
 
-------------------------------------------- 
 
--------------------------------------------------------------------------- 
                   C O N S T R A I N T    F U N C T I O N S                 
--------------------------------------------------------------------------- 
Constraint name                  Lower Bound                  Upper Bound 
--------------------------------------------------------------------------- 
L_Knee_Force                     -1e+30      0.5         
R_Knee_Force                     -1e+30      0.5         
L_Knee_Disp                      -1e+30      1           
R_Knee_Disp                      -1e+30      1           
Yoke_Disp                        -1e+30      1           
Kinetic_Energy                   -1e+30      1           
--------------------------------------------------------------------------- 
--------------------------------------------------------------------------- 
                      O P T I M I Z A T I O N   A L G O R I T H M  
--------------------------------------------------------------------------- 
 Method ............................ Sequential Response Surface Method 
 Optimization Algorithm ............ LFOPC 
--------------------------------------------------------------------------- 
 
================================================================== 
 
              ------------------------------ 
              | Evaluating Starting Design | 
              |        ITERATION  1        | 
              ------------------------------ 
 
 
          C O M P U T E D  vs.  P R E D I C T E D 
          --------------------------------------- 
 
Using Metamodel of Iteration 1  
 
--------------------------------------------- 
DESIGN POINT 
------------  
Variable Name                    Lower Bound   Value    Upper Bound 
--------------------------------|-----------|----------|-----------|-------- 
L_Bracket_Gauge                          0.7        1.1           3  
T_Flange_Depth                            20       28.3          50  
R_Bracket_Gauge                          0.7        1.1           3  
R_Flange_Width                            20         32          50  
Bolster_gauge                              1        3.5           6  
Yoke_Radius                                2          4           8  
--------------------------------|-----------|----------|-----------|-------- 
 
               OBJECTIVE: 
               ---------  
Computed Value  =     0.8093 
Predicted Value =     0.8222 
 
 
OBJECTIVE FUNCTIONS: 
-------------------  
OBJECTIVE NAME                  | Computed   Predicted  WT. 
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--------------------------------|----------|----------|---- 
Mass                            |    0.8093     0.8222|   1 
--------------------------------|----------|----------|---- 
 
CONSTRAINT FUNCTIONS: 
--------------------  
CONSTRAINT NAME                 | Computed | Predicted|  Lower   |  Upper   |Viol? 
--------------------------------|----------|----------|----------|----------|----- 
L_Knee_Force                    |     1.039      1.106|    -1e+30        0.5|YES 
R_Knee_Force                    |     1.361      1.249|    -1e+30        0.5|YES 
L_Knee_Disp                     |    0.8555     0.8583|    -1e+30          1| 
R_Knee_Disp                     |    0.8431     0.8631|    -1e+30          1| 
Yoke_Disp                       |    0.4511     0.7248|    -1e+30          1| 
Kinetic_Energy                  |    0.3733     0.3761|    -1e+30          1| 
--------------------------------|----------|----------|----------|----------|----- 
 
CONSTRAINT VIOLATIONS: 
---------------------  
                                |  Computed Violation | Predicted Violation | 
CONSTRAINT NAME                 |----------|----------|----------|----------| 
                                |  Lower   |  Upper   |  Lower   |  Upper   | 
--------------------------------|----------|----------|----------|----------| 
L_Knee_Force                    |    -          0.5391|    -          0.6059| 
R_Knee_Force                    |    -           0.861|    -          0.7494| 
L_Knee_Disp                     |    -          -     |    -          -     | 
R_Knee_Disp                     |    -          -     |    -          -     | 
Yoke_Disp                       |    -          -     |    -          -     | 
Kinetic_Energy                  |    -          -     |    -          -     | 
--------------------------------|----------|----------|----------|----------| 
 
MAXIMUM VIOLATION: 
------------------ 
                   |         Computed          |        Predicted          | 
     Quantity      |---------------------------|---------------------------| 
                   |   Constraint      Value   |   Constraint      Value   | 
-------------------|----------------|----------|----------------|----------| 
Maximum Violation  |R_Knee_Force          0.861|R_Knee_Force         0.7494| 
Smallest Margin    |L_Knee_Disp          0.1445|R_Knee_Disp          0.1369| 
-------------------|----------------|----------|----------------|----------| 
 
============================================================================= 
   E R R O R   M E A S U R E S   F O R   R E S P O N S E S 
                                                                              
     ITERATION 10 
============================================================================= 
 
----------------------------------------------------------------------------------------------------------- 
 Response Name                   |Metamodel | RMS      |RMS Error | Maximum  | Sq. Root | Sq. Root | R-Sq.  
                                 | type     | Error    |  (% of   | Residual | PRESS    | PRESS (% |        
                                 |          |          |   mean)  |          |          | of mean) |        
---------------------------------|----------|---------------------|----------|---------------------|------- 
 L_Knee_Force                     RBF Net        0.0641       4.74      0.156     0.0995       7.35  0.922 
 R_Knee_Force                     RBF Net        0.0264          2     0.0677     0.0571       4.32  0.967 
 L_Knee_Disp                      RBF Net        0.0163       1.97     0.0474     0.0233       2.81  0.914 
 R_Knee_Disp                      RBF Net         0.012       1.56     0.0416     0.0179       2.33  0.986 
 Yoke_Disp                        RBF Net         0.162       24.3      0.701      0.261       39.2  0.634 
 Kinetic_Energy                   RBF Net       0.00938       2.36     0.0362     0.0433       10.9  0.927 
 Mass                             RBF Net        0.0032      0.291    0.00798    0.00477      0.434  0.999 
---------------------------------|----------|---------------------|----------|---------------------|------- 
 
================================================ 
           F I N A L   D E S I G N               
           ITERATION 11   
================================================ 
 
 
DESIGN POINT 
------------  
Variable Name                    Lower Bound   Value    Upper Bound 
--------------------------------|-----------|----------|-----------|-------- 
L_Bracket_Gauge                          0.7      1.144           3  
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T_Flange_Depth                            20      39.54          50  
R_Bracket_Gauge                          0.7        0.7           3 Active 
R_Flange_Width                            20      39.38          50  
Bolster_gauge                              1      1.078           6  
Yoke_Radius                                2      4.427           8  
--------------------------------|-----------|----------|-----------|-------- 
 
               OBJECTIVE: 
               ---------  
Computed Value  =     0.5272 
Predicted Value =     0.5291 
 
 
OBJECTIVE FUNCTIONS: 
-------------------  
OBJECTIVE NAME                  | Computed   Predicted  WT. 
--------------------------------|----------|----------|---- 
Mass                            |    0.5272     0.5291|   1 
--------------------------------|----------|----------|---- 
 
CONSTRAINT FUNCTIONS: 
--------------------  
CONSTRAINT NAME                 | Computed | Predicted|  Lower   |  Upper   |Viol? 
--------------------------------|----------|----------|----------|----------|----- 
L_Knee_Force                    |    0.9672     0.9805|    -1e+30        0.5|YES 
R_Knee_Force                    |    0.9505     0.9805|    -1e+30        0.5|YES 
L_Knee_Disp                     |     1.002     0.9451|    -1e+30          1| 
R_Knee_Disp                     |     1.003          1|    -1e+30          1|YES 
Yoke_Disp                       |    0.5018     0.5661|    -1e+30          1| 
Kinetic_Energy                  |    0.3676     0.3765|    -1e+30          1| 
--------------------------------|----------|----------|----------|----------|----- 
 
CONSTRAINT VIOLATIONS: 
---------------------  
                                |  Computed Violation | Predicted Violation | 
CONSTRAINT NAME                 |----------|----------|----------|----------| 
                                |  Lower   |  Upper   |  Lower   |  Upper   | 
--------------------------------|----------|----------|----------|----------| 
L_Knee_Force                    |    -          0.4672|    -          0.4805| 
R_Knee_Force                    |    -          0.4505|    -          0.4805| 
L_Knee_Disp                     |    -        0.001601|    -          -     | 
R_Knee_Disp                     |    -        0.002817|    -       2.899e-06| 
Yoke_Disp                       |    -          -     |    -          -     | 
Kinetic_Energy                  |    -          -     |    -          -     | 
--------------------------------|----------|----------|----------|----------| 
 
MAXIMUM VIOLATION: 
------------------  
                   |         Computed          |        Predicted          | 
     Quantity      |---------------------------|---------------------------| 
                   |   Constraint      Value   |   Constraint      Value   | 
-------------------|----------------|----------|----------------|----------| 
Maximum Violation  |L_Knee_Force         0.4672|R_Knee_Force         0.4805| 
Smallest Margin    |L_Knee_Disp        0.001601|R_Knee_Disp       2.899e-06| 
-------------------|----------------|----------|----------------|----------| 
 
 
                           ANALYSIS COMPLETED 
 
                                            Wed Feb  6 02:59:06 2008 

 
22.8 Optimization with analytical design sensitivities 
 
This example demonstrates how analytical gradients (Section  13.8) provided by a solver can be used for 
optimization using the SLP algorithm and the domain reduction scheme  [5] (Section  4.6). The solver, a Perl 
program is shown below, followed by the command file for optimization. In this example the input 
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variables are read from the file: XPoint placed in the run directory by LS-OPT. The input variables can 
also be read by defining this file as an input file and using the <<variable_name>> format to label the 
variable locations for substitution. Note that each response requires a unique Gradient file. 
 
Solver program: 
 
# Open output files for response results 
# 
open(FOUT,">fsol"); 
open(G1OUT,">g1sol"); 
open(G2OUT,">g2sol"); 
# 
# Output files for gradients 
# 
open(DF,">Gradf"); 
open(DG1,">Gradg1"); 
open(DG2,">Gradg2"); 
# 
# Open the input file "XPoint" (automatically  
# placed by LS-OPT in the run directory) 
# 
open(X,"<XPoint"); 
# 
# Compute results and write to the files 
# (i.e. conduct the simulation) 
# 
while (<X>) { 
   ($x1,$x2) = split; 
} 
# 
print FOUT  ($x1*$x1) + (4*($x2-0.5)*($x2-0.5)),"\n"; 
# Derivative of f(x1,x2) 
#----------------------- 
print DF    (2*$x1)," ";          # df/dx1 
print DF    (8*($x2-0.5)),"\n";   # df/dx2 
# 
print G1OUT $x1 + $x2,"\n"; 
# Derivative of g1(x1,x2) 
#------------------------ 
print DG1 1," "; 
print DG1 1,"\n"; 
# 
print G2OUT (-2*$x1) + $x2,"\n"; 
# Derivative of g2(x1,x2) 
#------------------------ 
print DG2 -2," "; 
print DG2 1,"\n"; 
# 
# Signal normal termination 
# 
print "N o r m a l\n"; 
 
Command file: 
 
"Example 2b: QP problem (analytical sensitivity analysis)" 
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solvers 1 
responses 3 
$ 
$ DESIGN VARIABLES 
$ 
variables 2 
 Variable 'x1' 1 
  Lower bound variable 'x1' -3 
  Upper bound variable 'x1' 3 
  Range 'x1' 1 
 Variable 'x2' 1 
  Lower bound variable 'x2' 0 
  Upper bound variable 'x2' 2 
  Range 'x2' 1 
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ 
$      SOLVER "1" 
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ 
solver own '1' 
  solver command "/home/LSOPT_EXE/perl ../../ex2" 
  solver experimental design analytical_DSA 
$ 
$ RESPONSES FOR SOLVER "1" 
$ The Gradf, Gradg1 and Gradg2 files are individually copied to "Gradient" 
 response 'f' 1 0 "cp Gradf Gradient; cat fsol" 
 response 'g1' 1 0 "cp Gradg1 Gradient; cat g1sol" 
 response 'g2' 1 0 "cp Gradg2 Gradient; cat g2sol" 
$ 
$ OBJECTIVE FUNCTIONS 
$ 
 objectives 1 
 maximize 
 objective 'f' 1 
$ 
$ CONSTRAINT DEFINITIONS 
$ 
 constraints 2 
 constraint 'g1' 
  upper bound constraint 'g1' 1 
 constraint 'g2' 
  upper bound constraint 'g2' 2 
$ 
$ JOB INFO 
$ 
 iterate param design 0.01 
 iterate param objective 0.01 
 iterate param stoppingtype and 
 iterate 5 
STOP 
Typical ″Gradient″ file (e.g. for f): 
 
1.8000000000 –3.20000000000 
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The optimization results are shown in the plots below. An iteration represents a single simulation. The dots 
represent the computed results while the solid line represents a linear approximation constructed from the 
gradient information of the previous point. 
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22.9 Probabilistic Analysis 
 
22.9.1 Overview 
This example has the following features: 
• Probabilistic analysis 
• Monte Carlo analysis 
• Monte Carlo analysis using a metamodel 
• Bifurcations analysis 
 
 
22.9.2 Problem description 
A symmetric short crush tube impacted by a moving wall as shown in the figure is considered. The design 
criterion is the intrusion of the wall into the space initially occupied by the tube (alternatively, how much 
the structure is shortened by the impact with the wall). 

