
0. Agenda

Presentation content

- Material models for composites part forming
- | Material characterization
- Composites forming application
 - Conclusions

Faurecia: Leader in automotive equipment

Faurecia Composite Technologies

Employees

Composite plants

R&D + D&D centers

Structural parts

Crash resistance, stiffness

Luxury & Premium, mass market, trucks, EV

Semi-structural parts

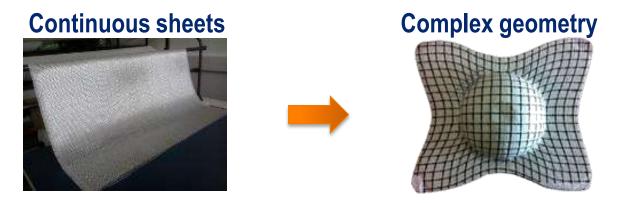
Large 3D parts, closures and panels

Body in white, beam reinforcements

- Function integration, acoustics / NVH
- Luxury & Premium, mass market, trucks

A Class

- Visible parts, closures
- Painted or exposed carbon
- Luxury & Premium, trucks


Faurecia competence center

- Seat structures
- **Cross Car Beams**
- Heat shields

faurecia

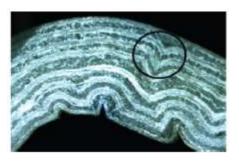
Composites forming of continuous fiber plies

Major step of two promising processes for a mass market composite parts production

Thermoforming	RTM
Forming of organosheets	Dry fabric preforming

Advantages

- Short cycle times
- High repeatability allowing automation



Composites forming of continuous fiber plies – Drawbacks

Defect intensive

Fiber wrinkling

Inter-ply fiber wrinkling Gazo-Hanna, E. et al. (2009) in JNC 16, AMAC

Fiber thinning

Waste intensive

- Increased process and material cost
- Complex recycling
- Important influence on mechanical part properties

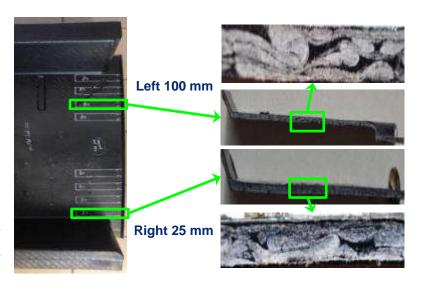
Process simulation fundamental

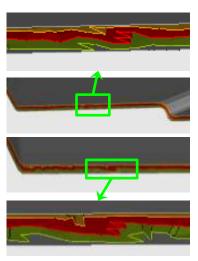
II. Material models for composites part forming

Composites forming simulation: FCT- vision

- Expertise domain (physics, mathematics, IT, product, process, materials ...)
 - Garbage in garbage out

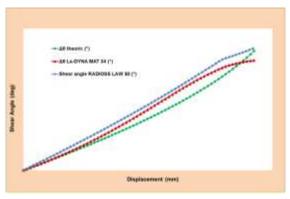
- Important number of software codes and material models on the market
 - Different levels of maturity and usability
- Main material model selection criteria


Criteria	Kinematic draping	Elastic / Viscoplastic material models
Accuracy	Only for simple kinematics (problematic especially for complex parts)	Most important defects can be detected
Availability	CATIA, Quick-Form, etc.	PAM-Form, LS-Dyna, RADIOSS, etc.
Computation time	Very fast evaluation	Computational time intensive
Considered physics	Largely simplified physics (e.g. no thermal considerations)	Comprehensive process simulation possible
Material characterization	Some non-physical parameters	Some non-physical parameters



II. Material models for composites part forming

One-step forming


- Comparison of 2 commercial software codes : LS-Dyna (MAT 34) and RADIOSS (Mat 58)
 - Comparable results
 - However differences in the details and the usability
- Inter-ply wrinkling prediction in multi-ply simulation

School mold

Shear displacement comparison for bias test

II. Material models for composites part forming

Multi-stamp-forming

Material model behavior in complex situations

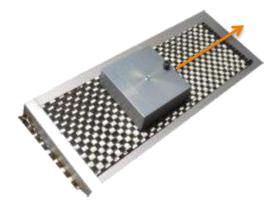
- Numerical instabilities due to not considered physical phenomena
 - Convergence errors
 - Reduced prediction precision
- Important computation times
- Superposition with a second material layer necessary to consider matrix behavior

LS-Dyna MAT 34 forming with missing shear-distortion coupling

LS-Dyna Mat 249:

