

14. deutsches LS-DYNA Forum 2016 Integration of Single Cells of Lithium Ion Traction Battery in Crash Simulation

Bamberg, 10. October 2016

Dipl.-Ing. Michael Funcke

Forschungsgesellschaft Kraftfahrwesen Aachen mbH

Motivation

- Low energy density of Lithium-ion cells (compared to conv. fuels)
- → Heavy storage systems

- If single cells are not part of crash simulations
- → Damage of cells not tracked
- Manufacturers use conservative simulation approaches
- → Oversizing

- Public interest in safety of electric vehicles
- Potential hazard (e.g. thermal runaway)
- → More weight through crash-proof battery integration

Research Approach and Methodology

FEM Simulation

Mechanical Characterisation

Input parameters

- E-vehicle structure
- Battery systems

Identification of relevant crash load cases

- Evaluation of GIDAS database
- Impact velocity, direction, object

Evaluation of cell deformation Simplified cell simulation model Vehicle · Determination of a design load case Derivation of cell load cases Test parameters Cell simulation Cell tests Cell · Adaptation to cell tests Mechanical behaviour Mechanical behaviour Voltage drop Force- Thermal Runaway Qualitative behaviour displacement Cell simulation curves model **Full vehicle simulation** Vehicle · Detailed cell model • Derivation of a system crash scenario Test parameters System System crash simulation System crash testing Detailed cell modell · Mechanical behaviour Comparison Mechanical behaviour

Validated cell simulation model

Input Parameters

Simulation

Testing

 Set up of simulation models for the energy storages and integration into the overall vehicle model

- Use of simplified cell models:
 - Linear-elastic material behaviour
 - Representing outer geometry
- Simulation of aforementioned load cases
 - Deformation of vehicle body and energy storage within pole impact very localised
 - → Variation of pole position
- Evaluation of energy storage deformation
 - Low / no deformation at barrier impact
 - → Pole impact is the more critical load case
 - → Following consideration of pole impact at 50 km/h

Cylindrical cell	Prismatic cell	Pouch cell

Cell selection

Vehicle

Simulation

Testing

Pouch cell [Impact point 4]

	Cylindrical	Prismatic	Pouch cell	
Deformation of energy storage housing (FE simulation)	high	low	high	
Cell deformation (FE simulation)	low	low	high	
Tolerance of the cell to deformation	low	low	high	
Internal cell security mechanisms	available	available	unavailable	
Massive cell housing / protection against sharp objects	available	available	unavailable	
Potential risk of cell chemistry	medium (LiFePO4)	medium (LiFePO4)	high (NMC)	

Derivation of load cases on cell level

Vehicle

Cell Veh Simulation

Vehicle

System <

Testing

Superimposed load cases

Derivation of load cases on cell level

generic load cases **Punch through long** Compression **Bending Punch through short** Group 1: 47 mm 📝 **Impactor** 12 mm⁻ •Impactor ·Cell edge Impactor $l_2 = 100 \text{ mm}$ Surface impactor l₁ =170 mm 75 mm Mounting cell Mounting cell Abutment edge 150 mm edge oad considering the assembly conditions Single frame **Impactor** Frame Group 2: 20 mm Abutment **Punch through short** Bending couple of cells Bending single cell Impactor < →T _ 120 mm 120 mm Impactor **Impactor** 240 mm 240 mm 240 mm

Vehicle

Vehicle

System

Simulation

Testing

Set-up of cell simulation model

pouch cell FE model (example) Vehicle Simulation Cell Vehicle **Testing** electrolyte layer System Al layer cell closure cell edge

Simulation approach:

- Five layers of solid elements representing the electrolyte
- Six layers of shell elements representing the electrodes
 - No connection between solid and shell elements
 - Slipping between layers possible
- Cell edge representing the surrounding clamping area
 - Connected to solid elements (tied contact)
- Cell closure connecting the outer shell layers
 - Failure (Mat_add_erosion)
 - Part_composite (three layers)
- Time step equivalent to full vehicle simulation

