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1 Introduction 

LS-OPT is a design optimization and probabilistic analysis package with an interface to LS-DYNA® that 
provides a flexible framework to solve several types of design problems. In order to solve the problem, 
it runs simulations at multiple samples that are selected all at once (single iteration) or iteratively [1]. 
The iterative approach has two main advantages: 

 it does not require prior knowledge about the sufficient number of samples and instead provides 

a convergence history  

 it can use updated information from the previous runs to select the samples smartly and thus 

typically reduces the number of required simulations 

While LS-OPT supports both direct and metamodel-based solution methods, the discussion in this study 
relates to the sampling for metamodel-based [2][3] and classifier-based methods [4][5]. The paper will 
present an overview of the existing sampling strategies as well as some new adaptive sampling tools 
that are being developed for release in LS-OPT 6.1.  
 
Three metamodel-based optimization strategies have been available in LS-OPT for quite some time – 
single iteration, sequential and sequential with domain reduction [1][6]. Among these the last one falls 
in the category of adaptive sampling methods. It sequentially adapts the variable bounds for the 
sampling region based on the previous predicted optimum and thus samples in the vicinity of the 
optimum. Efficient Global Optimization (EGO) [7], based on the kriging metamodel [8], has been added 
as a fourth optimization strategy in LS-OPT 6.0.  It selects one point per iteration based on the objective 
function prediction and the prediction variance, while the remaining samples are space-filling.  
 
The adaptive nature of the above strategies stems from the consideration of the previous optimum and 
sampling density information. However, they do not give any particular emphasis to the role of design 
constraints in determining the sample selection, except in the vicinity of the optimum. LS-OPT does 
support the definition of sampling constraints that are explicit functions of the design variables. These 
constraints are used to restrict the sampling domain to the regions perceived as important. However, 
very often the constraints are not available as analytical functions and are instead obtained from the 
simulations. Additionally, in the present LS-OPT implementation the sampling constraints are 
automatically added as design constraints as well. In other words, the use of sampling constraints is 
limited to sampling within the explicitly defined feasible regions. This may sometimes be useful when 
the exact constraints are known, but may not be the best sampling strategy when the goal is something 
other than simply finding feasible samples or when the constraints are not available as explicit functions. 
In the general case the constraint boundary needs to be estimated. Also, strategies other than selecting 
samples in the feasible space, e.g. sampling in the vicinity of the constraint boundary, are needed 
[9][10][11].  
 
To enable adaptivity of the design of experiments (DOE), the sampling constraint capability of LS-OPT 
has been enhanced with version 6.1 release in mind. The methodology is based on explicit design space 
decomposition (EDSD) [11][12] using support vector machine (SVM) classifiers [13], which have been 
implemented in LS-OPT 6.0. As part of the recent development for version 6.1, they can now be 
assigned as sampling constraints that are not necessarily design constraints. One can choose to select 
the feasible region or in the vicinity of the SVM constraint boundary. Sampling near the boundary is 
especially important in the context of reliability assessment. In the previous LS-OPT versions the 
sampling for reliability assessment was limited to a single iteration. This restriction has also been 
removed in this work with the ability to sample in the vicinity of the approximated failure boundary 
iteratively. These techniques are expected to reduce the number of simulations required to arrive at the 
solution with the same level of accuracy.  
 



12th European LS-DYNA Conference 2019, Koblenz, Germany 

 

 

 
© 2019 Copyright by DYNAmore GmbH 

The paper is organized as follows. Section 2 lists the currently available sampling techniques in LS-
OPT. This is followed by a brief introduction to classification-based design and SVM classifiers in Section 
3. The new tools and methods for classfication-based adaptive sampling using LS-OPT are presented 
in Section 4. Examples of adaptive sampling using EDSD are demonstrated in Section 5. The tools are 
still in their preliminary stages of development, so the paper ends with a discussion on the future scope 
for development in Section 6 that includes ease of use as well as additional methods. 
 

