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Introduction

What is LS-OPT?

» LS-OPT is an environment to explore automatically the design
space and find an optimum design

» LS-OPT is a product of LSTC (Livermore Software Technology
Corporation)

> LS-OPT is based on the Successive Response Surface Method
(SRSM). Statistical approaches (Robustness Analysis) and
genetic algorithms (Discrete Methods) will be implemented in
near future

» LS-OPT provides a graphical user interface (GUI)

» LS-OPT can be linked to any simulation code, but it is perfect
suitable in combination with LS-DYNA
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LS-OPT: Application of the SRSM

Why Response Surface Method and not Gradient Based Methods?
> Highly Nonlinear Problems
> Local Sensitivities may lead to local optimums

> Difficulties by the Computation of Numerical Gradients
= [If the perturbation intervall is too large: loose accuracy
= [f the perturbation intervall is too small: find spurious gradients
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LS-OPT: Application of the SRSM

SRSM: How does it work?

> Design surfaces are fitted through points in the design
space to form approximate optimization problem

calculated model response for a
chosen parameter combination P,
(experimental point)

linear approximation surface

Py

» The idea is to find surfaces with the best predictive capability
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LS-OPT: Application of the SRSM

Design Space, Region of Interest & Experimental Design Points
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LS-OPT: Application of the SRSM

Feasible Experimental Design
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LS-OPT: Application of the SRSM

Successive Approximation Scheme
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LS-OPT: Application of the SRSM

The Optimization Prozess
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LS-OPT: Application of the SRSM

Graphical User Interface
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LS-OPT: Application of the SRSM

Graphical User Interface
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LS-OPT: Application of the SRSM

Graphical User Interface
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LS-OPT: Application of the SRSM
Advantages of the Method

> Global Optimization:

Response Surface have a tendency to capture globally optimal regions.
Local minima caused by noisy response as well as the step-size dilemma
for numerical gradients are avoided

> Parallel Computation:
Successive Response Surface scheme allows parallel (independent)
computation of experimental points within one iteration

> Flexible Design Exploration:

Design exploration can be changed within the optimization process. Thus,
control of the computational time and the quality of the Response Surface
is possible

> Trade-Off Studies:
Since the Response Surface is determined, easy examination of varying
constraint bounds is possible (not reliable with linear approximations)
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Example: Multidisciplinary Optimization (MDO)

Fully Integrated Optimization - Crash and NVH

Iteration (k)

A\ 4

Multidisciplinary Analysis Systems Level Optimizer
x® cp4sy ® Crash Analysis Goal: Minimize Mass
x® ... % NVH Analysis .
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Multidisciplinary Optimization (MDO)

Example

Full Vehicle - Crash Performance (LS-DYNA)
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Example: Multidisciplinary Optimization (MDO)
BIW-Modell - NVH Performance (LS-DYNA)

LS-D¥MA eigenvalue problem - FORD TAURUS BIW
Time=  38.736

Baseline:
> 18 000 elements
> Torsional Mode 1

Frequency = 38.7 Hz
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Example: Multidisciplinary Optimization (MDO)

Design Variables (Thickness)

Left and right

\ / Apron (1)

'), Left and right
' | cradle rails (1)

Shotgun outer and inner (2)

Inner and
outer rail (2)

Front cradle cross
members (1)
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Example: Multidisciplinary Optimization (MDO)

Design Formulation - FULLY SHARED VARIABLES

Design Objective:

>

Minimize (Mass of components)

Design Constraints:

>

YV V VYV V

Thickness Design Variables Shared: 7

>

Shotgun (inner and outer), Aprons,
Cradle rails, cross member

Displacement > 551.8mm
37.77Hz < Torsional mode 1 frequency < 39.77Hz
Stage1Pulse > 14.34g
Stage2Pulse > 17.57g
Stage3Pulse > 20.76g

Rails (inner and outer),
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Example: Multidisciplinary Optimization (MDO)

Mode Tracking

> During NVH optimization necessary to track mode as mode
switching can occur due to design changes

> Search for maximum scalar (dot) product between
eigenvector of base mode and each solved mode:

ol )

Optimization using the Successive Response Surface Method rDY N.A

MORE



Example: Multidisciplinary Optimization (MDO)

