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Abstract 

Structural mechanic properties of fiber reinforced plastics depend on the single components’ 
properties, namely matrix and fiber [5]. Simple micromechanic homogenization theories reach a limit 
when a laminate consists of fabric reinforced layers instead of unidirectional layers. The ondulations of 
warp and fill yarn caused by the textile semi-finished product are the reason why the mesoscopic 
scale, which is in between the microscopic and the macroscopic scale, has to be taken into account 
when mechanically characterizing fabric reinforced composites [3]. In this scale a mesomechanic 
kinematic can be derived analytically. Especially, when considering free damped vibrations of 
structures the repeated acting of the kinematic correlation significantly affects the damping behaviour 
to higher values compared to theoretically predicted damping ratios. The model is investigated using 
Finite-Element-Analyses and basically validated experimentally. 

1 Introduction 

Simplified theoretical approaches for fiber reinforced plastics often presume a layup of only 
unidirectional reinforced layers and homogenization approaches for the prediction of structural 
properties. However, different kinds of fabrics are often applied as reinforcements in the layup of 
structural parts. The mesoscopic geometry of fabric reinforcements, however, is distinctively different 
compared to unidirectional layers. The effect of the repeated ondulations of the yarns in warp and fill 
direction is supposed to influence structural mechanical properties. 
The aim of this paper is to introduce a theoretical approach towards the kinematics in a mesoscopic 
scale considering the ondulation in fabric reinforced composites. Therefore investigations on a 
continuous mathematical model based on a sinusoid curve are carried out on a representative 
sequence of one complete ondulation. The achieved results are the basis for formulating a more 
appropriate mechanical model of fabric reinforced plastics. 

2 Mesoscopic approach 

The phenomena of ondulation in fabric reinforced composites can be examined on the mesoscopic 
scale. The mesoscopic scale which is in between the scales of micromechanics and macromechanics. 
Micromechanics for example provide rules of mixtures for structural mechanical properties whereas 
macromechanics provide predictions of idealized bearing structures. 
The ondulation is an effect of a fabric as a textile semi-finished product. The warp yarns 
perpendicularly cross the fill yarns alternating at its top and at its bottom. The geometrical dimensions 
depend distinctively on the yarns used and the type of the fabric construction. A very simple 
construction is a plain view fabric built up out of equal yarns in warp and fill direction. A plain view 
geometry is presumed for the following investigations. Different types of fabrics with non-equilibrated 
yarns in warp and fill direction requires modifications of the model. 

2.1 Mathematical model and presumptions 

The aim of this section is to introduce a mathematical model for the ondulation in composites with 
fabric reinforcements. In order to reduce the complexity down to a one-dimensional problem, only the 
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centerline of an ondulated yarn is considered. The obtained mesoscopic geometry can thus be 
described by a sine curve with arbitrary amplitude [5]. 
The one-dimensional mathematical model is formulated in order to obtain a representative sequence 
of one complete ondulation. Because of the ondulation the total deformation is presumed to consist of 
the mechanic strain and additionally a purely geometrical deformation that contributes to the total 
deformation behavior [5], [7]. In a mathematical approach the ondulated yarn is assumed not to 
lengthen or shorten due to strain or compression but to remain constant in length. Mechanically this 
presumption can be stated in terms of an infinite high YOUNG’s modulus in longitudinal direction 

lE  (1) 

and a flexural modulus transverse to it that is presumed to be zero 

0bE  (2) 

so that an ideally stiff and at the same time ideally flexible yarn is indicated. 
Under the previously stated presumptions a kinematic can be lead back to geometrical constraints 
only. The previously stated presumptions lead to two different effects in the model when positively and 
negatively defined deformations are considered, respectively. Positively defined deformations lead to 
a smoothing or flattening. The amplitude decreases. In this case the maximum in elongation is 
reached when the yarn gets completely flattened. The amplitude increases for a negative deformation 
applied. In this case the shift in amplitude reaches no boundary value.  
 

 
 
Fig. 1: Shift of the amplitude against the respective degree of deformation. 
 
