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Abstract: 
 
An overview of LS-OPT features is given with special emphasis on new features available in LS-OPT 
Version 3.1. The main features added to Version 3.1 include discrete optimization, 3-D metamodel 
plotting, additional statistics features and user-defined sampling. Some refinements have been made 
to the GUI with regard to Neural Network specification. 
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1 Introduction and Overview 
In today’s CAE environment it is unusual to make engineering decisions based on a single physics 
simulation. A typical user conducts multiple analyses by varying the design and uses the combined 
results for design improvement. LS-OPT [1] provides an environment for design and is tightly 
interfaced to LS-DYNA and LS-PREPOST with the goal of allowing the user to organize input for 
multiple simulations and gather and display the results and statistics. More specifically, LS-OPT has 
capabilities for improving design performance in an uncertain environment and conducting system and 
material identification.  These objectives can be achieved through the use of statistical tools and 
optimization. The individual tasks that can thus be accomplished are: 
 

• Identify important design variables 
• Optimize the design 
• Explore the design space using surrogate design models 
• Identify sources of uncertainty in FE models 
• Visualize statistics of multiple runs 

 
The typical applications are: Multidisciplinary Design Optimization (crashworthiness, modal analysis, 
durability analysis, etc.), system and material identification (biomaterials, metal alloys, concrete, airbag 
properties, etc.) and process design (metal forming). 
 
The main technologies available in LS-OPT are: 
 

• Experimental Design (DOE). D-Optimal design, Latin Hypercube sampling, Space Filling and 
others. DOE allows the user to automatically select a set of different designs to be analyzed. 
The main types mentioned here are each suited to a different type of analysis: D-Optimal for 
polynomials and sequential optimization, Latin Hypercube for stochastic analysis and Space 
Filling for Neural Networks. 

• Metamodels (approximations). Response Surface Methodology and Neural Networks are the 
most important. With these tools, the user can explore the design space and quantify the 
predictability of a response, i.e. identify sources of noisy response. 

• Variable screening [4] provides information on the relative importance of design variables. 
• Probabilistic analysis includes Reliability and Outlier Analysis [3]. The former allows the user 

to evaluate the probability of failure while the latter allows the identification of parts of a model 
that contribute to noisy response and therefore affect the predictability of the results. The 
outlier analysis uses integrated LS-PREPOST features. 

• Optimization. Used for automated design improvement. The Successive Response Surface 
Method (SRSM) [5] is the principal iterative tool for finding a converged optimum. A similar 
methodology is used for finding a converged result using neural net updating. 

 
Features are available to distribute simulation jobs across a network, using a queuing system. 
 
 

2 New features 

Stochastic fields 

Stochastic fields are used to randomly perturb a spatial property. With this capability, a set of 
perturbed models can be created for a stochastic analysis. LS-DYNA Version 971 [2] provides the 
capability to perturb (i) geometry and (ii) shell thickness using eigen or displacement modes or 
harmonic functions. Examples are shown below:  
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                       (a)                                                                                       (b) 
 

Fig 1: Geometric perturbations of a cylinder based on (a) harmonic functions and (b) 
Karhunen-Loève  imperfections 

 
Karhunen-Loève imperfections are currently being added to LS-DYNA Version 971 (see Reference 6). 
 
 

Discrete Optimization 

In Version 3.1 a mix of continuous and discrete variables can be incorporated in SRSM.  
 

 
 

Fig 2:  The variables panel showing the specification of discrete variables 
 
 

Improved visualization of statistical results 

The LS-PREPOST visualization of statistical quantities based on multiple runs has been extended.  
Changes include: 

• The variation of any d3plot response can be investigated. 
• The histories of all the LS-DYNA runs can now be plotted. 
• An automated bifurcations identification procedure is available. 
 