Optimization History: Mass (Objective) - FULLY SHARED VARIABLES
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Example: Multidisciplinary Optimization (MDO)

Optimization History: Maximum Displacement -
FULLY SHARED VARIABLES
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Example: Multidisciplinary Optimization (MDO)

Optimization History: Stage Pulses - FULLY SHARED VARIABLES

22

—&— Stage1Pulse (Full)
—— Stage2Pulse (Full)
—A— Stage3Pulse (Full)
—-—~ Lower bound: Stage 1
------- Lower bound: Stage 2
16 | - —-- Lower bound: Stage 3

Acceleration [g]

Iteration
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Example: Multidisciplinary Optimization (MDO)

Optimization History: Torsional Mode Frequency -
FULLY SHARED VARIABLES
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Example: Multidisciplinary Optimization (MDO)

Variable Screening

Frequency Maximum displacement
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Iteration
> Goal: Remove of less significant variables
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Example: Multidisciplinary Optimization (MDO)

Variable Screening

> Methodology: ANOVA (ANalysis Of VAriance)
» Ab . depends on the variance of the simulation points

>Use a 90% confidence level and determine the lower bound

From regression

analysis
b;
*
0 — Ap, —
Coefficient: variable j
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Example: Multidisciplinary Optimization (MDO)

Variable Screening

» Variables are ranked according to lower bound
> If the lower bound < 0, regression coefficient is
insignificant

> In a linear approximation, a variable ¢an be removed if its
coefficient is insignificant

b;
Significant | [ |
0 — Ab,—
% Value which determines
significance
0 b;
Insignificant |
= z, !
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Example: Multidisciplinary Optimization (MDO)
Design Formulation - PARTIALLY SHARED VARIABLES

Design Objective:
» Minimize (Mass of Components)

Design Constraints:

Displacement > 551.8mm
38.27Hz < Torsional Mode 1 frequency < 39.27Hz
Stage1Pulse > 14.34g
Stage2Pulse > 17.57¢g
Stage3Pulse > 20.76g

YV V VY

Crashworthiness Design Variables: 6
» Rails (inner and outer), Shotgun
(inner and outer), Aprons, Cradle Rails

NVH Design Variables: 4
> Shotgun (inner and outer), Cradle Rails,
Cross Member
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Example: Multidisciplinary Optimization (MDO)

Optimization History: Mass (Objective)
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Example: Multidisciplinary Optimization (MDO)

Optimization History: Maximum Displacement
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Example: Multidisciplinary Optimization (MDO)

Optimization History: Stage Pulses
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Example: Multidisciplinary Optimization (MDO)

Optimization History: Torsional Frequency
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Example: Multidisciplinary Optimization (MDO)

Run Statistics

Run Statistics — Fully Shared MDO

13 experimental points per iteration per discipline

» T hours per crash simulation

» 10 minutes per NVH simulation (700MB memory each)
» 9 iterations to converge

» 117 crash simulations and 117 NVH simulations

Run Statistics — Partially Shared MDO

11 experimental points per iteration for crash

8 experimental points per iteration for NVH

> 6 iterations for good compromised solution

» 66 crash simulations and 48 NVH simulations

» More flexibility in using resources (processors and memory)
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Example: Multidisciplinary Optimization (MDO)

Starting from Ligthest and Heaviest Design
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Conclusions MDO-Example

Conclusions /| Outlook /| Remarks

» Multidisciplinary feasible optimization of a full vehicle model
considering crashworthiness and NVH design criteria is
described

» Almost 5% mass reduction is achieved while maintaining or
improving of the design criteria of the baseline design

» Variable Screening allows the detection of unsignificant
design variables

» The capability of partially or non shared variables for MDO
may reduce the computational effort dramatically
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Conclusions MDO-Example

Conclusions /| Outlook /| Remarks

> Optimization with current full vehicle crash models (500000-
1000000 Elements) is still very time consuming and requires
huge hardware resources

» Gradients of the linear implizit discipline (NVH) may be used
for the calculation of the according Response Surface
approximation

> Discrete Methodologies for sheet thickness optimization

> A two-stage approach with stochastic and deterministic
methods, may be very efficient for crash
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