2 Existing Iterative Sampling Strategies and Tools in LS-OPT 

2.1 Sequential Sampling 

In this approach, a specified number of samples are added for each iteration. The first point at each 
iteration is obtained by solving the design optimization problem while the rest are typically space-filling. 
Thus, other than the first sample, the rest can be anywhere in the space without consideration of the 
objective function or the constraints. Thus, the sampling doesn’t really adapt itself as more simulation 
results are obtained. 

2.2 Sequential Sampling with Domain Reduction 

The strategy is more adaptive in nature as the design problem is considered while selecting all the 
samples. The first sample is selected in the same manner as in the sequential approach, but in addition 
the other samples are also selected within a subregion in the vicinity of the previous optimum. The size 
of this box-shaped subregion typically decreases as the optimum converges. 

2.3 Efficient Global Optimization 

This is also a sequential approach in which the design problem is considered for selecting the first 
sample only. The only difference is that instead of minimizing the objective function, an expected 
improvement function (EIF) is maximized to select the first sample. The EIF considers both the mean 
prediction of the objective function as well as its variance. This method is based on the Kriging 
metamodel, which provides a measure of the prediction variance. Although the LS-OPT 6.0 
implementation of EGO selects all points expet the first using a space-filling method, there is scope for 
improving this by considering the EIF for these samples as well. 
 

3 Classification-based design Using LS-OPT 

Sampling constraints based on a classification-based approach are being developed for version 6.1. 
Before presenting those tools, the basic idea of classifiers implemented in LS-OPT 6.0 is introduced in 
this section. 

3.1 Basic Classification-based design Methodology 

In both design optimization and reliability assessment one of the main tasks is the demarcation between 
acceptable (feasible/safe) and unacceptable (infeasible/failed) designs. In optimization, the optimum 
design is located in the feasible space. Similarly, in reliability assessment, the failed samples contribute 
to the failure probabiliy. If the boundary separating acceptable and unacceptable regions of the design 
space is available analytically in terms of the design variables, reliability assessment and optimization 
become relatively straightforward. However, in general such a boundary is not available. Instead, only 
the responses corresponding to specific designs are available. In metamodel-based approaches the 
response values at these specific points in the design space are used to construct analytical response 
approximations to predict the responses at any general design. These approximations are then used to 
demarcate the acceptable and unacceptable design space based on threshold values. However, a 
different approach is used in classification based design. Classification methods only require pass/fail 
information at a few specified samples that are used for training. This information is readily available 
using simulations at these samples even if the responses are binary or discontunuous. The decision 
boundary is constructed as the classifier that optimally separates the acceptable and unacceptable 
training samples. The difference between metamodel-based and classification-based methods to 
determine acceptability of any general design alternative is shown in Fig 1. The classification-based 
method takes a decision directly based on the position of the new sample in the design space whereas 
in the metamodel-based method, the decision is taken based on the corresponding predicted response 
value and threshold. As the decision-making using a trained classifier is straightforward and cheap, the 
decision boundary can be used as an optimization constraint or for reliability assessment. Additionally 
a classifier can also be used to define the sampling domain, which is the main topic of this paper. Once 
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the classifier seperating the feasible and infeasible samples is constructed, it can be used for adaptive 
sampling in varios ways, e.g. sampling in the feasible region, sampling in the vicinity of the boundary 
(more in Section 4) etc. 
 

 
 

Fig.1: Summary of basic classification method (bottom) and comparison to metamodeling (top). 