 

 

Figure  22-38: Tube impact 
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Both the shell thickness and the yield strength of the structure follow a probabilistic distribution. The shell 
thickness is normally distributed around a value of 1.0 with a standard deviation of 5% while the yield 
strength is normally distributed around a value scaled to 1.0 with a standard deviation of 10%. 

The nominal design has an intrusion of 144.4 units. The probability of the intrusion being greater than 150 
units is computed. The best-known results are obtained using a Monte Carlo analysis of 1500 runs. The 
problem is analyzed using a Monte-Carlo evaluation of 60 runs and a quadratic response surface build using 
a 3k experimental design. The results from the different methods are close to each other as can be seen in the 
following table. 
 

Response Monte Carlo 
1500 runs 

Monte Carlo 
60 runs 

Response Surface
9 runs 

Average Intrusion 141.3 141.8 141.4 
Intrusion Standard Deviation 15.8 15.2 15.0 
Probability of Intrusion > 150 0.32 0.33 0.29 

 
Using the response surface, the derivatives of the intrusions with respect to the design variables are 
computed as given in the following table. 
 

Variable Intrusion derivative 
Shell Thickness 208 
Yield Strength 107 

 
The quadratic response surface also allows the investigation of the dependence of the response variation on 
each design variable variation. The values of the intrusion standard deviation given in the following table 
are computed considering the variable as the only source of variation in the structure (the variation of the 
other design variables are set to zero). 
 

Source of variation Intrusion Standard Deviation 
Shell Thickness 10.4 
Yield Strength 10.7 

 
The details of the analyses are given the following subsections. 
 
 
 
22.9.3 Monte Carlo evaluation 
The probabilistic variation is described by specifying statistical distributions and assigning the statistical 
distributions to noise variables. 
 
"Tube Crush Monte Carlo " 
$ Created on Tue Apr  1 11:26:07 2003 
solvers 1 
$ 
distribution 2 
 distribution 't' NORMAL 1.0 0.05 
 distribution 'y' NORMAL 1.0 0.10 



CHAPTER 22:  EXAMPLE PROBLEMS  

412  LS-OPT Version 3 

$ 
$ DESIGN VARIABLES 
$ 
variables 2 
 noise variable 'T1' distribution 't' 
 noise variable 'YS' distribution 'y' 
$ 
$ DEFINITION OF SOLVER "SOLVER_1" 
$ 
 solver dyna960 'SOLVER_1' 
  solver command "ls970.single" 
  solver input file "tube.k" 
  solver experiment design lhd centralpoint 
  solver number experiments 60 
$ 
$ HISTORIES FOR SOLVER "SOLVER_1" 
$ 
histories 1 
 history 'NHist' "BinoutHistory -res_type nodout -cmp z_displacement -id 486" 
$ 
$ RESPONSES FOR SOLVER "SOLVER_1" 
$ 
responses 2 
 response 'NodDisp' 1 0 "BinoutResponse -res_type nodout -cmp z_displacement -id 486  
-select MIN " 
 response 'DispT' {LookupMin("NHist(t)")} 
$ 
$ 
$  
 constraints 1 
  constraint 'NodDisp' 
  lower bound constraint 'NodDisp' -150 
$ 
$ JOB INFO 
$ 
 analyze monte carlo 
STOP 
 
The LS-OPT output: 
 
 
############################################################### 
Direct Monte Carlo simulation considering 2 stochastic variables. 
############################################################### 
 
 
##################################################### 
STATISTICS OF VARIABLES 
##################################################### 
 
Variable 'T1' 
Distribution Information 
------------------------ 
Number of points   :     60 
Mean Value         :      1 
Standard Deviation : 0.04948 



 CHAPTER 22:  EXAMPLE PROBLEMS  

LS-OPT Version 3  413 

Coef of Variation  : 0.04948 
Maximum Value      :   1.12 
Minimum Value      : 0.8803 
 
 
Variable 'YS' 
Distribution Information 
------------------------ 
Number of points   :     60 
Mean Value         :      1 
Standard Deviation : 0.09895 
Coef of Variation  : 0.09895 
Maximum Value      :  1.239 
Minimum Value      : 0.7606 
 
 
##################################################### 
STATISTICS OF RESPONSES 
##################################################### 
 
Response 'NodDisp' 
Distribution Information 
------------------------ 
Number of points   :     60 
Mean Value         : -141.8 
Standard Deviation :  15.21 
Coef of Variation  : 0.1073 
Maximum Value      : -102.3 
Minimum Value      : -168.9 
 
 
 
Response 'DispT' 
Distribution Information 
------------------------ 
Number of points   :     60 
Mean Value         :  7.726 
Standard Deviation : 0.6055 
Coef of Variation  : 0.07837 
Maximum Value      :    8.4 
Minimum Value      :    5.5 
 
 
 
##################################################### 
STATISTICS OF COMPOSITES 
##################################################### 
 
 
##################################################### 
STATISTICS OF CONSTRAINTS 
##################################################### 
 
 
Constraint 'NodDisp' 
Distribution Information 
------------------------ 
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Number of points   :     60 
Mean Value         : -141.8 
Standard Deviation :  15.21 
Coef of Variation  : 0.1073 
Maximum Value      : -102.3 
Minimum Value      : -168.9 
 
Lower Bound:  
------------  
 Bound ....................................   -150 
 Evaluations exceeding this bound .........     20 
 Probability of exceeding bound ........... 0.3333 
 Confidence Interval on Probability. 
  Standard Deviation of Prediction Error: 0.06086 
  Lower Bound | Probability | Higher Bound  
       0.2116 |      0.3333 |      0.455 
  Confidence Interval of 95% assuming Normal Distribution 
  Confidence Interval of 75% using Tchebysheff's Theorem 
 
 
 
Reliability Assuming Normal Distribution 
======================================== 
Lower Bound:  
------------  
 Bound ............................   -150 
 Probability of exceeding Bound ... 0.2956 
 Reliability Index (Beta) ......... 0.5372 
 
 
 
                           ANALYSIS COMPLETED 
 

22.9.4 Monte Carlo using metamodel 
The bounds on the design variables are set to be two standard distributions away from the mean (the default 
for noise variables). Noise variables are not used because of the need to have more control over the variable 
bounds — specifically we want to change the standard deviation of some variables without affecting the 
variable bounds (the metamodel is computed scaled with respect to the upper and lower bounds on the 
variables). 
 
The command file for using a metamodel is:  
$  
"Tube Crush Metamodel Monte Carlo" 
$ Created on Tue Apr  1 11:26:07 2003 
solvers 1 
$ 
distribution 2 
 distribution 't' NORMAL 1.0 0.05 
 distribution 'y' NORMAL 1.0 0.10 
$ 
$ DESIGN VARIABLES 
$ 
variables 2 
 variable 'T1' 1.0 
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  upper bound variable 'T1' 1.1 
  lower bound variable 'T1' 0.9 
  variable 'T1' distribution 't' 
 variable 'YS' 1.0 
  upper bound variable 'YS'  1.2 
  lower bound variable 'YS'  0.8 
  variable 'YS' distribution 'y' 
$ 
$ DEFINITION OF SOLVER "SOLVER_1" 
$ 
 solver dyna960 'SOLVER_1' 
  solver command "ls970.single" 
  solver input file "tube.k" 
  solver experiment design 3toK 
  solver order quadratic 
$ 
$ HISTORIES FOR SOLVER "SOLVER_1" 
$ 
histories 1 
 history 'NHist' "BinoutHistory -res_type nodout -cmp z_displacement -id 486" 
$ 
$ RESPONSES FOR SOLVER "SOLVER_1" 
$ 
responses 2 
 response 'NodDisp' 1 0 "BinoutResponse -res_type nodout -cmp z_displacement -id 486 -
select MIN" 
 response 'DispT' {LookupMin("NHist(t)")} 
$ 
$ 
$  
 constraints 1 
  constraint 'NodDisp' 
  lower bound constraint 'NodDisp' -150.0 
$ 
$ JOB INFO 
$ 
 analyze metamodel monte carlo 
STOP 
 
 
 
The accuracy of the response surface is of interest: 
 
Approximating Response 'NodDisp' (ITERATION 1) 
---------------------------------------------------------------- 
Polynomial approximation: using 9 points 
 
          Global error parameters of response surface 
          ------------------------------------------- 
Quadratic Function Approximation: 
--------------------------------- 
Mean response value           =  -142.0087 
 
RMS error                     =     2.0840 (1.47%) 
Maximum Residual              =     3.3633 (2.37%) 
Average Error                 =     1.6430 (1.16%) 



CHAPTER 22:  EXAMPLE PROBLEMS  

416  LS-OPT Version 3 

Square Root PRESS Residual    =     6.2856 (4.43%) 
Variance                      =    13.0296 
R^2                           =     0.9928 
R^2 (adjusted)                =     0.9856 
R^2 (prediction)              =     0.9346 
The probabilistic evaluation results: 
 
 
############################################################### 
Monte Carlo simulation considering 2 stochastic variables. 
Computed using 1000000 simulations 
############################################################### 
 
 
 
-------------------------------------------------------------- 
Results for reliability analysis using approximate functions 
-------------------------------------------------------------- 
 
 
##################################################### 
STATISTICS OF VARIABLES 
##################################################### 
 
 
Variable 'T1' 
Distribution Information 
------------------------ 
Number of points   : 1000000 
Mean Value         :      1 
Standard Deviation : 0.04997 
Coef of Variation  : 0.04997 
Maximum Value      :  1.227 
Minimum Value      : 0.7505 
 
 
 
Variable 'YS' 
Distribution Information 
------------------------ 
Number of points   : 1000000 
Mean Value         :      1 
Standard Deviation : 0.09994 
Coef of Variation  : 0.09994 
Maximum Value      :  1.472 
Minimum Value      : 0.5187 
 
 
 
##################################################### 
STATISTICS OF RESPONSES 
##################################################### 
Response 'NodDisp' 
Distribution Information 
------------------------ 
Number of points   : 1000000 
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Mean Value         : -141.4 
Standard Deviation :  14.95 
Coef of Variation  : 0.1058 
Maximum Value      :  -68.5 
Minimum Value      : -206.3 
Response 'DispT' 
Distribution Information 
------------------------ 
Number of points   : 1000000 
Mean Value         :   7.68 
Standard Deviation :  0.546 
Coef of Variation  : 0.0711 
Maximum Value      :  9.267 
Minimum Value      :  2.565 
 
 
##################################################### 
STATISTICS OF COMPOSITES 
##################################################### 
 
 
##################################################### 
STATISTICS OF CONSTRAINTS 
##################################################### 
 
 
Constraint 'NodDisp' 
Distribution Information 
------------------------ 
Number of points   : 1000000 
Mean Value         : -141.4 
Standard Deviation :  14.95 
Coef of Variation  : 0.1058 
Maximum Value      :  -68.5 
Minimum Value      : -206.3 
 
Lower Bound:  
------------  
 Bound ....................................   -150 
 Evaluations exceeding this bound ......... 285347 
 Probability of exceeding bound ........... 0.2853 
 Confidence Interval on Probability. 
  Standard Deviation of Prediction Error: 0.0004516 
  Lower Bound | Probability | Higher Bound  
       0.2844 |      0.2853 |     0.2863 
  Confidence Interval of 95% assuming Normal Distribution 
  Confidence Interval of 75% using Tchebysheff's Theorem 
 
 
 
                           ANALYSIS COMPLETED 
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22.9.5 Bifurcation analysis 
A bifurcation analysis of the tube is conducted as described in Section  6.6, Section  21, and Example  22.10. 
The resulting buckling modes found for the metamodel-based analysis are as shown in Figure  22-39. An 
extra half wave is formed for the one design. 
 