 
Fig. 1 shows the obtained sine-waves for an originally presumed sinusoidal function as a bold solid 
line, the elongated yarns as dashed lines and the shortened yarns as dash-dotted lines. For reasons 
of simplification the function is normalized by setting the amplitude to 1A  and the originally 
considered interval to  πx 2,0 . 
The arc length of one complete sinusoidal ondulation with arbitrary amplitude A  can be calculated by 
solving an elliptic integral of second kind and considering a diminution factor [2]. To fulfill the 
presumptions the arc length has to remain constant under the applied degree of deformation relu  
introducing 
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that is positive for elongation and negative for shortening. 
Thus for selected degrees of deformations a governing equation leads to the respective amplitudes 
and so to a shift in the amplitude AΔ . Considering the theoretical range of possible degrees of 
deformation relu  the correlation is distinctively nonlinear. A direct and linear coupling between 
deformation and shape of the ondulation in fabric reinforced plastics can be derived by considering 
much smaller and thus a more relevant range 001,0001,0  relu  [5]. For further investigations 
it is reasonable to introduce the relative shift of the amplitude 
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in order to receive a relative dimension. So the relative shift of the amplitude relw  can be plotted 
against the relative degree of deformation relu  and a relw - relu -diagram results. 

2.2 Graphical illustration of the kinematic considering real geometric dimensions 

Fig. 2 exemplarily shows a relw - relu -diagram for the amplitudes 04.001 A , 07.002 A  and 
1.003 A  over one complete wavelength on the domain of definition  π2,0  for the argument in the 

trigonometric function. The gradient depends on the sign of the deformation. Elongation as positively 
defined deformation leads to a significantly higher diminution of the amplitude A . The selected values 
can be assumed to appear as real amplitudes due to ondulation in fabric reinforced layers [1], [4]. The 
applied degrees of deformation relu  have been selected in relevant ranges for structural dynamic 
problems. The diagram shows the before mentioned behavior in the range 001,0001,0  relu , i. 
e. in a range of േ1	‰ in change of the degree of deformation. In this range an almost linear 
correlation between degree of deformation relu  and relative change in amplitude relw  can be 
identified. A direct and linear coupling between deformation and shape of the ondulation in fabric 
reinforced plastics can be stated. 
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Fig. 2: Relative shift of the amplitude relw  against the applied respective degree of deformation 

001,0001,0  relu  for the selected amplitudes 04.001 A , 07.002 A  and 
1.003 A . 

 
 
The linearity reaches a limit when the applied positively defined degree of deformation approaches the 
limits of the purely mathematical model. This singularity represents the state when the former 
sinusoidal curve gets completely flattened. Furthermore the sensitivity to the selected amplitude is 
distinctively high. Yet in the range of deformation 001,0001,0  relu  the correlation reaches a 
nonlinearity for the lowest amplitude 04.001 A  whereas the higher amplitudes 07.002 A  and 

1.003 A  still follow linear correlations, as shown in Fig. 2.  

3 Investigations by Finite-Element-Analyses 

In order to further investigate the influence of geometric kinematic correlations calculations with the 
Finite-Element-Analyses have been carried out. The aim is to verify the considered geometric 
kinematic. Further the elastic parts that have been neglected by the strongly simplifying presumptions 
in the mathematical model are identified. The simulation is carried out in LS-DYNA under application 
of an explicit solver. 
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3.1 Plain representative sequence of a fabric reinforced layer 

Based on MATSUDA et al. [4] the geometry and the dimensions of the representative volume element 
have been chosen as shown in Fig. 3. The height of the volume element has been modified in order to 
avoid too small elements and the resulting long computing time. The chosen dimensions are all 
indicated in mm. 
 

 
 
Fig. 3: Exemplarily selected cross section for a representative sequence according to MATSUDA et. al 

[4] used for the investigations in the Finite-Element-Analyses: Warp yarn (red), Weft yarn 
(green), matrix (blue). 

 
 
The odulation of the fiber bundles in warp direction is described by a sine curve defined by 
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where the amplitude of the centreline of the warp yarn is 04.00 A .  
The representative volume element is discretized by 3521 nodes into 3352 elements. Under the 
presumption of a plain strain condition in the x - y -plane, shell elements of the element formulation 
ELFORM 13 and shell thickness of 0t  are chosen to approximate the strongly simplifying 
presumptions of the mathematical model. Fig. 4 shows the discretization of the representative volume 
element with the defined boundary conditions. 
 

 
 
Fig. 4: Modeled cross section, discretization and boundary conditions for the selected representative 

sequence according to MATSUDA et. al [4] used for the investigations by the FE-Analyses. 
 
