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INTRODUCTION

CO2 Global Regulatory Landscape

• More stringent fuel economy / CO2

requirements drive use of alternative 

materials and joining methods

• CAE based development process requires

predictive models of these

materials and connections

• Comprehensive MDOs allow optimization of

vehicle structures and occupant protection

• Special challenge: small and compact

car segments with high focus on costs
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INTRODUCTION

1988 2000 2006 2011 2014 2016
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Global Regulatory, Consumer Metrics, and Inhouse Loadcases

• More and more stringent loadcases with

partly even contradicting requirements

• New CAE applications

(e.g. pedestrian sensing, airbag misuse, 

human body models, interaction with vehicle

dynamics, …)

• Balancing requires massive CAE support

• Robustness assessment of optimized

solutions

• Role of CAE will be even more important



INTRODUCTION

5

Drive
Situation 

Detection

Inform & alert 

Driver

Driver assistance 

for collision 

avoidance

Driver assistance 

for collision 

mitigation

Collision 

preparation
Crash Post Crash Recovery

Passive SafetyActive Safety

Passive Safety Functions

(Energy Absorption, Airbag, 

Pretensioner, …)

PostCrash Systems

(Door unlock, battery disconnect, 

HV shutdown …)

Lane Departure Warning (LDW)

‘PreSafe’ Systems 

(Motorized Seatbelt, Close 

Windows, Seat Adjustment…)

E-Call / OnStar

Autonomous Emergency Braking (AEB)

Electronic Stability Control (ESC)

Blind Spot Detection

Lighting

(AFL, 

Matrix LED)

Adaptive Cruise Control (ACC)

Current safety topics:



INTRODUCTION

6



1. Introduction

2. Advanced material modeling

3. Optimization and robustness

4. Child safety

5. Integrated safety

6. Summary

AGENDA

7



MATERIALS

Demand for affordable lightweight solutions requires broad mix of

• Traditional and advanced (HSS, UHSS) steels

• Aluminum and other light metal alloy panels

• Casting materials

• Thermoplasts

• Composites (CFK, …)

Tasks:

• CAE needs to capture their mechanical properties with the required accuracy

• Special focus on material rupture

• Comprehend local effects due to the manufacturing process
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MATERIALS

Implemented manufacturing effects:

• Work-hardening effect

• Pre-damage of steels during stamping (with GISSMO)

• Bake-hardening effect of steels

• Anisotropy of reinforced and unreinforced thermoplasts due to injection molding

• CFK (manufacturing defines material properties)
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MATERIAL MODELING (STEEL)

Traditional process (presented in 2005):
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MATERIAL MODELING (STEEL)

Traditional process (presented in 2005):

• Applied to all main load carrying structures 

• Particularly important for material with 

significant „work hardening“ effects 

(e.g. dual-phase & TRIP steels)

• Clear improvement in prediction of deformation

patterns
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Envyo

MATERIAL MODELING (STEEL)

New process: 
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MATERIAL MODELING (THERMOPLASTS)

Background: 

Successful application of Ultrasim® (BASF) for many vehicle programs for many years

Need to establish similar methodology for other thermoplasts
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… and many more



MATERIAL MODELING (THERMOPLASTS)

Material Testing 

and Parameter 

Identification for 

*Mat_157

Fiber Orientation with 

Moldflow®

Envyo (Homogenization and Mapping)

Process chain
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MATERIAL MODELING (THERMOPLASTS)

Validation

Successful implementation and validation for various components

Example: Lower Bumper Support
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OPTIMIZATION AND ROBUSTNESS

Application of advanced optimization tools (example Opel Astra)

• Topology optimization (components & subsystems)

• Sizing optimization (rear upper body)

• Multidisciplinary (sizing) optimization (full vehicle)

- crash loadcases

- body, chassis, NVH loadcases

• Many more local structure optimizations

• Restraints optimization

• Overall vehicle mass reduced by at least 130kg 

despite increased structural performance
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OPTIMIZATION AND ROBUSTNESS
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Test Variation Friction

… etc. 
… etc. 
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OPTIMIZATION AND ROBUSTNESS

Variation studies for vehicle and test parameters

- Determine amount of variation

- Understand root cause of variation

- Develop countermeasures to reduce variation and

to achieve a robust system behaviour
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OPTIMIZATION AND ROBUSTNESS

ANOVA evaluation

Methodology needed to extend

analysis to deformation patterns
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OPTIMIZATION AND ROBUSTNESS

Evaluation of deformation modes and their similarity (Presentation by C. Diez)

Scalar measures (total displacement, energy absorption) give first indication but are

lacking important information
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Virtual drop-tower test of a rail:

1000 pertubations



OPTIMIZATION AND ROBUSTNESS

98%

2%

~10%

Distance matrix𝑫(1000×1000)

Multi-Dimensional-Scaling:

• Reconstructs coordinates from distances

• Visualizes distances

Agglomerative Clustering:

• groups simulations with small distances in 

between (hierarchy)

• Outlier detection

• Semi-manual for validation

and user interest filtering
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OPTIMIZATION AND ROBUSTNESS

How do we make that happen?

• Global HPC cluster

- enables leveraging of resources among the development centers

(time zones, holidays, project peak loads)

- optimization tasks requiring hundreds of full vehicle crash simulations can be planned

and executed without impacting ongoing development work

• Standardized application of optimization tools during the development process
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CHILD SAFETY
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CHILD SAFETY

All CRS have Primer mechanisms for easy positioning
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Headrest Backrest Isofix tray Isofix lever



CHILD SAFETY
Frontal impact correlation (generic pulse)
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CHILD SAFETY

Available CRS Models (Group 0, 1, 2/3, booster)

29



1. Introduction

2. Advanced material modeling

3. Optimization and robustness

4. Child safety

5. Integrated safety

6. Summary

AGENDA

30



INTRODUCTION
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INTEGRATED SAFETY
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INTEGRATED SAFETY

Integrated simulation
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INTEGRATED SAFETY
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• Simulation 1: occupant motion while braking

• With vehicle pitch from vehicle dynamics simulation

• Simulation 2: occupant  simulation in crash

• Initial conditions: dummy-position after simulation 1, vehicle pitch and velocity, pre-stress

2-Step FE-Approach



INTEGRATED SAFETY
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• Advantage: no deviation due to missing initial conditions

• Disadvantage: CPU-time very high

1-Step FE-Approach



INTEGRATED SAFETY
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• Dummy-kinematics while braking different from human kinematics

• Human models needed

• Muscle activity also influences kinematics and under investigation

Dummy Human Model

Outlook



SUMMARY
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• Today, Safety CAE is much more than just structure development

• However, there is more to be done to enhance structure development

- more advanced material models

- increased need for manufacturing process simulation

- detailed subsystem modeling and correlation

• Increased need for optimization and robustness analyses

• In the future, there will be an even higher focus on integrated safety
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