 
Figure  22-39 Tube Buckling 
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22.10 Bifurcation/Outlier Analysis 
 
22.10.1 Overview 
This example has the following features: 
• Monte Carlo analysis 
• Identification of different buckling modes in the structure 
 
22.10.2 Problem description 
The plate as shown in Figure  22-40 has two buckling modes. Buckling in the positive z-direction occurs 
with a probability of 80% while buckling in the negative z-direction occurs with a probability of 20%. The 
statistical distribution of the tip nodes imperfection controls the probability of buckling. 
 

 
Figure  22-40 Plate Buckling Example 

 
22.10.3 Monte Carlo evaluation 
A Latin hypercube experimental design is used for the Monte Carlo analysis. We analyze only five points. 
Given that the probability of 20% of buckling in the negative z-direction and a Latin hypercube 
experimental design, one run will buckle in the negative z-direction. The next section will demonstrate how 
to find out which run contains the different buckling mode. 
 
"Monte Carlo Analysis; 2 buckling modes" 
$ 
solvers 1 
$ 
distribution 1 
 distribution 'i' UNIFORM -0.001 0.004 
$ 
$ DESIGN VARIABLES 
$ 
variables 1 
 noise variable 'Imp' distribution 'i' 
$ 
$ 
$ SOLVER_1 
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$ 
solver dyna960 'SOLVER_1' 
  solver command "ls970.single" 
  solver input file "plate.k" 
  solver experiment design lhd centralpoint 
  solver number experiments 5 
$ 
$ RESPONSES  
$ 
responses 4 
 response 'tip_x' 1 0 "BinoutResponse -res_type nodout -cmp x_displacement -id 12  -
select TIME " 
 response 'tip_y' 1 0 "BinoutResponse -res_type nodout -cmp y_displacement -id 12  -
select TIME " 
 response 'tip_z' 1 0 "BinoutResponse -res_type nodout -cmp z_displacement -id 12  -
select TIME " 
 response 'tip_r' 1 0 "BinoutResponse -res_type nodout -cmp displacement  -invariant 
MAGNITUDE -id 12  -select TIME " 
$ 
$ 
$ JOB  
$ 
 analyze monte carlo 
STOP 
 
22.10.4 Automatic identification of buckling modes 
Different buckling modes can be identified automatically and displayed in LS-PREPOST. To identify 
bifurcations, we display the FE jobs having the extreme values. For this structure, either the global extreme 
z-displacement or the tip z-displacement can be considered in order to identify the bifurcation.  Automated 
identification of the bifurcation is done in the GUI as as shown in Figure  22-41 with the bifurcation as 
displayed using LS-PREPOST as shown in Figure  22-42. Some background on bifurcation indentification 
can be found in Section  21.10. A more user-intensive procedure is described in the next section. 
 

 
Figure  22-41 Selecting the automated identification of a bifurcation. The user must (i) select to overlay the 
FE models associated with the maximum and minimum residual and (ii) chose whether the residual is the 

global residual or a residual at a specific node. 
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Figure  22-42 LS-OPT identified and displayed this bifurcation automatically using the GUI setting shown in 

the previous figure. 

 
22.10.5 Manual identification of buckling modes 
The different buckling modes are identified using the DYNA Stats panel in LS-OPT.  
 
Next, LS-PREPOST can be launched to investigate the range (or standard deviation) of all the displacement 
components. From the displacement resultant plot, amongst others, it is clear that the bifurcation is at the 
tip. Looking at the other component plots, we find the z-displacement has a range of 5.3 and the x-
displacement a range of 4.5. The displacement magnitude computed using the maximum vector has a range 
of 6.9. 
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Figure  22-43 Range of z-component displacement 

 
Either the z-displacement or the maximum vector displacement magnitude can therefore be used to identify 
the buckling modes. Fringe plots of the run index of the maximum and minimum displacement identifies the 
runs as 2 and 4. 
 

 
Figure  22-44 Index of run with maximum z-component displacement 
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Figure  22-45 Index of run with minimum z-component displacement 

 
LS-OPT allows you to specify the job number to use for the LS-PREPOST plot. Plotting the results of run 2 
and 4 we find the second buckling mode as: 
 
 

 
Figure  22-46 Second buckling mode 
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22.11 Robust Parameter Design 
Consider the two-bar truss problem as shown in Figure  22-47. Variable x1, the area, is a noise variable 
described using a normal distribution with a mean of 2.0 and a standard deviation of 0.1. The distance 
between the legs, x2, is a control variable which will be adjusted to control the variance of the responses. 
The maximum stress is considered as the objective for the robust design process. 

 
Figure  22-47 The two-bar truss problem. The problem has two variables: the thickness of the bars and the 

leg widths as shown. The bar thicknesses are noise variables while the leg widths are adjusted (control 
variables) to minimize the effect of the variation of the bar thicknesses. The maximum stress in the structure 

is monitored. 

An response surface considering the effect of variables and the interaction  between variables is used to 
approximate the stress response. 
 
 
"Two-bar Truss" 
$ 
solvers 1 
responses 2 
$ 
$ PROBABILISTIC DISTRIBUTIONS 
$ 
distribution 1 
 distribution 'area' NORMAL  2.0  0.1   
$ 
$ DESIGN VARIABLES 
$ 
variables 2 
 Noise variable 'Area' distribution 'area' 
 Variable 'Base' 0.8 
  Lower bound variable 'Base' 0.1 
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  Upper bound variable 'Base' 1.6 
  Range 'Base' 1.6 
 
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ 
$      SOLVER "SOLVER_1" 
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ 
$ 
$ DEFINITION OF SOLVER "SOLVER_1" 
$ 
 solver own 'SOLVER_1' 
  solver command "echo N o r m a l" 
$ ------ Pre-processor -------- 
$   NO PREPROCESSOR SPECIFIED 
$ ------ Metamodeling --------- 
  solver order interaction 
  solver experiment design 3toK 
$ ------ Job information ------ 
  solver concurrent jobs 1 
$ 
$ RESPONSE EXPRESSIONS FOR SOLVER "SOLVER_1" 
$ 
 response 'Weight' expression { Area * sqrt(1+Base*Base) } 
 response 'Stress' expression { 0.124 * sqrt(1+Base*Base) * (8/Area + 1./Area/Base) } 
$ 
composites 1 
$ 
$ STD DEV COMPOSITES  
$ 
 composite 'StressStandardDeviation' noise 'Stress' 
$ 
$ OBJECTIVE FUNCTIONS 
$ 
 objectives 1 
 objective 'StressStandardDeviation' 1 
$ 
$ CONSTRAINT DEFINITIONS 
$ 
 constraints 0 
$ 
$ JOB INFO 
$ 
 iterate param design 0.01 
 iterate param objective 0.01 
 iterate param stoppingtype and 
 iterate 10 
STOP 
 
 
The stress response is shown in Figure  22-48. From the figure it can be seen that the ‘base’ variable must be 
set to values of large than 0.4 to obtain a minimum variation of the stress considering that the design will 
then be in the flattest region of the response. A value of 0.5 is obtained in the optimization results as shown 
in Figure  22-49. Also shown in the optimization results is the design history of the stress standard deviation. 
Note that the standard deviation response stayed fairly insensitive to changes in the control variable after 
iteration 4 and that the initial subregion size for the ‘base’ variable was too large, resulting in initial increase 
in ‘base’ variable due to an inaccurate initial response surface. 
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Figure  22-48 Contours of stress response. The flattest part of the response is when variable 'base' equals 0.5. 

 
Figure  22-49 Optimization histories. Design variable ‘base’ is shown on the left and the standard deviation 

of the stress response is shown on the right. 
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Appendix A 

LS-DYNA D3Plot Result Components 

 
 
The table contains component names for element variables. The result type and component name must be 
specified in the “D3Plot”  interface commands to extract response variables. 
 
 
 

Result Type Number Description Component name 
Stress 1 

2 
3 
4 
5 
6 

xx, yy, zz, xy, yz, zx stress xx_stress 
yy_stress 
zz_stress 
xy_stress 
yz_stress 
zx_stress 

 7 Effective plastic strain plastic_strain 
 8 Pressure or average strain pressure 
 9 von Mises stress von_mises 
 10 First principal deviator maximum 1st_prin_dev_stress 
 11 Second principal deviator 2st_prin_dev_stress 
 12 Third principal deviator minimum 3rd_prin_dev_stress 
 13 Maximum shear stress max_shear_stress 
 14 1st principal maximum stress 1st_principal_stress 
 15 2nd principal stress 2st_principal_stress 
 16 3rd principal min 3st_principal_stress 
Ndv 17 x-displacement x_displacement 
 18 y-displacement y_displacement 
 19 z-displacement z_displacement 
 20 Displacement magnitude result_displacement 
 21 x-velocity x_velocity 
 22 y-velocity y_velocity 
 23 z-velocity z_velocity 
 24 Velocity magnitude result_velocity 
 64 xy-displacement xy_displacement 
 65 yz-displacement yz_displacement 
 66 zx-displacement zx_displacement 
Result 26 Mxx bending resultant Mxx_bending 
 27 Myy bending resultant Myy_bending 
 28 Mxy bending resultant Mxy_bending 
 29 Qxx shear resultant Qxx_shear 
 30 Qyy shear resultant Qyy_shear 
 31 Nxx normal resultant Nxx_normal 
 32 Nyy normal resultant Nyy_normal 
 33 Nxy normal resultant Nxy_normal 
 34 Surface stress Nxx/t + 6Mxx/t2 Nxx/t+6Mxx/t^2 
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Result Type Number Description Component name 
 35 Surface stress Nxx/t – 6Mxx/t2 Nxx/t-6Mxx/t^2 
 36 Surface stress Nyy/t – 6Myy/t2 Nyy/t-6Myy/t^2 
 37 Surface stress Nyy/t + 6Myy/t2 Nyy/t+6Myy/t^2 
 38 Surface stress Nxy/t – 6Mxy/t2 Nxy/t+6Mxy/t^2 
 39 Surface stress Nxy/t + 6Mxy/t2 Nxy/t+6Mxy/t^2 
 40 Effective upper surface stress u_surf_eff_stress 
 41 Effective lower surface stress l_surf_eff_stress 
Strain 43 Lower surface effective plastic strain l_surf_plastic_strain 
 44 Upper surface effective plastic strain u_surf_plastic_strain 
 45 

46 
47 
48 
49 
50 

Lower surface xx, yy, zz, xy, yz, zx strain l_surf_xx_strain 
l_surf_yy_strain 
l_surf_zz_strain 
l_surf_xy_strain 
l_surf_yz_strain 
l_surf_zx_strain 

 51 
52 
53 
45 
55 
56 

Upper surface xx, yy, zz, xy, yz, zx strain u_surf_xx_strain 
u_surf_yy_strain 
u_surf_zz_strain 
u_surf_xy_strain 
u_surf_yz_strain 
u_surf_zx_strain 

 57 
58 
59 
60 
61 
62 

Middle surface xx, yy, zz, xy, yz, zx strain m_surf_xx_strain 
m_surf_yy_strain 
m_surf_zz_strain 
m_surf_xy_strain 
m_surf_yz_strain 
m_surf_zx_strain 