 
© 2006 Copyright by DYNAmore GmbH 

Robustheit / Optimierung II

K - II - 3



5. LS-DYNA Anwenderforum, Ulm 2006 
 

 
 

Fig. 3: The DYNA Statistics panel. The panel is used to investigate the variation of d3plot results and 
LS-OPT histories. The procedure includes tight integrated with LS-PREPOST visualization. Instability 
analysis and display of probabilistic (six-sigma) safety margins are also possible.  
 
 

 
 

Fig. 4: Standard deviation of displacement residuals superimposed on outlier deformed states. 
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Fig. 5 The LS-OPT histories of all the LS-DYNA run can be viewed simultaneously. 

 
 
 

Improvement of neural networks 

Feedforward neural networks were introduced in Version 2 of LS-OPT to provide a more flexible 
option for creating surrogate models for design. For Version 3 these have been improved for more 
robust prediction. The Feedforward NN’s in LS-OPT have the following advantages: 
 

1. Complex functions can be modelled. NN’s provide an increase in complexity 
commensurate with an increase in the number of data points. 

2. NN’s are more flexible than the standard application of polynomials because these 
typically require a minimum number of runs for a specific order polynomial, and these 
numbers may be far apart for a large number of design variables. E.g. 10 variables require 
at least 11 runs for a linear response surface and 66 for quadratic. A NN automatically 
adopts the complexity of form dictated by the number of points and the degree of 
nonlinearity of the function. 

3. A sequential response surface scheme such as SRSM in LS-OPT typically ends up with a 
local linear approximation of the response (i.e. they are piece-wise accurate). NN’s are 
useful for making approximations across the design space. This allows wider exploration 
using the Metamodel or Trade-off features in the Viewer. 

4. Neural networks tend to smooth and not interpolate (intercept each point). The smoothing 
property is required to filter or quantify noise. 

5. Neural Network Committees: Because NN’s are created using a nonlinear regression 
procedure which uses a random starting point to compute the NN weights, slightly 
different NN’s are often created using the same analysis result set. This allows for (i) 
generating a centered net based on the mean of a committee of nets and (ii) generating 
variance information for the committee. Figure 8 shows the point-wise variance of a neural 
net.  

 
A disadvantage of neural nets is that they are more costly to generate, especially for a large number of 
variables. A GUI-based feature has therefore been provided to exercise some efficiency options, 
namely (a) a choice of architecture, (b) number of committee members and (c) the number of 
discarded nets.  
 
Since the default network is the best from an ensemble of 0 (linear), 2, 3, 4, 5 and 8 hidden node 
architectures, an option has been provided to select any combination, e.g. 0, 3 and 5 only. The results 
for each architecture are calculated from a number (default = 9) of independent regression runs, each 
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with a different random starting point. This process creates a committee of slightly different neural nets 
which are then averaged. The degree to which the neural nets differ depends on the sparsity of the 
points and the amount of noise present in the response. Since the calculation of the committee is 
more time consuming than calculating a single neural net, the number of committee members can be 
reduced. 
 

 
 

Fig. 6: Efficiency options for Neural Networks 
 
 

3-D visualization of metamodels 

In Version 3.1 a new feature is provided for the three-dimensional visualization of metamodels. The 
fringe types are function value and variance (standard deviation). The latter is important particularly for 
neural networks, where some variation may occur in regions of sparse information or noise. 
 
 

 
 

Fig. 7: Response plot using a Neural Network metamodel. The mean response of 9 committee 
members is shown. 
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Fig. 8: Response metamodel plot with superimposed standard deviation (9 committee members) 
 
 

User-defined sampling 

User-defined sampling has been provided for cases where the user wants to use an experimental 
design not standard in LS-OPT (e.g. orthogonal arrays). The file (typically an exported Microsoft Excel 
file) from which the experimental design table is imported has a specified format and allows for the 
user to provide headers for each of the design variables. These headers allow for the variables to be 
automatically displayed in the variables panel (together with the upper and lower bounds).  
 

 
 

Fig. 9: The user-defined sampling option allows the importing of experimental design tables 
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