 
The clamped edge is defined on the left hand side. On the right hand side the free edge is defined 
where the relative displacements are applied. Both definitions on the boundaries allow a contraction of 
the cross-section due to POISSON effects. Thus a free contraction of the cross section over the 
complete length of the representative element is allowed. A relative displacement in the range of 

0001,00001,0  relu  is applied on the free edge on the right hand side in selected steps. 
Basalt fibers and carbon fibers have been presumed as reinforcement fibers in order to compare two 
different materials. Basalt fibers have been considered as isotropic, with a YOUNG’s modulus in 
longitudinal direction GPa89, BasaltfE  whereas carbon fibers have been considered as transversally 
isotropic with a YOUNG’s modulus in longitudinal direction GPa235, CarbonfE . The results are the 
basis for a basically comparison of the influence of different longitudinal stiffness of the fibers. 
Therefore both types of fiber reinforcements have been presumed to be embedded in the same epoxy 
matrix system with an Young’s modulus GPa8.2MatrixE . The respective rules of mixture according 
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to CHAMIS [5], [6], [7] are applied in order to calculate the properties of the compound. Therefore a 
fiber volume content of 60	% has been presumed. 
In order to apply the material properties to the FE-model in LS-DYNA an orthotropic material model 
*MAT_002 has been chosen. The center line of the warp yarn follows the sine curve indicated by 
equation (5). Therefore the material directions are defined by the local material axes applied by the 
function AOPT 0 and appropriate node numbering. A manual optimization of the element axes has 
been necessary. 
As a first approach an idealized contact is obtained by coincident nodes, where failure mechanisms 
and friction effects are neglected. 

3.2 Results of the FE-calculations 

Fig. 5 shows the relw - relu -diagram obtained for the two selected fiber reinforcements. They are 
considered to be embedded in the same thermoset matrix system in order to identify only the influence 
of the different fiber reinforcement. The slope for the carbon fibers is bigger than the slope for basalt 
fibers. The effect can be traced back to the differences in stiffness in longitudinal direction of the 
fibers. Carbon fibers show nearly three times higher stiffness in longitudinal direction as basalt fibers. 
So carbon fibers correspond more to the strongly simplifying mathematical presumptions of an ideally 
stiff and at the same time ideally flexible yarn. A linear correlation for both types of fiber reinforcements 
can be identified. Yet the relative shift in amplitude relw  as formerly indicated in the purely 
mathematical approach is smaller by approximately three decades. 
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Fig. 5: relw - relu -diagram obtained by different fiber reinforcements in the same matrix system: Blue: 

Carbon fiber; Green: Basalt fiber. 
 
 

4 Results and Discussion 

The obtained results of both the mathematical model and the FE-calculations are compared to each 
other. A possible mechanism is derived that could significantly affect the damping behavior to higher 
values in fabric reinforced plastics. 

4.1 Comparable illustration of the obtained results 

A direct comparison of the mathematical results and the results obtained by the Finite-Element-
Analyses is not reasonable in a linear equidistantially scaled coordinate system. Because of the big 
differences between the mathematical results and the FE-results of approximately three decades a 
logarithmic scale is chosen for the relative shift of the amplitude relw  on the ordinate. Therefore the 
sign of the shift in amplitude has to be neglected. The relative degree of deformation relu  on the 
abscissa remains linear equidistantially scaled. Fig. 6 shows the single-logarithmically scaled relw -
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relu -diagram. The considered amplitude of the mathematical model is 04.001 A , which results are 
shown as a red bold line. The FE-results for the relative shift in amplitude obtained by the FE-
calculations are shown as solid lines, blue for carbon fiber reinforcement and green for basalt fiber 
reinforcement. For later explained reasons the respective amount of contraction or compression 
effects due to POISSON’s ratio in a unidirectional reinforced layer is plotted against the degree of 
deformation. The corresponding value 13ν  is calculated by the relation after MAXWELL-BETTI of the 
reciprocal work theorem [5], [6], [7]. 
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Fig. 6: Single-logarithmically scaled relw - relu -diagram obtained for the different investigations: Red 

solid line: Mathematical model; Upper blue solid line: FE-results for carbon fiber; Upper green 
solid line: FE-results for basalt fiber; Lower blue solid line: Amount of POISSON’s ratio for 
carbon fiber; Lower green solid line: Amount of POISSON’s ratio for basalt fiber. 