 69 
70 
71 
72 
73 
74 
75 
76 
77 
78 
79 
80 

Lower, upper, middle principal + effective strains l_surf_max_princ_strain 
l_surf_2nd_princ_strain 
l_surf_min_princ_strain 
l_surf_effective_princ_strain 
u_surf_max_princ_strain 
u_surf_2nd_princ_strain 
u_surf_min_princ_strain 
u_surf_effective_princ_strain 
m_surf_max_princ_strain 
m_surf_2nd_princ_strain 
m_surf_min_princ_strain 
m_surf_effective_princ_strain 

Misc 25 Temperature temperature 
 63 Internal energy density internal energy 
 67 Shell thickness shell_thickness 
 68 Shell thickness reduction (%) %_thickness_reduction 
 81 History variable 1 history_var#1 
FLD 501 

502 
503 
504 

Lower, upper, middle, maxima surface eps1/fldc lower_eps1/fldc 
upper_eps1/fldc 
middle_eps1/fldc 
maxima_eps1/fldc 

 505 
506 
507 
508 

Lower, upper, middle, maxima surface fldc-eps1 lower_fldc-eps1 
upper_ fldc-eps1 
middle_ fldc-eps1 
maxima_ fldc-eps1 

 509 
510 
511 

Lower, upper, middle, maxima surface eps1 lower_ eps1 
upper_ eps1 
middle_ eps1 
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Result Type Number Description Component name 
512 maxima_ eps1 

 513 
514 
515 
516 

Lower, upper, middle, maxima surface eps2 lower_ eps1 
upper_ eps1 
middle_ eps1 
maxima_ eps1 

Beam 701 Axial Force axial_force 
 702 S Force s_force 
 703 T Force t_force 
 704 SS Moment ss_moment 
 705 TT Moment tt_moment 
 706 Torsion torsion 
 707 Axial_stress axial_stress 
 708 RS Shear Stress rs_shear_stress 
 709 TR Shear Stress tr_shear_stress 
 710 Plastic Strain plastic_strain 
 711 Axial strain axial_strain 
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Appendix B 

LS-DYNA Binout Result Components 

Airbag Statistics: ABSTAT 
 

Component Description 
Volume 
pressure      
internal_energy 
dm_dt_in 
dm_dt_out       
total_mass     
gas_temp          
density          
surface_area   
reaction          

Volume 
Pressure 
Internal energy 
Input mass flow rate 
Output mass flow rate 
Mass 
Temperature 
Density 
Area  
Reaction 

 
 

Boundary Nodal Forces: BNDOUT 
 

Component Description 
Subdirectory discrete/nodes 
x_force  
y_force 
z_force 
x_total   
y_total   
z_total 
energy     
etotal 

X-force 
Y-force 
Z-force 
Total X-force 
Total Y-force 
Total Z-force 
Energy 
Total Energy 

 
 
 

Discrete Element Forces: DEFORC 
 

Component Description 
x_force           
y_force       
z_force  
resultant_force 
displacement      

X-force 
Y-force 
Z-force 
Resultant force 
Change in length 
 
 

 
 
 
 

 

Element Output: ELOUT 
 

Component Description 
Subdirectory solid 
sig_xx 
sig_xy 
sig_yy 
sig_yz 
sig_zx 
sig_zz 
yield 
effsg 
eps_xx 
eps_xy 
eps_yy 
eps_yz 
eps_zx 
eps_zz 

XX-stress 
YY-stress 
ZZ-stress 
XY-stress 
YZ-stress 
ZX-stress 
Yield function 
Effective stress 
XX-strain 
YY-strain 
ZZ-strain 
XY-strain 
YZ-strain 
ZX-strain 

 
Subdirectory beam 
axial 
shear_s 
shear_t 
moment_s 
moment_t 
torsion 

Axial force resultant 
s-Shear resultant 
t-Shear resultant 
s-Moment resultant 
t-Moment resultant 
Torsional resultant 

 
 



APPENDIX B:  LS-DYNA BINOUT RESULT COMPONENTS  

434  LS-OPT Version 3 

Element Output: ELOUT 
 

Component Description 
Subdirectory shell 
sig_xx            
sig_yy   
sig_zz      
sig_xy            
sig_yz            
sig_zx            
plastic_strain 
upper_eps_xx 
lower_eps_xx  
upper_eps_yy      
lower_eps_yy  
upper_eps_zz  
lower_eps_zz 
upper_eps_xy 
lower_eps_xy          
upper_eps_yz      
lower_eps_yz      
upper_eps_zx       
lower_eps_zx   

XX-stress 
YY-stress 
ZZ-stress 
XY-stress 
YZ-stress 
ZX-stress 
Plastic strain 
XX-strain 
 
YY-strain 
 
ZZ-strain 
 
XY-strain 
 
YZ-strain 
 
ZX-strain 

 
Subdirectory thickshell 
sig_xx 
sig_yy 
sig_zz 
sig_xy 
sig_yz 
sig_zx 
yield                      
upper_eps_xx 
lower_eps_xx  
upper_eps_yy      
lower_eps_yy  
upper_eps_zz  
lower_eps_zz 
upper_eps_xy 
lower_eps_xy          
upper_eps_yz      
lower_eps_yz      
upper_eps_zx       
lower_eps_zx     

XX-stress 
YY-stress 
ZZ-stress 
XY-stress 
YZ-stress 
ZX-stress 
Yield 
XX-strain 
 
YY-strain 
 
ZZ-strain 
 
XY-strain 
 
YZ-strain 
 
ZX-strain  

 
 
 
 
 
 
 
 
 
 
 

Contact Entities Resultants: GCEOUT 
 

Component Description 
x_force           
y_force 
z_force 
force_magnitude 
x_moment          
y_moment 
z_moment 
moment_magnitude 

X-force 
Y-force 
Z-force 
Force magnitude 
X-moment 
Y-moment 
Z-moment 
Moment magnitude 

 
 

Global Statistics: GLSTAT 
 

Component Description 
kinetic_energy 
internal_energy 
total_energy 
energy_ratio 
stonewall_energy 
spring_and_damper_energy 
hourglass_energy 
sliding_interface_energy 
external_work 
global_x_velocity 
global_y_velocity 
global_z_velocity 
system_damping_energy 
energy_ratio_wo_eroded 
eroded_internal_energy 
eroded_kinetic_energy 

Kinetic energy 
Internal energy 
Total energy 
Ratio 
Stonewall energy 
Spring & Damper energy 
Hourglass energy 
Sliding interface energy 
External work 
Global x-velocity 
Global y-velocity 
Global z-velocity 
System damping energy 
Energy ratio w/o eroded 
Eroded internal energy 
Eroded kinetic energy 
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Joint Element Forces: JNTFORC 
 

Component Description 
Subdirectory joints 
x_force   
y_force  
z_force 
x_moment   
y_moment         
z_moment 
resultant_force  
resultant_moment   

X-force 
Y-force 
Z-force 
X-moment 
Y-moment 
Z-moment 
R-force 
R-moment  

 
Subdirectory type0 
 d(phi)_dt 
d(psi)_dt 
d(theta)_dt 
joint_energy 
phi_degrees 
phi_moment_damping 
phi_moment_stiffness 
phi_moment_total 
psi_degrees 
psi_moment_damping 
psi_moment_stiffness 
psi_moment_total  
theta_degrees  
theta_moment_damping 
theta_moment_stiffness 
theta_moment_total 

d(phi)/dt 
d(psi)/dt (degrees) 
d(theta)/dt (degrees) 
joint energy 
phi (degrees)  
phi moment-damping 
phi moment-stiffness 
phi moment-total 
psi (degrees) 
psi-moment-damping 
psi-moment-stiffness 
psi-moment-total 
theta (degrees) 
theta-moment-damping 
theta-moment-stiffness 
theta-moment-total 

 
 
 

Material Summary: MATSUM 
 

Component Description 
kinetic_energy    
internal_energy   
x_momentum      
y_momentum 
z_momentum   
x_rbvelocity      
y_rbvelocity      
z_rbvelocity      
hourglass_energy 

Kinetic energy 
Internal energy 
X-momentum 
Y-momentum 
Z-momentum 
X-rigid body velocity 
Y-rigid body velocity 
Z-rigid body velocity 
Hourglass energy 

 
 
 
 
 
 
 
 
 
 
 

Contact Node Forces: NCFORC 
 

Component Description 
Subdirectory master_00001 and slave_00001 
x_force  
y_force           
z_force      
pressure          
x 
y                 
z                 

X-force 
Y-force 
Z-force 
Pressure 
X coordinate 
Y coordinate 
Z coordinate 

 
 
 

Nodal Point Response: NODOUT 
 

Component Description 
Translational components 
x_displacement 
y_displacement 
z_displacement 
x_velocity 
y_velocity 
z_velocity 
x_acceleration 
y_acceleration 
z_acceleration 
x_coordinate 
y_coordinate 
z_coordinate 

X-displacement 
Y-displacement 
Z-displacement 
X-velocity 
Y-velocity 
Z-velocity 
X-acceleration 
Y-acceleration 
Z-acceleration 
X-coordinate 
Y-coordinate 
Z-coordinate 

 
Rotational components 
rx_acceleration 
rx_displacement 
rx_velocity 
ry_acceleration 
ry_displacement 
ry_velocity 
rz_acceleration 
rz_displacement 
rz_velocity 

XX-rotation 
YY-rotation 
ZZ-rotation 
XX-rotational velocity 
YY-rotational velocity 
ZZ-rotational velocity 
XX-rotational acceleration 
YY-rotational acceleration 
ZZ-rotational acceleration 

 
Injury coefficients 
CSI 
HIC15 
HIC36 

Chest Severity Index 
Head Injury Coefficient (15 ms) 
Head Injury Coefficient (36 ms) 
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Nodal Forces: NODFOR 
 

Component Description 
x_force  
y_force 
z_force 
x_total 
y_total 
z_total 
energy            
etotal            

X-force 
Y-force 
Z-force 
X-total force 
Y-total force 
Z-total force 
Energy 
Total Energy 

 
 

Rigid Body Data: RBDOUT 
 

Component Description 
Translational components 
global_dx 
global_dy 
global_dz 
global_vx 
global_vy 
global_vz 
global_ax 
global_ay 
global_az 
global_x 
global_y 
global_z 
local_dx 
local_dy 
local_dz 
local_vx 
local_vy 
local_vz 
local_ax 
local_ay 
local_az 

X-displacement 
Y-displacement 
Z-displacement 
X-velocity 
Y-velocity 
Z-velocity 
X-acceleration 
Y-acceleration 
Z-acceleration 
X-coordinate 
Y-coordinate 
Z-coordinate 
Local X-displacement 
Local Y-displacement 
Local Z-displacement 
Local X-velocity 
Local Y-velocity 
Local Z-velocity 
Local X-acceleration 
Local Y-acceleration 
Local Z-acceleration 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Component Description 
Rotational components 
global_rax 
global_ray 
global_raz 
global_rdx 
global_rdy 
global_rdz 
global_rvx 
global_rvy 
global_rvz 
local_rdx 
local_rdy 
local_rdz 
local_rvx 
local_rvy 
local_rvz 
local_rax 
local_ray 
local_raz 

X-rotation 
Y-rotation 
Z-rotation 
X-velocity 
Y-velocity 
Z-velocity 
X-acceleration 
Y-acceleration 
Z-acceleration 
Local X-rotation 
Local Y-rotation 
Local Z-rotation 
Local X-velocity 
Local Y-velocity 
Local Z-velocity 
Local X-acceleration 
Local Y-acceleration 
Local Z-acceleration 

 
Direction cosines 
dircos_11 
dircos_12 
dircos_13 
dircos_21 
dircos_22 
dircos_23 
dircos_31 
dircos_32 
dircos_33 

11 direction cosine 
12 direction cosine 
13 direction cosine 
21 direction cosine 
22 direction cosine 
23 direction cosine 
31 direction cosine 
32 direction cosine 
33 direction cosine 

 
Injury coefficients 
CSI 
HIC15 
HIC36 

Chest Severity Index 
Head Injury Coefficient (15 ms) 
Head Injury Coefficient (36 ms) 