- Recently developed material law
- Specifically developed for composite part forming
 - Independent fiber matrix behavior in the same material law

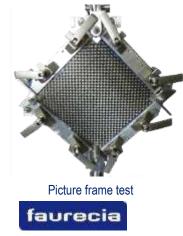
III. Material characterization


Material characterization

Specific characterizations of the matrix and the fiber material

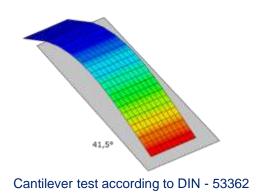
Friction coefficients

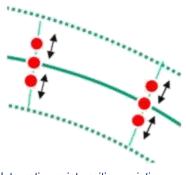
- Consideration in the *CONTACT Keyword
- Traction of a mass over the composite ply
- Differentiation between
 - Ply ply contact
 - Ply mold contact



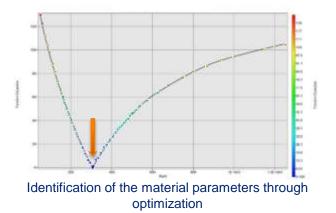
Friction trial at Fraunhofer ICT

- Fiber material parameters of Mat 249 direct characterization
 - Young modulus


 E.g.: Tensile test, bias extension test
 - Shear behavior
 E.g.: Bias extension test, picture frame test



III. Material characterization


Material characterization – Non-physical input values

- Direct input into material law not possible
- Mat 249: Bending stiffness
 - Can be determined by the local integration point position
- Characterization approach
 - Numerical reconstruction of the DIN cantilever test
 - Optimization cycle in LS-Opt

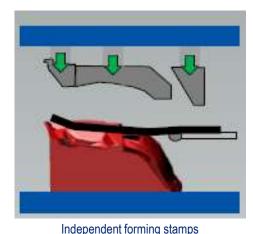
Integration point position variation
Dr. T. Klöppel, 2016, New material model *MAT_249 for thermoplastic pre-pregs and dry fabrics

Specific characterization protocols for non-physical parameters

IV. Composites forming application

Dry fabric preforming with the Fraunhofer ICT

Preform stamping for the RTM process


- High influence on local permeabilities and thickness (dry zones, wrinkles...)
- Mandatory to consider during RTM filling simulation

3 Materials

- Plain weave, Twill (2/2), NCF
- Different forming behavior

Forming press at the Fraunhofer ICT

- 3 independent forming stamps
- Multiple possible gripper positions
- Optimization of the forming kinematics
- Wrinkles elimination

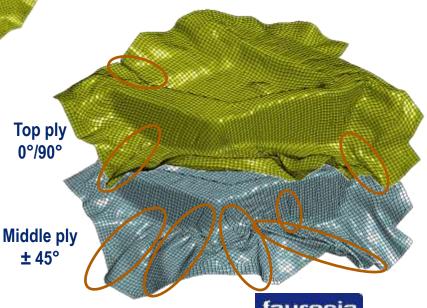
Prof. F. Henning et al., 1st International Composites Congress (ICC) - 2015
"Cost-efficient Preforming as leading process step to achieve a holistic and profitable RTM product development"

Gripper positions

IV. Composites forming application

Dry fabrics forming simulation

High grade of correlation for all three materials



Forming with Mat 249

- Independent of the forming sequence
- Detection of wrinkles for the interior plies
 - Detection very difficult for the real part

IV. Composites forming application

Dry fabrics forming sequence optimization

- Simulation driven optimization
 - Manual variation of the stamp displacement curves
 - Manual analysis of the wrinkle number and location for all plies
 - All wrinkles eliminated for two materials but not the NCF fiber material

Validation of the simulation results by physical trials

Wrinkles elimination via simulation / optimization reduces part development cost and time

V. Conclusions

Outlook

Important influence of forming sequence on final mechanical part properties

- → Mechanical part simulation using mapping of fiber orientations and wrinkles
- Application on other formed composite parts
 - One-shot process for visible parts

V. Conclusions

Take-away

- Simulation and optimization: a key to reduce Cost, Weight & Time
- Forming is an essential part of the complete composites product-process chain
 - Application in main automotive processes
 - RTM preforming of dry fabrics
 - Thermoforming of organosheets
 - Managing the forming kinematics
 - Guarantee and optimize the mechanical properties of the final part
 - Enable advanced process combinations
- Main reasons for a successful industrial application of a material model
 - Exhaustive representation of all main defects and physics
 - Reasonable computational effort
 - Easy material law characterization and availability of characterization protocols

faurecia

Technical perfection, automotive passion