Testing

- Execution of cell tests
- Derivation of target range for the simulation curves

Sensitivity analysis to determine the parameter influences of the simulation model

		curve of the load case					
		18 19	point Ig	short ו	guol r		
Component	Parameter	Uniaxial crushing	Three p	Punch through	Punch	- 1	Parameter n.a. Low influence
Solid element layer	Stress-strain curve	1	7	7	7	\rightarrow	No influence
Interaction cell edge and clamping	Friction coefficient	_	_	7	7	↑	High influence

Successive determination of the model parameters through comparison of testing and simulation
 Uniaxial crushing → three point bending → punch through short → punch through long

Influence on force-displacement-

Built-up of cell simulation model

Vehicle

Vehicle

Cell

System

Testing

- Built-up and validation of the frame model
- Simulation of group 2 load cases
- → Cell simulation model validated for quasistatic load cases

Vehicle

- | |

Testing

- Integration of cell model in full vehicle simulation model
- Examination of the cell deformation within the load case pole impact

- High deformation within Area I
- Stiffness of area II influences deformation within area I
- Deformation within area III very low
- → Validation on system or vehicle level necessary
- No vehicle available for crash testing
- → Derivation of a system load case, which considers the loads acting on full vehicle level
 - → Impactor diameter
 - → Impact velocity

2016/07/15

Slide No. 12

→ Absorbed kinetic energy, leading to impactor mass

Validation of the simulation model and discussion of results

Vehicle

Cell

Vehicle

System •

Summary

- Within this research a simulation approach for pouch cells applicable to crash simulations on full vehicle level
 was investigated
- A simplified cell model was used to derive load cases on cell level from full vehicle simulations
- Test of theses load cases were carried out and the results were used for a stepwise model built-up
- Final validation by a system crash test showed a good correlation between simulation and testing
- → Generation of a cell model applicable for full vehicle simulations was successful
- As long as the mechanical cell loads correspond to those used for the built-up process the generated cell model is applicable for various storage system layouts and positions within the vehicle

Contact

Thank you for your Attention!

Dipl.-Ing. Michael Funcke

fka Forschungsgesellschaft Kraftfahrwesen mbH Aachen Steinbachstr. 7 52074 Aachen Germany

Phone +49 241 8861 132 Fax +49 241 8861 110

Email funcke@fka.de

Internet www.fka.de

Sources

- [AUT14] AUTOLIV
 OSTLER Project Results
 Autoliv Sverige AB, Vårgårda, Sweden, 2014
- [FUN14] FUNCKE, M., SCHÄFER, S., WOHLECKER, R., DUFAUT, D., STURK, D., VAVALIDIS, K. D3.21 Evaluation report of active and passive protection solutions Institut für Kraftfahrzeuge Aachen, RWTH Aachen University, Aachen, 2014
- [KOR13] KORTHAUER, R.

 Handbuch Lithium-Ionen-Batterien

 Springer-Verlag, Berlin, Heidelberg, 2013
- [MIK11] MIKOLAJCZAK, C., KAHN, M., WHITE, K., LONG, R.T. Lithium-Ion Batteries Hazard and Use Assessment Springer-Verlag, New York, Heidelberg, Dordrecht, London, 2011
- [SAH12a] SAHRAEI, E., HILL, R., WIERZBICKI, T.

 Calibration and finite element simulation of pouch lithium-ion batteries for mechanical integrity

 Journal of Power Sources, Heft 201, S. 307 321 (2012)

Sources

[SAH12c] SAHRAEI, E., CAMPBELL, J., WIERZBICKI, T.

Modeling and short circuit detection of 18650 Li-ion cells under mechanical abuse conditions

Journal of Power Sources, Heft 220, S. 360 - 372 (2012)

[TES15] TESLA MOTORS INC.

Herstellerseite

www.teslamotors.com/de_DE/, abgerufen am 08.01.2015

Tesla Motors Inc., Palo Alto, Kalifornien, USA, 2015