3.2 Support Vector Machine Classification 

SVMs belong to a class of macine learning techniques that can be used for both classification and 
regression. The basic idea of SVM classification in the context of linear binary separators is to maximize 
the margin between two hyperplanes (lines in a two-dimensional space) that are parallel and equidistant 
on either side from the separaing hyperplane. The separating boundary demarkaing the samples 
belonging to two classes, typically labelled as +1 and -1, is referred to as the SVM decision boundary 
and the two parallel hyperplanes are known as the support hyperplanes. The SVM decision boundary 
is constructed such that there is no sample belonging to either class in the margin between the support 
hyperplanes. The SVM value is equal to zero at the decision boundary and +1 and -1 at the two support 
hyperplanes. The same idea is extended to nonlinear decision boundaries using a kernel function. In 
such cases the decision boundary and the supporting boundaries are linear in a higher dimensional 
feature space, but they are nonlinear in the original variable space or input space. The SVM values at 
the decision boundary and the two support boundaries are still 0, +1 and -1. The general SVM boundary 
for the nonlinear case is obtained as s(x)=0, where s(x) is given in Eq. (1). 
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Here, yi =  1 (e.g. red vs green) is the class label, αi is the Lagrange multiplier for ith sample and b is the 
bias.  The kernel K maps the design space and the feature space (the high-dimensional space consisting 
of basis functions as the dimensions, where the classifier is linear). In this work, a Gaussian kernel is 
used to construct SVM boundaries (s(x) = 0).  

 

Fig.2: Linear classification using SVM. 
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4 Classifier-based Adaptive Sampling Using LS-OPT 

As mentioned above, the margin between the supporting boundaries does not have any samples. 
Additionally, the samples nearest to the decision boundary are the ones that influence it the most. Thus, 
it would be reasonable to say that sampling within the margin, which is in the vicinity of the decision 
boundary and lacks existing samples, could provide useful information to update the decision boundary. 
This is especially useful in the context of reliability assessment where an accurate approximation of the 
boundary is needed. In general, the samples can be constrained to lie in the vicinity of the decision 
boundary as: 

 

|𝑠(𝑥)| = |𝑏 + ∑ 𝛼𝑖𝑦𝑖𝐾(𝒙, 𝒙𝑖)

𝑁

𝑖=1

| ≤ 𝜀 
(2) 

 

 
LS-OPT 6.1 will allow such constraints to be defined using EDSD sampling constraints. It may also be 
desirable to select a sample in sparsely populated regions. A new sample can then be obtained as: 
 

 max
𝒙

‖𝒙 − 𝒙𝑛𝑒𝑎𝑟𝑒𝑠𝑡‖

𝑠. 𝑡.  |𝑏 + ∑ 𝛼𝑖𝑦𝑖𝐾(𝒙, 𝒙𝑖)

𝑁

𝑖=1

| ≤ 𝜀
 

 

(3) 

 
Apart from sampling in the vicinity of the boundary, it may sometimes be useful to sample the region 
belonging to one of the classes, e.g. the feasible region or the non-dominated region in the context of 
multi-objective optimization. Such a constraint, with some tolerance, can be defined as: 

 

𝑠(𝑥) = 𝑏 + ∑ 𝛼𝑖𝑦𝑖𝐾(𝒙, 𝒙𝑖)

𝑁

𝑖=1

≤ 𝜀

𝑜𝑟

𝑠(𝑥) = 𝑏 + ∑ 𝛼𝑖𝑦𝑖𝐾(𝒙, 𝒙𝑖)

𝑁
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≥ 𝜀

 

 

 

 

(4) 

Additionally, the fraction of samples to be selected within the classifier constrained regions can also be 
specified. The remaining samples are selected to fill the entire space without the EDSD sampling 
constraints.  
 

5 Examples 

Two examples are presented in this section – one for optimization and the other for failure probability 
calculation using Monte Carlo analysis. The EDSD-based adaptive strategy is compared to the 
sequential space-filling strategy for these examples. 