 
 
 

Reaction Forces: RCFORC 
 

Component Description 
x_force           
y_force           
z_force       
mass 

X-force 
Y-force 
Z-force 
Mass 
 
 



APPENDIX B:  LS-DYNA BINOUT RESULT COMPONENTS 

LS-OPT Version 3  437 

RigidWall Forces: RWFORC 
 

Component Description 
Subdirectory forces 
normal_force      
x_force           
y_force           
z_force 

normal 
X-force 
Y-force 
Z-force 

 
 

Section Forces: SECFORC 
 

Component Description 
x_force 
y_force 
z_force 
x_moment 
y_moment 
z_moment 
x_centroid 
y_centroid 
z_centroid 
total_force 
total_moment 
area 

X-force 
Y-force 
Z-force 
X-moment 
Y-moment 
Z-moment 
X-center 
Y-center 
Z-center 
Resultant force 
Resultant moment 
Area 
 

 
 
Single Point Constraint Reaction Forces: SPCFORC 

 
Component Description 
x_force 
y_force 
z_force         
x_resultant  
y_resultant 
z_resultant 
x_moment 
y_moment 
z_moment 

X-force 
Y-force 
Z-force 
Total X-force 
Total Y-force 
Total Z-force 
X-moment 
Y-moment 
Z-moment 

 
 

Spotweld and Rivet Forces: SWFORC 
 

Component Description 
axial      
shear 
failure_flag  

Axial force 
Shear force 
Failure flag 
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Appendix C 

Database files 

C.1 Design flow 
 

Source Database file Process Output Database file Level of directory 
for output database

Command file (com) Point selection Experiments Solver 
Experiments Simulation runs Solver output files Run 
Solver output files Result extraction AnalysisResults 

ExtendedResults 
Solver 

AnalysisResults Approximation DesignFunctions 
Net 

Solver 

DesignFunctions Optimize OptimumResults 
OptimizationHistory 

Work 
Work 

 
C.2 Database file formats 
 
The Experiments file 
 
This file appears in the solver directory and is used to save the experimental point coordinates for the 
analysis runs. The file consists of lines having the following format repeated for each experimental point. 
 
x[1], x[2], ..., x[n] 
 
where x[1] to x[n] are the values of the n solver design variables at the experimental point. 
 
The AnalysisResults file 
 
This file is used to save the responses at the experimental points and appears in the solver directory. Every 
line describes an experimental point and gives the response values at the experimental point. The file 
consists of lines having the following format repeated for each experimental point. 
 
x[1], x[2], ..., x[n],RespVal[1], RespVal[2], ..., RespVal[m] 
 
where x[1] to x[n] are the values of the n solver design variables at the experimental point. RespVal[1] to 
RespVal[m] are the values of the m solver responses. Values of 2.0*1030 are assigned to responses of 
simulations with error terminations. The AnalysisResults file is synchronous with the 
Experiments file. 
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The DesignFunctions file 
 
The DesignFunctions file, which appears in the solver directory, is used to save a description of the 
polynomial design functions. It is an XML file with XML tags chosen such that the file is easy to read. 
Open a DesignFunction.* file in a text editor to understand the content of the database. 
 
The order of the constants in the database is for polynomial design functions is: 
beta_0, beta_1, ... , beta_n, beta_1_1, beta_1_2, beta_1_3, ..., beta_1_n, 
      beta_2_2, beta_2_3, ...., beta_2_n, 
                                                   ...., beta_i_n, 
                                   beta_n_n 
with 
 f(x) = beta_0 + beta_1*x_1 + .... + beta_n*x_n + 
           beta_1_1*x_1*x_1 + beta_1_2*x_1*x_2 + ... + beta_1_n*x_1*x_n 
                                           + beta_2_2*x_2*x_2 + ... + beta_2_n*x_2*x_n 
                                ... 
                   + beta_n_n*x_n*x_n   
                       
        The following enumerations are used in the database. 
 

Function Types  
NO_SURFACE                0 
LINEAR                           77
MULT                             78
QUADRATIC                 79
INTERACTION               80
ELLIPTIC                  81
SPHERICAL                 82
FEEDFORWARD               83
FF_COMMITTEE              84
RADIALBASIS               85
NEURALNETWORK             86
ANALYTICAL_DSA_SURFACE   87
NUMERICAL_DSA_SURFACE    88
KRIGING                   89

 
   

Response Interface Type 
        RESP_INTERF_NULL  0 Interface unknown 
        USERINTERFACE 700 User defined 
        BINARY    701 LS-DYNA d3plot 
        ASCII  702 LS-DYNA ascii files 
        REXPRESSION  703 Mathematical expression 
        XYFILE       704 User specified history file [t,f(t)] 
        LSDA_BINARY 705  
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        FREQUENCY             706 Frequency, Mode #, Generalized Mass 
        MASSC             707 Mass from d3hsp 
        D3P_DISP                  708 Disp from d3 plot file 

 
 
 
The flags for active coefficients exclude the constant a0. 
 
 
The OptimizationHistory file 
 
This file is used to save the optimization history results and appears in the work directory. Each line 
contains the values at the optimum point of an iteration.  
 

Entities Count 
Objective values Number of objectives 
Variables Number of variables 
Variable lower bounds Number of variables 
Variable upper bounds Number of variables 
RMS errors Number of responses 
Average errors Number of responses 
Maximum errors Number of responses 
R2 errors Number of responses 
Adjusted R2 errors Number of responses 
PRESS errors Number of responses 
Prediction R2 Number of responses 
Maximum prediction error Number of responses 
Responses Number of responses 
Multi-objective 1 
Constraint values Number of constraints 
Composite values Number of composites 
Responses (computed) Number of responses 
Max. constraint violation 1 
Composites (computed) Number of composites 
Constraints (computed) Number of constraints 
Objectives (computed) Number of objectives 
Multi-objective (computed) 1 
Max. constraint violation (computed) 1 
Constants Number of constants 
Dependents Number of dependents 
RBDO lower bound probability* Number of constraints 
RBDO upper bound probability* 
Generation number# 
Individual number# 

Number of constraints 
1 
1 

*Only written for RBDO problems. 
     #Only written for Direct GA simulations. 
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Values of 2.0*1030 are assigned to responses of error terminations. 
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The ExtendedResults file 
 
This file contains all points represented in the AnalysisResults file and appears in the solver directory. 
All values are based on the simulation results. A line has the following format: 
 

Entities Count 
Objective weights Number of objectives 
Objective values Number of objectives 
Variables Number of solver variables 
Responses Number of solver responses 
Multi-objective 1 
Constraint values Number of constraints 
Composite values Number of composites 
Max. constraint violation 1 
Constants Number of constants 
Dependents Number of dependents 

 
The values represent the number of entities in the solver. Values of 2.0*1030 are assigned to responses of 
simulations with error terminations. 
 
The OptimumResults file 
 
This file contains just the optimum design point data and appears in the main work directory. All values are 
metamodel values, i.e. interpolated. 
 

Entities Count 
Objective weights Number of objectives 
Objective values Number of objectives 
Variables Number of variables 
Responses Number of responses 
Multi-objective 1 or 0 (no objectives) 
Constraint values Number of constraints 
Composite values Number of composites 
Max. constraint violation 1 
Constants Number of constants 
Dependents Number of dependents 

 
The lsopt_db file 
 
The file should not be used or edited by the user. It is used to communicate the state of the databases 
between various LS-OPT components. The content of the file is subject to change.
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Appendix D 

Mathematical Expressions 

Mathematical expressions are available for the following entities: 
 
Dependent 
result 
matrix 
history 
response 
composite 
multiobjective 
 
 
D.1 Syntax rules 
 
1. Mathematical expressions are placed in curly brackets in the command file or in double angular brackets 

(e.g. <<Thickness*25.4>>) in the input template files. 
2. Expressions consist of parameters and constants. A parameter can be any previously defined entity. 
3. Expressions can be wrapped to appear on multiple lines. 
4. Mathematical expressions can be used for any floating-point number, e.g. upper bound of constraint, 

convergence tolerance, objective weight, etc. 
5. An expression is limited to 1024 characters. 
6. Empty or underscore (_) arguments in functions will generate default values. 
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D.2 Intrinsic functions 
 
Note: Trigonometric functions use and return degrees, not radians. 
 

int(a) integer 
nint(a) nearest integer 
abs(a) absolute value 
mod(a,b) remainder of  a/b 
sign(a,b) transfer of sign from b to |a| 
max(a,b) maximum of a and b 
min(a,b) minimum of a and b 
sqrt(a)  square root 
exp(a) ea 
pow(a,b) ab 
log(a) natural logarithm 
log10(a) base 10 logarithm 
sin(a) sine 
cos(a) cosine 
tan(a) tangent 
asin(a) arc sine 
acos(a) arc cosine 
atan(a) arc tangent 
atan2(a,b) arc tangent of a/b 
sinh(a) hyperbolic sine 
cosh(a) hyperbolic cosine 
tanh(a) hyperbolic tangent 
asinh(a) arc hyperbolic sine 
acosh(a) arc hyperbolic cosine 
atanh(a) arc hyperbolic tangent 
sec(a) secant 
csc(a) cosecant 
ctn(a) cotangent 
cnd(a) cumulative normal distribution: 

duux
x

∫
∞−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=Φ

2
exp

2
1)(

2

1,0 π
 

 
Matrix functions (3×3 only): 
 

inv(A) Inverse of matrix A 
tr(A) Transpose of matrix A 
rx(angle) Rotation about x-axis (angle in rad) 
ry(angle) Rotation about y-axis (angle in rad) 
rz(angle) Rotation about z-axis (angle in rad) 
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D.3 Special functions 
 
Special response functions can be specified to apply to response histories. These include integration, minima 
and maxima and finding the time at a specific value of the function. General expressions (in double quotes) 
can be used for limits and for the integration variable. Histories must be defined as strings in double quotes 
and functions of time using the symbol  t, e.g. ”Velocity(t)”. 
 
Expression Symbols 
Integral(expression[,t_lower,t_upper,variable]) 

∫
b

a
tdgtf )()(  

Derivative(expression[,T_constant]) 
Tttf =ΔΔ |/  ~ Tttf =|d/d  

Min(expression[,t_lower,t_upper]) )]([minmin tff
t

=  

Max(expression[,t_lower,t_upper]) )]([maxmax tff
t

=  

Initial(expression) First function value on record 
Final(expression) Last function value on record 
TerminationTime (expression) Termination time. Time of last 

history value. 
Lookup(expression,value[,t_lower,t_upper]) Inverse function t(f = F) 
LookupMin(expression[,t_lower,t_upper]) Inverse function t(f = fmin) 
LookupMax(expression[,t_lower,t_upper]) Inverse function t(f = fmax) 
MeanSqErr(target_curve,computed_curve[,  
num_reg_points, start_point, end_point, 
weight_type, scale_type,  
weight_value, scale_value, 
weight_curve_name, scale_curve_name]) 

Mean Squared Error function 
2

1

)(1
∑ ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛ −

=

P

p p

pp
p s

Gf
W

P
x

 

Crossplot (history_z, history_F [, numpoints, 
begin_time, end_time]) 

F(z) given F(t) and z(t) 

Rotate(x1,y1,z1, x2,y2,z2, x3,y3,z3) Rotation matrix defined by 3 
points. See Section  14. 

