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Introduction and motivation
The challenge of a modern lightweight construction material

Special requirements on a construction material in the automotive industry
M Decrease vehicle weight

B Absorb kinetic energy / stay intact after crash

M Large production volume

m ...
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Introduction and motivation
FE-simulation in the automotive industry

Structural simulation Process simulation (injection molding)

(3]

B Reduce cost and time

® Virtual manufacturing and component testing

mm) Predictive power depends on appropriate modeling
of load case, geometry and material model

3Simulation: SABIC, Geleen, NL
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Modeling of long glass fiber reinforced plastic (GFRP)

Characteristic due to production process sample plate

CT-Scan

Injection molding simulation

M Different flow directions in component
- Mechanical behavior depends on position
B Flow velocity varies between surface and core

- Various layers are formed
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Modeling of GFRP

Fiber orientation and degree of freedom

Second order orientation tensor Orientation ellipsoid Assumption for long fiber
a G a X reinforced material
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Modeling of GFRP

Methodology of the realized integrative simulation

Material modeling
Anisotropy
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Elastic properties of various orientation states
From UD to real material

— / E, Advani & Tucker*

Ranges of largest eigenvalue

08<A, <1.0>Class1 =
06<A, <08->Class2 <O
05<A<06->Class3 ()

B Property of UD-material and orientation tensor known

M Calculation of mechanical properties of layer with arbitrary orientation
state

B One material card per class

*S.G. Advani, C.L. Tucker, The Use of Tensors to Describe and Predict Fiber Orientation in Short Fiber Composites.

Journal of Rheology, 31(8), 751-784, 1987 % FraunhOfer
EMI
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Elastic properties of various orientation states
From UD to real material

Specimen

/ E, Advani & Tucker — /52(2) Parallel connection

Ranges of largest eigenvalue

0.8<A <1.0>Class1 ==
0.6<A <08->Class2 >
05<A; <0.6>Class3 ()

Epe =nEP + (1 —n) EP

Eope = nES + (1 — 1) E?
B d, _ 1
Goo 900 = 7761(;) +(1-7) G1(§) 77475

M Parallel connection of various layers yields specimen property

\

~ Fraunhofer

EMI



Elastic properties of various orientation states
From UD to real material

Specimen
UD-material

~— « E; Advani & Tucker > e /52(2) Parallel connection

\ /\racterization tests

Optimization algorithm

B Solving of the inverse problem: From characterization test to UD-material
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Plastic and failure parameters
Material parameters for MAT_108 in LS-DYNA

Simulation of tensile tests in 0°-, 45°-, and 90°-direction

Force

Tensile tests at 9720 mm/s
0°

——45°

. 90°

Smooth fitting

- O°

R 45°

- 900

Simulation

Displacement

M Plastic parameters determined using LS-OPT
B Failure modeled with MAT_ADD_EROSION

M For all material classes the same plastic and failure parameters are used
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Modeling of GFRP

Methodology of the realized integrative simulation

Anisotropy

Structural simulation

CS

Mapping tool
Fiber orientation
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Mapping of orientation and degree of anisotropy
Flow-chart of developed mapping-tool

LS-DYNA shell model

4

Dividing the shells in
several layers
(hexahedrons) and

calculation of the surface

normals per layer

Assigning the

material class and
calculation of the
rotation angle per

layer

LS-DYNA composite shell model

Orientation tensors from
Moldflow simulation

L 4

Moldflow tetrahedron model

4

N

Ny o Calculation of the ﬁté Calculation of the
volume intersections AT average 9_
between the layers orientation tensor |
and tetrahedrons per layer

Ng

Calculation of the
greatest eigenvalue 1;
and the associated
eigenvector e;

Projection of
A,e; on layers’
surfaces
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Modeling of GFRP

Methodology of the realized integrative simulation

Material modeling
Anisotropy
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Validation of the method
Dynamic three-point bending test

Test set-up

Simulation model

B Haul-off speed 7000 mm/s
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Validation of the method
Force-displacement curve and deformation behavior

Test5
—— Simulation

Force

Displacement

B Good agreement of experiment and simulation

B Simulation sensitive to additional numerical and friction parameters
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Impact of considering degree of anisotropy
Comparison with less complex modeling approaches

Considering only fiber orientation

B Without Advani and Tucker / Only one material card

W Elastic and plastic parameters derived directly from characterization tests
B Tensile tests in 0°-direction - Parameters in longitudinal direction

B Tensile tests in 90°-direction = Parameters in transversal direction

Isotropic material behavior

® Material parameters derived from average stress-strain curves in 0°- and
90°-direction

- Simulation of dynamic three-point bending test using same values for
additional numerical and friction parameters
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Impact of considering degree of anisotropy
Simulation considering only fiber direction

Failure upper rib Total failure

Component test

Sagle®

Bottom wall

Simulation considering degree of anisotropy

By e

Simulation considering only fiber orientation

B Upper part of bottom wall remains intact longer

M Upper rib is not bent
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Impact of considering degree of anisotropy
Simulation using isotropic material behavior

| Failure upper rib |

Total failure

Component test

TS

Simulation considering degree of anisotropy

BwED o

R, -

Simulation with isotropic material behavior

o i

LS R

B Upper part of bottom wall fails in a larger region

M Edge between upper and bottom wall is not impressed
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Summary and conclusion

M Approach for considering fiber orientation distribution in material model
B Development of a mapping tool
M Validation by means of dynamic three-point bending test

B Impact of degree of anisotropy on simulation results
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