5.1 Design Optimization with Mode Tracking (Discontinuous Frequency Constraint) 

This example consists of an LS-DYNA simplified car model (Fig 3) for which the mass is minimized while 
constraining the first torsional mode to be greater than a certain limit. The thickness values of the bumper 
(tbumper) and the rail (trailb) are the optimization variables.  Thus the optimization problem is: 
 

                                                        
min

𝑥1,   𝑥2

   𝑀𝑎𝑠𝑠

𝑠. 𝑡.   𝜈𝑡𝑜𝑟𝑠𝑖𝑜𝑛 > 2.2
                                                                         (5) 

 
where 𝜈𝑡𝑜𝑟𝑠𝑖𝑜𝑛 is the first torsional mode frequency, x1 and x2 are the thicknesses of bumper and rail, 
respectively. The first torsional mode for the baseline design was identified manually before 
automatically detecting the closest mode shape for the other samples, based on the modal assurance 
criterion (MAC). As the torsional mode is tracked, the mode number can switch from one design to 
another. This is also typically accompanied by a sudden jump in the frequency, leading to a response 
discontinuity (Fig 3).  
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Fig.3: Simplified car LS-DYNA model for modal analysis (left). Mass and discontinuous frequency 
response (right). 

 
Due to the discontinuities in the frequency response, this example is suited for classifier-based 
constraint handling [14]. Therefore, the optimization is solved using an SVM decision boundary. First a 
space-filling sequential approach is used to update the SVM boundary and the optimum iteratively. This 
is compared to an adaptive sampling strategy with samples selected within the SVM margin to get higher 
accuracy near the boundary. The fraction of samples within the margin is varied (0.5, 0.75, 1); rest of 
the samples are space-filling. All the cases are run for 25 iterations with 10 samples per iteration. The 
best computed point history is given in Table 1. The initial constraint boundary is shown in Fig 4. The 
optimization histories are also shown in Fig 5. Additionally the updated constraint boundaries and the 
samples are shown in Fig 6 – Fig 9. It can easily be seen that most of the samples are close to the 
constraint boundary, resulting in high local accuracy, when the samples are added in the margin. 
 

               Samples                                  
Strategy 

Initial  50 100 150 200 250 

Sequential Space-filling 1.1493 1.76644 1.76644 1.75527 1.75424 1.75354 

50% SVM Margin 1.1493 1.77290 1.75446 1.75336 1.75314 1.75314 

75% SVM Margin 1.1493 1.75626 1.75333 1.75311 1.75311 1.75311 

100% SVM Margin 1.1493 1.75447 1.75347 1.75324 1.75314 1.75314 

Table 1: Comparison of the evolution of the optimal mass value using different sampling strategies. 
The red text indicates an infeasible staring design. 

It is interesting to note in Fig 5 that the sequential space-filling strategy cannot find a feasible solution 
for the initial few iterations. It is likely to be due to the local inaccuracy close to the boundary. Fig 4 
shows the lack of samples in the vicinity of the initial boundary, giving it considerable flexibility to 
translate without misclassifying the existing samples. The same is true over the initial few iterations. The 
sudden drops in the mass during some intermediate iterations can be attributed to the SVM trying to 
locate new potentially feasible regions that have not been sampled previously. 
 

 

Fig.4: Modal Analysis Example. Initial Constraint boundary approximation and sampling. 
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Fig.5: Optimization history of modal analysis example.  

 
 

 

Fig.6: Modal Analysis Example. Constraint boundary evolution with sequential space-filling sampling 
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Fig.7: Modal Analysis Example. Constraint boundary evolution with 50% SVM margin sampling 

 

Fig.8: Modal Analysis Example. Constraint boundary evolution with 75% SVM margin sampling 
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Fig.9: Modal Analysis Example. Constraint boundary evolution with 100% SVM margin sampling 

5.2 Reliability Assessment for Tube Impact Example 

The previously available reliability assessment methods in LS-OPT were restricted to single iteration 
direct and metamodel-based Monte Carlo analysis. This restriction will be removed in LS-OPT 6.1. This 
example presents a sequential reliability analysis of a tube impact problem. The z-dispacement at the 
top end of the tube is constrained to be less than 230 mm. The tube thickness THK and the yield strength 
scale factor SIGY are Normally distributed random vriables N(1,0.05). The thickness is in mm and SIGY 
is dimensionless. 