Matrix3x3Init(x1,y1,z1, x2,y2,z2, x3,y3,z3) Initialize 3×3 matrix 
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The arguments used in the expressions have the following explanations: 
 

Argument Explanation Symbol Type 
t_lower lower limit of integration or range a generic 
t_upper upper limit of integration or range b generic 
variable integration variable g(t) generic 
expression history defined as an expression string f(t) generic 
value value for which lookup is required F generic 
T_constant specific time Τ generic 
target_curve,computed_curve Target, computed curve names G history 
Num_reg_points Number of regression points n integer 
Start_point, end_point Location of first/last regression points z0, zP float 
Weight_type, Scale_type Weight and scale types  reserved 
Weight_value, scale_value Uniform weight and scale values W, s float 
History_z, history_F History names for abscissa and 

ordinate 
z(t), F(t) history 

numpoints Number of points in curve - integer 
Begin_time, end_time Begin and end times t1,tP float 
x1,y1,z1,x2,y2,z2,x3,y3,z3 Matrix components - generic 

 
“Generic” implies that the quantity can be an expression, another defined entity or a constant number. An 
entity (which may be specified in an expression) can be any defined LS-OPT entity. Thus constant, 
variable, dependent, history, response and composite are acceptable. An expression is 
given in double quotes, e.g., ”4.2 * C1_1 * Displacement(t)”. 
 
D.4 Reserved variable names 
 

Name Explanation 
t Time 
LowerLimit 0.0 
UpperLimit Maximum event time over all histories of all solvers 

 
 
Omitting the lower and upper bounds implies operation over the entire available history. 
The Lookup function allows finding the value of t for a specified value of f(t) = F. If such a value cannot 
be found, the largest value (within the specified bounds) of t in the history is returned. The LookupMin 
and LookupMax functions return the value of t at the minimum or maximum respectively. 
 
The implied variable represented in the first column of any history file is t. Therefore all history files 
produced by the DynaASCII extraction command contain functions of t. The fourth argument of the 
Integral function defaults to t. The variable t must increase monotonically. 
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The derivative assumes a piecewise linear function defined by the points in the history.n file. T_constant in 
the Derivative function defaults to the end time. 
 
If a time is specified smaller than the smallest time value of the computed history, the first value is returned 
(same as Initial). If a time is specified larger than the largest time value of the computed history, the 
last value is returned (same as Final). For derivatives the first or last slopes are returned respectively. 
 
D.5 Constants associated with histories 
 
The following commands can be given to override defaults for history operations: 
 
Constant Explanation Default 
variable fdstepsize Finite difference step size for 

numerical derivatives with 
respect to variables 

0.0001*(Upper bound – Lower bound) 

historysize Number of time points for new 
history 

10000 

 
Command file syntax: 
variable fdstepsize value 
historysize integer value 
 
• The variable fdstepsize is used to find the gradients of expression composite functions. These 

are used in the optimization process. 
• The historysize is used when new histories are generated. 
 
 
D.6 Generic expressions 
 
Expressions can be specified for any floating-point number. In some cases, previously defined parameters 
can be used as follows: 
 
 

Number type Parameter type 
Constant none 
Starting variable constant 
Range variable 
Variable bounds variable 
Shift factor for response variable 
Scale factor for response variable 
Constraint bounds variable 
Objective weight variable 
Target value (composite) variable 
Scale factor (composite) variable 
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Weight (composite) variable 
Parameters of SRSM none 
Parameters of LFOPC none 

 
The parameter type represents the highest entity in the hierarchy. Thus constants are included in the variable 
parameters. 
 
In LS-OPT, expressions can be entered for variables, constants, dependents, histories, responses constraints 
and objectives. 
 
Example: 
 
constant ’Target1’ {12756.333/1000.} 
constant ’Target2’ {966002/1000.} 
variable ’Emod’ 1e7 
composite ’Residual’ type targeted 
composite ’Residual’ response ’F1’ {Target1} scale {Target1} 
composite ’Residual’ response ’F2’ {Target2} scale {Target2} 
objective ’Residual’ 
$ 
variable fdstepsize {1/500.} 
time fdstepsize {1/300.} 
history size 10000 
 
D.7 Examples illustrating syntax of expressions 
 
Example 1: 
 
The following example shows a simple evaluation of variables and functions. The histories are specified in 
plot files his1 and his2. A third function his3 is constructed from the files by averaging. 
 
File his1: 
 
0 0.0 
100 1000 
200 500 
300 500 
 
File his2: 
 
0 0.0 
100 2000 
200 2000 
300 2000 
 
Input file: 
"Mathematical Expressions" 
$ 
$ CONSTANTS 
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$ 
constants 3 
constant ’lowerlimit’ 0 
constant ’upperlimit’ .200 
constant ’angle’ 30 
$ 
$ DESIGN VARIABLE DEFINITIONS 
$ 
variables 2 
Variable ’x1’ 45 
Lower bound variable ’x1’ -10 
Upper bound variable ’x1’ 50 
Variable ’x2’ 45 
Lower bound variable ’x2’ -10 
Upper bound variable ’x2’ 50 
$ 
$ DEPENDENT VARIABLES 
$ 
dependents 2 
dependent ’ll’ {lowerlimit * 1000} 
dependent ’ul’ {upperlimit * 1000} 
$ 
. 
. 
. 
 
 
 
 
$ 
$ HISTORIES 
$ 
history 3 
history ’his1’ file "../../his1" 
history ’his2’ file "../../his2" 
history ’his3’ {(his1(t) + his2(t))/2} 
$ 
$ RESPONSES 
$ 
responses 42 
response ’LOWER’     expression {LowerLimit} 
response ’UPPER’     expression {UpperLimit} 
response ’UL’        expression {ul} 
response ’First’     expression {Initial("his1(t)")} 
response ’Last’      expression {Final("his1(t)")} 
response ’Last3’     expression {Final("(his1(t) + his2(t))/2")} 
response ’Max1’      expression {Max("his1(t)")} 
response ’Max2’      expression {Max("his1(t)","ll * 1.0")} 
response ’Maximum11’ expression {Max("his1(t)","ll",ul)} 
response ’Maximum32’ expression {Max("his3(t)",ll,ul)} 
response ’Minimum32’ expression {Min("his3(t)",ll,ul)} 
response ’Inverse11’ expression {Lookup("his1(t)",75)} 
response ’Inverse21’ expression {Lookup("his2(t)",75)} 
response ’Inverse31’ expression {Lookup("his3(t)",75)} 
response ’Inverse33’ expression {Lookup("(his1(t) + his2(t))/2",75)} 
response ’MaxI’      expression {max(Inverse11,Inverse21)} 
response ’MinI’      expression {min(Inverse11,Inverse21)} 
response ’hist’      expression {his3(Inverse31)} 
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response ’hist66’    expression {his3(66.1) + 0.1} 
response ’nhist66’   expression {nint(hist66)} 
response ’ihist66’   expression {int(hist66)} 
response ’Integ11’   expression {Integral("his1(t)")} 
response ’Integ14’   expression {Integral("his1(t)",ll,ul,"t")} 
response ’Integ15’   expression {Integral("his1(t)",ll,UPPER,"t")} 
response ’Integ22’   expression {Integral("his2(t)",ll,ul,"t")} 
response ’Integ32’   expression {Integral("his3(t)",ll,ul,"t")} 
response ’Integ33’   expression {Integral("(his1(t) + his2(t))/2",ll,ul,"t")} 
response ’Integ34’   expression {Integral("his3(t)")} 
response ’Integ35’   expression {Integral("his3(t)",ll)} 
response ’Integ36’   expression {Integral("his3(t)",ll,ul)} 
$ 
$ Cross-functional integrals 
$ 
response ’Integ2’    expression {Integral("his1(t)",ll,ul,"his2(t)")} 
response ’Integ3a’   expression {Integral("his1(t)",0,30,"his2(t)")} 
response ’Integ3b’   expression {Integral("his1(t)",30,100,"his2(t)")} 
response ’Integ4’    expression {Integ1 + Integ2} 
response ’Integ5’ expression {Integral("sin(t) * his1(t) * his2(t)",ll,ul,"t")} 
response ’Integ7’    expression {Integral("sin(t) * his1(t) * his2(t)")} 
response ’Velocity1’ expression {Derivative(”Displacement(t)”,0.08)} 
response ’Velocity2’ expression {Derivative(”Displacement(t)”)} 
$ 
$ COMPOSITE FUNCTIONS 
$ 
composites 1 
composite ’Integ6’ {(Integ3a/(4*Maximum11) + Integ2/2)**.5} 
$ 
$ OBJECTIVE FUNCTIONS 
$ 
objectives 1 
objective ’Integ6’ 
$ 
$ CONSTRAINT FUNCTIONS 
$ 
constraints 1 
constraint ’Integ1’ 
$ 
iterate 0 
STOP 
 
Example 2: 
 
constant ’v0’ 15.65 
$---------------------------------------------------------------------------- 
$ Extractions 
$---------------------------------------------------------------------------- 
history ’engine_velocity’    "DynaASCII nodout X_VEL 73579 TIMESTEP 0.0 SAE 30" 
history ’Apillar_velocity_1’ "DynaASCII nodout X_VEL 41195 TIMESTEP 0.0 SAE 30" 
history ’Apillar_velocity_2’ "DynaASCII nodout X_VEL 17251 TIMESTEP 0.0 SAE 30" 
history ’global_velocity’    "DynaASCII glstat X_VEL 0 TIMESTEP 0.0" 
$---------------------------------------------------------------------------- 
$ Mathematical Expressions for dependent histories 
$---------------------------------------------------------------------------- 
history ’Apillar_velocity_average’ {(Apillar_velocity_1 +  
                                     Apillar_velocity_2)/2} 
$ 
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$ Find the time when the engine velocity = 0 
$ 
response ’time_to_engine_zero’ expression {Lookup("engine_velocity(t)",0)} 
$ 
$ Find the average velocity at time of engine velocity = 0 
$ 
response ’vel_A_engine_zero’ expression {Apillar_velocity_average 
 (time_to_engine_zero)} 
$ 
$ Integrate the average A-pillar velocity up to zero engine velocity 
$ Divide by the time to get the average 
$ 
response ’PULSE_1’ expression  {Integral 
 ("Apillar_velocity_average(t)", 
 0, 
 time_to_engine_zero 
 ) 
 /time_to_engine_zero} 
$ 
$ Find the time at which the global velocity is zero 
$ 
response ’time_to_zero_velocity’ expression {Lookup("global_velocity(t)",0)} 
$ 
$ Find the average A-pillar velocity where global velocity is zero 
$ 
response ’velocity_final’ {Apillar_velocity_average(time_to_zero_velocity)} 
response ’PULSE_2’ expression {Integral 
 ("Apillar_velocity_average(t)", 
 time_to_engine_zero, 
 time_to_zero_velocity 
 ) 
 /(time_to_zero_velocity - time_to_engine_zero)} 
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Appendix E 

Glossary 

 
 
 
 
ANOVA.  Analysis of variance. Used to perform variable screening by identifying insignificant variables. 
Variable regression coefficients are ranked based on their significance as obtained through a partial F-test. 
(See also variable screening). 
 
Bias error. The total error – the difference between the exact and computed response - is composed of a 
random and a bias component. The bias component is a systematic deviation between the chosen model 
(approximation type) and the exact response of the structure (FEA analysis is usually considered to be the 
exact response). Also known as the modeling error. (See also random error). 
 
Binout. The name of the binary output file generated by LS-DYNA (Version 970 onwards). 
 
Committee. A set of Neural Networks of the same order constructed using the same set of results. The nets 
are usually slightly different because a different weight initiator is typically used for the regression 
procedure of each individual net. 
 
Composite function. A function constructed by combining responses and design variables into a single 
value. Symbolized by F. 
 
Concurrent simulation. The running of simulation tasks in parallel without message passing between the 
tasks. 
 
Confidence interval. The interval in which a parameter may occur with a specified level of confidence. 
Computed using Student’s t-test. Typically applied to accompany the significance of a variable in the form 
of an error bar.  
 
Constraint. An absolute limit on a response variable specified in terms of an upper or lower limit. 
 
Constrained optimization. The mathematical optimization of a function subject to specified limits on other 
functions. 
 
Conventional Design. The procedure of using experience and/or intuition and/or ad hoc rules to improve a 
design. 
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Crossplot. A curve obtained by using the two ordinate values at a coinciding abscissa obtained from two 
separate functions. The two ordinate values are used as the abscissa and ordinate in the new crossplot. In 
LS-OPT two separate time histories are typically used to construct a single crossplot. 
 