 
 

4.2 Discussion 

The big difference of approximately three decades between the mathematical model and the results of 
the FE-calculations can be explained by a very elastic response of the FE-model. It considers the 
elasticity of the yarn, the perpendicularly orientated fill yarns and the surrounding matrix. In contrast 
the mathematical model presumes an ideally stiff and at the same time an ideally flexible yarn without 
any elastic support on surrounding matrix or fill yarns. 
The obtained shifts in amplitude of the FE-model must be evaluated further. The FE-model considers 
the complete shift in amplitude  zrelw . It contains the effects due to Poisson’s ratio with an amount 

 Poissonrelw  and the geometrically induced kinematic amount  georelw  so that it can be stated 

         KinematikktionQuerkontrahgeometriscMaterial wwwww z   (6) 

In order to distinguish its respective part, the FE-results have to be corrected by the amount of 
POISSON’S effect. Therefore equation (6) has to be solved for  georelw . So the amount  georelw  can 
be identified as the area included by the curves  zrelw  and  Poissonrelw  in Fig. 6. The amount of the 
geometrically induced kinematic depends on the fiber reinforcement. It is bigger for carbon fibers as 
they show high stiffness in longitudinal direction and a low POISSON’s ratio 28.0,13 Carbonν . The 
amount is smaller for basalt fibers with an approximately three times lower stiffness in longitudinal 
direction and an approximately three times higher POISSON’s ratio 302.0,13 Basaltν , compared to 
carbon fibers. 
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4.3 Experimental results for a basic validation 

Experimental results basically show the aforementioned behavior. Flat basalt fiber reinforced 
specimens have been investigated. The layup of the specimens is 0° unidirectional reinforcement and 
0°/90° twill weave (2/2) reinforced, all of them with a fiber volume content of approx. 58	%	േ2	%. Their 
beam-like dimensions of 250	mm x 25	mm x approx. 2	mm allow the one-dimensional consideration of 
the problem as formerly stated by the mathematical model and the FE-investigations. The specimens 
have been clamped at one end over 50	 mm. The resulting 200	 mm can so be considered as a 
cantilever. The specimens have been deflected at the free end and so excited to free damped 
vibrations. The cantilever specimens have been measured with a laser-vibrometer. The measured 
points are five equidistantially points over the length of the specimen that are centric respective to the 
width. 
The analyses of the measured data shows two significant tendencies. The behavior in the frequency 
domain is only slightly affected. The natural frequencies of the unidirectional reinforced specimens are 
higher of only approximately 5	% compared to the twill-weave reinforced specimen. Namely the natural 
frequency of the first mode shape is Hz47,1 unif  for the unidirectional reinforced specimen whereas 
the natural frequency is Hz441 fabricif 	 for the twill-weave-reinforced one. The reason therefore is 
that frequency and mode shape basically depends on geometric and physical properties, such as area 
of the cross section, moment of inertia of the cross section, length of the beam, stiffness and density. 
In contrast the damping behavior is significantly different for the two kinds of specimens. The 
logarithmic decrement of the vibrations for the twill-weave-reinforced specimens is higher of 
approximately 50	% compared to the unidirectional reinforced specimens. Namely the vibration of the 
first mode shape decays with a logarithmic decrement 015.0fabricΛ  for the twill-weave-reinforced 
specimens whereas the logarithmic of the unidirectional reinforced ones is 010.0uniΛ . 
Analog investigations for carbon fiber reinforced specimens with both unidirectional reinforcement and 
fabric reinforcement have to be carried out in order to validate the sensitivity to the kind of fiber 
reinforcement. Nevertheless the experimentally determined results generally show the previously 
stated influence of kinematic correlations in a mesoscopic scale on the damping behavior of fiber 
reinforced plastics. The repeated acting of the kinematic correlation significantly affects the damping 
behavior. 

5 Conclusions 

The kinematics in fiber reinforced composites caused by the ondulation in the mesoscopic scale can 
be described by a purely mathematical model. On the presumed ideally stiff and at the same time 
ideally flexible yarn a certain degree of deformation is applied. In the applied range of relative 
deformation relu  a distinctively linear behavior can numerically be determined. 
A kinematic due to geometric constraints can be determined. A linear direct coupling between applied 
degree of deformation and the shift in amplitude can be shown within the model’s limits. The carried 
out FE-calculations lead to a similar direct coupling between applied deformation and obtained shift in 
amplitude. Due to huge elastic parts that are neglected in the mathematical model but are considered 
in the FE-analyses the results differ in approximately three decades. As in linear-elastically presumed 
models POISSON’s ratio acts coupled effects in perpendicularly orientated directions act. Though the 
obtained results in the FE-analyses have to be corrected by the amount of contraction due to POISSON 
effects. The remaining amount  georelw  can be determined as the difference between the FE-results 
and the POISSON’s ratio 13ν  for unidirectional reinforced single layer. 
The amount  georelw  can be stated to describe the potential of the different kinds of fibers to 
contribute to the damping behavior of the material. The contributions of the fibers and especially the 
ondulation of fabric reinforcements caused on the mesoscopic scale are supposed to affect the 
damping behavior as a structural dynamic’s property. 
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