 
              Time =    0sec;        3sec 

Fig.10: Tube Impact Example. The displacement at the top end is constrained 

The failure probability is obtained using sequential space-filling sampling as well as using EDSD-based 
adaptive sampling within the SVM margin. The sampling space is a box around the mean design with 
bounds of ±4𝜎, 𝜎 being the standard deviation. The EDSD-based adaptive sampling can also be used 
to complement a metamodel-based approach, which is suited for this example due to the smooth 
response. To demonstrate this, the sampling is guided by the SVM classifier, but the failure probabilities 
are calculated using feedforward neural network approximations constructed using those samples. An 
initial DOE of 10 spacefilling samples is used, and 10 more per iteration are added sequentially with a 
limit of 20 iterations. The failure probabilities are listed in Table 2. These metamodel-based probabilities 

are calculated with 106 samples, so the confidence intervals are quite small. 

z 
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                       No. of samples 
Strategy 

 
10 

 
50 

 
100 

 
150 

 
200 

Sequential Space-filling 0.386 0.385 0.380 0.377 0.375 

50% SVM Margin 0.386 0.377 0.378 0.378 0.378 

75% SVM Margin 0.386 0.379 0.379 0.380 0.380 

100% SVM Margin 0.386 0.379 0.381 0.379 0.380 

Table 2: Tube Impact failure probability evolution using different update strategies. 

The actual failure probability is calculated using 20000 direct Monte Carlo samples. The 95% confidence 
interval of the failure probability is [0.375,0.388] with a mean estimate of 0.381. It is interesting to note 
that the mean failure probability calculated with space-filling sampling sampling is equal to the lower 
bound of this interval, whereas the adaptively updated values are closer to the mean. Fig 11 shows the 
initial boundary. The updated boundaries and samplings for the four cases are show in Fig 12 – Fig 15. 

 

Fig.11: Tube Impact Example. Initial failure boundary using 10 space-filling samples.  

 

Fig.12: Tube Impact Example. Failure boundary evolution with sequential space-filling sampling.  
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Fig.13: Tube Impact Example. Failure boundary evolution with 50% SVM margin sampling  

 

Fig.14: Tube Impact Example. Failure boundary evolution with 75% SVM margin sampling  
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Fig.15: Tube Impact Example. Failure boundary evolution with 100% SVM margin sampling  

 

6 Conclusions 

LS-OPT provides a general purpose optimization and probabilistic analysis framework that is quite 
flexible in terms of the applications. It attempts to solve the problems in a robust and efficient manner to 
provide the best solution as well as to save computation time for the solver simulations. Adaptive 
sampling is an essential part of this endeavour to attain higher efficiency. Previously, adaptive sampling 
in LS-OPT was mainly limited to a single strategy for optimization, while there was no such strategy for 
failure probability calculation. 
 
To overcome the above limitation, the sampling constraints facility in LS-OPT has been enhanced. While 
it was limited to explicitly defined constraints earlier, and thus inapplicable in most problems, the new 
tool allows sample selection based on classifier-based constraint boundary approximations. Thus it 
allows the samples to be adaptively selected based on different criteria even when the constraints are 
not available explicitly, which is often the case (i.e. constraint responses obtained from simulation results 
or experiments). The new approach also gives higher flexibility in terms of the sampling criteria. 
 
Additionally, the sequential sampling approach (adaptive or space-filling) has been expanded to Monte 
Carlo simulation-based probability of failure calculation, instead of being limited to optimization. This 
allows one to study the convergence of the failure probability. The adaptive approach also enhances 
the accuracy and the efficiency of the reliability analysis.  
 
This work is still in progress and more flexibility as well as automation of the adaptive strategy will be 
provided as it develops further. More examples will also be tested with higher level of difficulty and higher 
dimensionality. Some post-processing tools also need to be developed further for iterative probabilistic 
analysis. Additionally, the EGO strategy will also be enhanced in the future to enable more efficient 
parallel sampling. A non-domination classification criterion will also be introduced to facilitate adaptive 
sampling for multi-objective optimization [15]. 
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