Delimiter. Symbol(s) to separate numeric fields in a text file. Typically spaces, tabs or commas. 
 
Dependent. A function which is dependent on variables. Dependent variable. 
 
Design of Experiments. See experimental design. 
 
Design parameter. See design variable. 
 
Design formula. A simple mathematical expression which gives the response of a design when the design 
variables are substituted. See response surface. 
 
Design space. A region in the n-dimensional space of the design variables (x1 through xn to which the 
design is limited. The design space is specified by upper and lower bounds on the design variables. 
Response variables can also be used to bound the design space. 
 
Design surface. The response variable as a function of the design variables, used to construct the  
formulation of a design problem. (See also response surface, design rule). 
 
Design sensitivity. The gradient vector of the response. The derivatives of the response function in terms of 
the design variables. df /dxi. 
 
Design variable. An independent design parameter which is allowed to vary in order to change the design. 
Symbolized by (xi or x (vector containing several design variables)). 
 
Discipline. An area of analysis requiring a specific set of simulation tools, usually because of the unique 
nature of the physics involved, e.g. structural dynamics or fluid dynamics. In the context of MDO, often 
used interchangeably with solver. 
 
DOE. Design of Experiments. See experimental design. 
 
Domain reduction. The reduction of the region of interest in the design space during the optimization 
process. 
 
D-optimal. The state of an experimental design in which the determinant of the moment matrix XX T  of 
the least squares formulation is maximized. 
 
DSA. Design sensitivity analysis. 
 
Ensemble. A collection of neural nets of different (usually thought of as ascending) order based on the same 
set of results. 
 
Elliptic approximation. An approximation in which only the diagonal Hessian terms are used. 
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Experiment. Evaluation of a single design. 

 
Experimental Design. The selection of designs to enable the construction of a design response surface. 
Sometimes referred to as the Point Selection Scheme. 
 
Feasible Design. A design which complies with the constraint bounds. 
 
Feedforward Neural Network. See Neural Network. 
 
Function. A mathematical expression for a response variable in terms of design variables. Often used 
interchangeably with “response”. Symbolized by f. 
 
Functionally efficient. See Pareto optimal. 
 
Function evaluation. Using a solver to analyze a single design and produce a result. See Simulation. 
 
Global variable. A variable of which the scope spans across all the design disciplines or solvers. Used in 
the MDO context. 
Global approximation. A design function which is representative of the entire design space. 
 
Global Optimization. The mathematical procedure for finding the global optimum in the design space. E.g. 
Genetic Algorithm, Particle Swarm, etc. 
 
Gradient vector. A vector consisting of the derivatives of a function f in terms of a number of variables x1 
to xn. s = [df /dxi]. See Design Sensitivity. 
 
History. Response history containing two columns of (usually time) data generated by a simulation. 
 
Importance. See Weight. 
 
Infeasible Design. A design which does not comply with the constraint functions. An entire design space or 
region of interest can sometimes be infeasible. 
 
Isoline. A line representing a constant value of a scalar quantity. In the LS-OPT metamodel plotting feature 
isolines are used with metamodel functions. 
 
Iteration. A cycle involving an experimental design, function evaluations of the designs, approximation and 
optimization of the approximate problem. 
 
Kriging. A Metamodeling technique using Bayesian regression. 
  
Latin Hypercube Sampling. The use of a constrained random experimental design as a point selection 
scheme for response approximation.  
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Least Squares Approximation. The determination of the coefficients in a mathematical expression so that 
it approximates certain experimental results by the minimization of the sum of the squares of the 
approximation errors. Used to determine response surfaces as well as calibrating analysis models. 
 
Local Approximation. See Gradient vector. 
 
Local variable. A variable of which the scope is limited to a particular discipline or disciplines. Used in the 
MDO context. 
 
Material identification. See parameter identification. 
 
MDO. Multidisciplinary design optimization. 
 
Metamodeling. The construction of surrogate design models such as polynomial response surfaces, 
Artificial Neural Networks or Kriging surfaces from simulations at a set of design points.  
 
Min-Max optimization problem. An optimization problem in which the maximum value considering 
several responses or functions is minimized. 
 
Model calibration. The optimal adjustment of parameters in a numerical model to simulate the physical 
model as closely as possible. 
 
Modeling error. See bias error. 
 
Multidisciplinary design optimization (MDO). The inclusion of multiple disciplines in the design 
optimization process. In general, only some design variables need to be shared between the disciplines to 
provide limited coupling in the optimization of a multidisciplinary target or objective. 
 
Multi-objective. An objective function which is constituted of more than one objective. Symbolized by F.  
 
Multi-objective Optimization (MOO). Multi-objective optimization is the procedure for constructing a 
Pareto optimal front. 
 
Multi-criteria. Refers to optimization problems in which several criteria are considered. 
 
MP. Mathematical Programming. Mathematical optimization. 
 
MSE. Mean Squared Error. Used for system identification. 
 
Neural network approximation. The use of trained feedforward neural networks to perform non-linear 
regression, thereby constructing a non-linear metamodels (see metamodeling). 
 
Numerical sensitivity. A derivative of a function computed by using finite differences. 
 
Noise. See random error. 
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Objective. A function of the design variables that the designer wishes to minimize or maximize. If there 
exists more than one objective, the objectives have to be combined mathematically into a single objective. 
Symbolized by Φ . 
 
Optimal design. The methodology of using mathematical optimization tools to improve a design iteratively 
with the objective of finding the ‘best’ design in terms of predetermined criteria. 
 
Optimization strategy. A strategy for metamodel-based optimization such as Single Stage, Sequential or 
Sequential with Domain Reduction. 
 
Parameter identification. See System identification. 
 
Pareto optimal. A multi-objective design is Pareto-optimal if none of the objectives can be improved 
without at least one objective being affected adversely. A Pareto optimal front can be constructed using 
optimization. 
 
Point selection scheme. Same as experimental design. 
 
Preference function. A function of objectives used to combine several objectives into a single one suitable 
for the standard MP formulation. 
 
Preprocessor. A graphical tool used to prepare the input for a solver. 
 
Radial basis function network. The use of radial basis functions (RBFs) to approximate response 
functions. The LS-OPT default option is the Hardy’s multi-quadrics but a user can also select Gaussian 
function as the radial basis function. This is a global approximation method. 
 
Random error. The total error – the difference between the exact and computed response - is composed of 
a random and a bias component. The random component is, as the name implies, a random deviation from 
the nominal value of the exact response, often assumed to be normally distributed around the nominal value. 
(See also bias error). 
 
Reasonable design space. A subregion of the design space within the region of interest. It is bounded by 
lower and upper bounds of the response values. 
 
Region of interest. A sub-region of the design space. Usually defined by a mid-point design and a range of 
each design variable. Usually dynamic. 
 
Reliability-based design optimization (RBDO). The performing of design optimization while considering 
reliability-based failure criteria in the constraints of the design optimization formulation. This implies the 
inclusion of random variables in the generation of responses and then extracting the standard deviation of 
the responses about their mean values due to the random variance and including the standard deviation in 
the constraint(s) calculation. 
 
Residual. The difference between the computed response (using simulation) and the predicted response 
(using a response surface). 
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Response quantity. See response. 
 
Response Surface. A mathematical expression which relates the response variables to the design  
parameters. Typically computed using statistical methods. 
 
Response. A numerical indicator of the performance of the design. A function of the design variables 
approximated using a metamodel which can be used for optimization. Symbolized by f. Collected over all 
design iterations for plotting. (See also history). 
 
Result. A numerical indicator of the performance of the design. A result is not associated with a metamodel, 
but is typically used for intermediate calculations in metamodel-based analysis. 
 
RBF. Radial Basis Function. RBF’s are used as basis functions for metamodels (see also metamodeling). 
These functions are typically Gaussian.  

 
RSM. Response Surface Methodology. 
 
Run directory. The directory in which the simulations are done. Two levels below the Work directory. The 
run directory contains status files, the design coordinate file XPoint and all the simulation output. The 
logxxxx file which contains a log of the file transfer, the output log of the solver and a log of the result 
extraction also resides in this directory. 
 
Saturated design. An experimental design in which the number of points equals the number of unknown 
coefficients of the approximation. For a saturated design no test can be made for the lack of fit. 
 
Scale factor. A factor which is specified as a divisor of a response in order to normalize the response. 
 
Sensitivity. See Design sensitivity. 
 
Slack constraint. A constraint with a slack variable. The violation of this constraint can be minimized. 
 
Slack variable. The variable which is minimized to find a feasible solution to an optimization problem, e.g.  
e in: min e subject to .0;)( ≥≤ eexg j  See Strictness. 
 
Simulation. The analysis of a physical process or entity in order to compute useful responses. See Function 
evaluation. 
 
Solver. A computational tool used to analyze a structure or fluid using a mathematical model. See 
Discipline. 

Solver directory. A subdirectory of the work directory that bears the name of a solver and where database 
files resulting from extraction and the optimization process are stored. 

Space Filling Experimental Design. A class of experimental designs that employ an algorithm to 
maximize the minimum distance between any two points. 
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Space Mapping. A technique which uses a fine design model to improve a coarse surrogate model. The 
hope is, that if the misalignment between the coarse and fine models is not too large, only  a few fine model 
simulations will be required to significantly improve the coarse model. The coarse model can be a response 
surface. 

Stochastic.  Involving or containing random variables. Involving probability or chance. 

Stopping Criterion. A mathematical criterion for terminating an iterative procedure. 

Strictness. A number between 0 and 1 which signifies the strictness with which a design constraint must be 
treated. A zero value implies that the constraint may be violated. If a feasible design is possible all 
constraints will be satisfied. Used in the design formulation to minimize constraint violations. See Slack 
variable. 

Subproblem. The approximate design subproblem constructed using response surfaces. It is solved to find 
an approximate optimum. 

Subregion. See region of interest. 

Successive (or Sequential) Approximation Method. An iterative method using the successive solution of 
approximate subproblems. 

System identification. A procedure in which a numerical model is calibrated by optimizing selected 
parameters in order to minimize the residual error with respect to certain targeted responses. The targeted 
responses are usually derived from experimental results. 

Target. A desired value for a response. The optimizer will not use this value as a rigid constraint. Instead, it 
will try to get as close as possible to the specified value. 

Template. An input file in which some of the data has been replaced by variable names, e.g.  
<<Radius>>. A template may also contain the LS-DYNA *PARAMETER keyword with corresponding 
@-parameters. LS-OPT will recognize the parameters defined in the template and display them in the GUI.  

Trade-off curve. A curve constructed using Pareto optimal designs. 

Transformed variables. Variables which are transformed (mapped) to a different n-space using a 
functional relationship. The experimental design and optimization are performed in this space. 

Variable screening. Method to remove insignificant variables from the design optimization process based 
on a ranking of regression coefficients using analysis of variance (ANOVA). (See also ANOVA). 

Weight. A measure of importance of a response function or objective. Typically varies between 0 and 1. 

Work directory. The directory is which the input files reside and where output is produced. See also Run 
directory. 
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Appendix G 

LS-OPT Commands: Quick Reference Manual 

 
 
Note: 
 
All commands are case insensitive. 
The commands which are definitions are given in boldface. 
Page reference numbers of the syntax definition are given in the last column. 
Command phrases in { } are optional. 
Names cannot start with a number. 
 
string: Extraction command, solver/preprocessor command, filename (pathname)  in double quotes 
name:   Name in single quotes 
expression:  Mathematical expression in curly brackets 
 

G.1 Problem description 
 
Constants number  The number of constants in the problem 115 
Variables number  The number of variables in the problem 115 
Dependents number  The number of dependent variables 115 
Histories number  The number of histories 115 
Responses number  The number of responses 115 
Composites number  The number of composite functions 115 
Objectives number  The number of objectives 115 
Constraints number  The number of constraints 115 
Solvers number  The number of solvers 115  
Distribution number  The number of probabilistic distributions 115 
 
 

G.2 Parameter definition 
 
Constant name value  constant 162 
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G.3 Probabilistic distributions 
 
Distribution name type values         165 
 

type values 
NORMAL mu sigma 
UNIFORM lower upper 
USER_DEFINED_PDF filename 
USER_DEFINED_CDF filename 
LOGNORMAL mu sigma 
WEIBULL scale shape 
BETA lower upper shape1 shape2 

 

G.4 Design space and region of interest 
 
Variable name value  Starting value for design variable  160 
Range name value  Range of variable to define region of interest  160 
Lower bound variable name value  Lower bound of Variable  160 
Upper bound variable name value  Upper bound of Variable  160 
Dependent name expression  Dependent variable  162 
Variable name max Saddle direction flag 164 
Constant name value Value of constant 162 
Local name Variable is not global 161 

G.5 Multidisciplinary or multi-case environment 
 
Solver package_name name  software package identifier  143 
Solver input file string  solver input file name  143 
Solver command string  solver command line  143 
Solver append file string  name of file to be appended to input  143 
Solver check file string name of checkpoints file 201 
Solver evaluate file string name of sampling points file 201 
Solver extra file string names of extra files (can be repeated) 157 
 
Prepro name  software package identifier  149 
Prepro command string  pre-processor command file  149 
Prepro input file name  pre-processor input file  149 
Prepro output file name  pre-processor output file name for Templex  151 
 
Queue queue type  queue for workload scheduling  127 
 
Interval value  time interval for progress reports  143 
Solver concurrent jobs number  number of concurrent jobs  126 
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Solver variable Flag for solver variable 161 

G.6 Package identifiers 
 
ingrid   LS-INGRID     149 
truegrid  TrueGrid     150 
ansa  ANSA      Error! Bookmark not defined.   
hypermorph HyperMorph     152 
dyna   LS-DYNA (versions prior to 960)  143 
dyna960  LS-DYNA Version 960/970  143 
own   user-defined     148 
depmorpher DEP-Morpher     Error! Bookmark not defined. 
 

G.7 Queuer identifiers 
 
lsf   Load Sharing Facility 
loadleveler  IBM LoadLeveler 
pbs   PBS 
nqe   NQE 
nqs  NQS 
aqs  AQS 
slurm  SLURM 
blackbox Blackbox 
msccp  MS Windows Compute Cluster Server 
 

G.8 Metamodel 
 

Solver order [linear|elliptic| 
interaction|quadratic|FF|RBF|user] 

Type of approximating function 192

Solver RBF transfer [HMQ|GAUSS] Type of transfer function 186
Solver FF_committee size number Size of a FFNN committee 186
Solver FF_committee discard number Discard 2*number committee members 186
Solver FF_committee use [MEAN|MEDIAN] Centering procedure for NN evaluation 186
Solver user metamodel name Name (without pre-/suffix) 190
Solver user metamodel path path Metamodel library path 190
Solver user metamodel command string String used by metamodel 190
Solver user metamodel param value Input value 190
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G.9 Point selection 
 

Solver experimental design design Experimental design type 192

Solver basis experiment design Basis experiment for D-optimal design 
points selection scheme 192

Solver number basis experiments number Number of experimental points 192
Solver number experiment number Number of experimental points 192
Solver update doe Updating of experimental points 199
Solver experiment duplicate name  Duplicate previously defined experiment 196

Solver alternate experiment 1 Alternative experimental design required 
for first iteration 201

Solver alternate order[linear] Type of alternative approximating 
function 201

Solver alternate experimental design design Alternative experimental design type 201

Solver alternate basis experiment design Alternative basis experiment for D-
optimal design points selection scheme 201

Solver alternate number basis experiments 
number 

Alternative number of experimental 
points 201

Solver alternate number experiment number Alternative number of experimental 
points 201

Solver experiment augment iteration number Change number of points starting with 
iteration 203

 

G.10 Point selection types 
 

Experiment Description Identifier Default approximation 
Linear Koshal lin_koshal linear 
Quadratic Koshal quad_koshal quadratic 
Central Composite composite quadratic 
Latin Hypercube latin_hypercube linear 
Monte Carlo monte_carlo linear 
Plan plan linear 
User-defined user linear 
D-optimal dopt linear 
Space filling space_filling - 
Duplicate duplicate - 
Factorial Designs 
2n 2toK Linear 
3n 3toK quadratic 
M  M  M  
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11n 11toK quadratic 

G.11 Database recovery 
 

Solver recover dyna[d3plot|d3hsp| 
binout|d3eigv] 

Recover DYNA database files of a 
remote job for given prefix 137

Solver recover file file_wildcard Recover database file(s) of a remote job 138
 

G.12 Design problem formulation 
 
History name string Defines history function  206 
History name expression  Defines history function  206 
History name file string History from file 206 
Historysize number  Defines maximum number of data points in history function  209 
Result name string Defines a result 227 
Result name expression Defines a result 227 
Matrix name expression Defines a matrix 227 
Response name string  Defines response function   210 
Response name expression  Defines response function  210 
Response  
     [linear|elliptic|quadratic|FF|kriging]  Type of approximation  234 
 
Composite name type [weighted|targeted]  Type of composite function  233 
Composite name expression Defines composite function  234 
Composite name response name value* { scale factor }  Component definition  234 
Composite name variable name value* { scale factor }  Component definition  234 
Weight value  Weight (only targeted)  235 
 
Maximize  Maximize objective  242 
 
Objective name { weight  }   Objective definition  242 
 
Constraint name  Constraint definition  243 
[Lower|upper] bound constraint name value  Bound on constraint  245 
Strict / slack  Slack variable omission status  245 
Move / stay / move start Reasonable space  sampling 197 
Constraint name scale [lower|upper] bound factor Constraint scale factor 247 
 
* value = target value for type =  MSE, weight for type =  weighted 
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G.13 LS-DYNA result interfaces 
 
DynaMass p1 p2 p3 ... pn mass_attribute Mass 219 
DynaThick [THICKNESS|REDUCTION] p1 p2 ... pm 
[MIN|MAX|AVE] 

Shell 
thickness 222 

DynaFLD p1 p2 ... pn intercept neg_slope pos_slope FLD 223 
DynaFLDg [LOWER|CENTER|UPPER] p1 p2 ... pn 
load_curve_id General FLD 224 

DynaPStress [S1|S2|S3|MEAN] p1 p2 ... pn 
[MIN|MAX|AVE] 

Principal 
stress 225 

DynaFreq mode_original [FREQ|NUMBER|GENMASS] Modal data 220 
BinoutHistory –res_type res_type {-sub sub} –cmp 
component {-invariant invariant –id id –pos position 
–side side –filter filter_type –filter_freq 
filter_freq –units units –ave_points ave_points -
start_time -start_time start_time –end_time 
end_time} 

Binout 213 

BinoutResponse {history_options} –select 
MAX|MIN|AVE|TIME Binout 214 

D3PlotHistory –res_type res_type {-sub sub} –cmp 
component {–id id –pos position –pids part_ids –loc 
ELEMENT|NODE –select selection –coord x y z –tref
ref_state -setid setid}{–start_time start_time –
end_time end_time } 
 

d3plot 216 

D3PlotResponse {history_options} –select selection d3plot 218 
 

G.14 Solution tasks 
 
Iterate n  Iterate over n successive approximations 249 
Analyze Monte Carlo Monte Carlo evaluation  178 
Analyze Metamodel Monte Carlo Monte Carlo evaluation with metamodel 179 
 

G.15 LS-DYNA Results Statistics 
 
analyze dynastat {history name} Compute LS-DYNA results statistics 291 
dynastat order approx_order Use metamodels; order of metamodel   288 
dynstat outlier ON/OFF Report metamodel outliers   288 
dynastat max vector ON/OFF Displacement magnitude formulation 302 
dynastat component vector ON/OFF Displacement magnitude formulation 302 
dynastat correlation response name Correlation  292 
dynstat solver name Solver  291 
dynastat iteration number Iteration  291 
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G.16 Intrinsic functions for mathematical expressions 
 
Note: Trigonometric functions use and return degrees, not radians. 
 

int(a) integer 
nint(a) nearest integer 
abs(a) absolute value 
mod(a,b) remainder of  a/b 
sign(a,b) transfer of sign from b to |a| 
max(a,b) maximum of a and b 
min(a,b) minimum of a and b 
sqrt(a)  square root 
exp(a) ea 
pow(a,b) ab 
log(a) natural logarithm 
log10(a) base 10 logarithm 
sin(a) sine 
cos(a) cosine 
tan(a) tangent 
asin(a) arc sine 
acos(a) arc cosine 
atan(a) arc tangent 
atan2(a,b) arc tangent of a/b 
sinh(a) hyperbolic sine 
cosh(a) hyperbolic cosine 
tanh(a) hyperbolic tangent 
asinh(a) arc hyperbolic sine 
acosh(a) arc hyperbolic cosine 
atanh(a) arc hyperbolic tangent 
sec(a) secant 
csc(a) cosecant 
ctn(a) Cotangent 
cnd(a) cumulative normal distribution: 

duux
x

∫
∞−
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⎠

⎞
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−=Φ
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2
1)(

2

1,0 π
 

 
 
3×3 Matrix functions: 
 

inv(A) Inverse of matrix A 
tr(A) Transpose of matrix A 
rx(angle) Rotation about x-axis (angle in rad) 
ry(angle) Rotation about y-axis (angle in rad) 
rz(angle) Rotation about z-axis (angle in rad) 
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G.17 Special functions for mathematical expressions 
 
 
Expression Symbols Type 

Integral(expression[,t_lower,t_upper,variable]) ∫
b

a
tdgtf )()(  Resp. 

Derivative(expression[,T_constant]) Tttf =ΔΔ |/  ~ Tttf =|d/d  Resp. 

Min(expression[,t_lower,t_upper]) )]([minmin tff
t

=  Resp. 

Max(expression[,t_lower,t_upper]) )]([maxmax tff
t

=  Resp. 

Initial(expression) First function value 
on record 

Resp. 

TerminationTime (expression) Last time value Resp. 

Final(expression) Last function value 
on record 

Resp. 

Lookup(expression,value[,t_lower,t_upper]) Inverse function 
t(f = F) 

Resp. 

LookupMin(expression[,t_lower,t_upper]) Inverse function 
t(f = fmin) 

Resp. 

LookupMax(expression[,t_lower,t_upper]) Inverse function 
t(f = fmax) 

Resp. 

Crossplot(expr_f,expr_g[,numpts,t_lower,t_upper]) Crossplot g(t) vs. f(t) History
MeanSqErr(target_G,history_f[,numpts,z_low,z_up, 
          wgt_typ,scl_typ,wgt_val,scl_val, 
          wgt_curve,scl_curve]) 

2

1

)(1 ∑
=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −P

p p

pp
p s

Gf
W

P
x Comp. 

Matrix3x3Init(x1,y1,z1, x2,y2,z2, x3,y3,z3) Initialize 3×3 matrix Matrix 
Rotate(x1,y1,z1, x2,y2,z2, x3,y3,z3) Rotation matrix 

defined by 3 points. 
Matrix 

 

G.18 Metamodel-based Optimization strategies 
 
Optimization strategy SINGLESTAGE Single stage optimization 275 
Optimization strategy SEQUENTIAL Sequential optimization 276 
Optimization strategy DOMAINREDUCTION Sequential optimization with domain 

reduction  
277 

 

G.19 Selecting an optimization method 
 
 
Optimization method srsm Metamodel-based Optimization 273 
Optimization method genalg Genetic Algorithm 273 
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G.20 Setting parameters for optimization algorithm 
 
iterate param identifier value  Define parameters in LFOPC  278 
 
 

G.21 Selecting an optimization algorithm for SRSM 
 
 

Optimization algorithm lfopc Leap Frog Optimizer 
(LFOPC) 

Optimization algorithm genalg Genetic Algorithm (GA) 

Optimization algoritm simulated annealing Adaptive Simulated 
Annealing (ASA) 

Optimization algorithm hybrid ga Hybrid GA/LFOPC 
Optimization algorithm hybrid simulated annealing Hybrid ASA/LFOPC 
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