

Eigensolution Technology in LS A® Roger Grimes LSTC Nordic LS-DYNA Users' Conference 2016

What you are going to hear

- The variety of eigensolver technology in LSDYNA
- Coming Attractions
- Lots of Mathematics

Where do Eigenproblems come from

- LS-DYNA Mechanics solves the Conservation of Momentum Equation using a LaGrangian formulation
- Application of the FEM discretization yields a 2nd order system of Ordinary Differential Equations

$$M\ddot{u} + C\dot{u} + Ku = F$$

- The Characteristic Equation approach is used with $u = \sum \alpha_j e^{i\omega_j t} \Theta_j$
- Then Presto Change-o you get $i^2 \omega_j^2 M \Theta_j + i \omega_j C \Theta_j + K \Theta_j = 0$
- With C = 0 you get

$$-\omega_j^2 M\Theta_j + K\Theta_j = 0$$
$$K\Theta_j = \omega_j^2 M\Theta_j$$
$$K\Theta = M\Theta\Lambda$$

 $K\Theta = M\Theta \Lambda$

- This is the standard eigenproblem in FEM
- LSDYNA uses Block Shift and Invert Lanczos in both SMP and MPP to solve this problem
- Lanczos requires one of *K* or *M* to be positive semidefinite.
- Standard Buckling Analysis uses Lanczos to solve

$$K\Theta = K_G \Theta \Lambda$$

Other Options

- For Model Analysis you can
 - Add dynamic terms to K to mimic the nonlinear iteration matrix
 - Solve just $K\Theta = \Theta\Lambda$
 - Thermal Conduction Matrix using*CONTROL_THERMAL_EIGENVALUE

- Buckling with Inertia Relief is the first problem that does not meet the criteria for Lanczos.
- Inertia Relief constraints are imposed with LaGrange Approach and makes *K* indefinite.
- We added the Power Method to compute a small number of buckling modes.
- Power Method is not recommended for general use.

- Quadratic and Unsymmetric Eigenproblems arise by adding more physics
 - Unsymmetric material properties
 - Unsymmetric contact properties
 - Rotational Dynamics
 - First Order Damping terms

Examples

- Rotational Dynamics
- Brake Squeal

Campbell Diagrams

- Campbell Diagrams are plots of eigenvalues as a function of rotating speed
 - Need to track modes as they change

Unstable Mode for Brake Squeal

Damping Ratio is defined as $-2*Re(\lambda) / |Im(\lambda)|$, where λ is the eigenvalue. When damping ratio is negative, unstable mode appears.

Example Result

Back to Basics

- The Characteristic Equation approach is used with $u = \sum \alpha_j e^{\omega_j t} \Theta_j$
- No "i" (like a mathematician)
- Then Presto Change-o you get $\omega_j^2 M \Theta_j + \omega_j C \Theta_j + K \Theta_j = 0$
- Eigenproblem stays Real!!!
- Eigenmodes are Complex

- Quadratic Eigenvalue Problems have to be converted to First Order
- Use $\Psi_j = \omega_j \Theta_j$ to get $\omega_j M \Psi_j + C \Psi_j + K \Theta_j = 0$
- Which becomes the First Order Eigenproblem

$\begin{bmatrix} 0 \end{bmatrix}$	I	$\Box \Theta$	[I]	0	Θ	
$\lfloor -K \rfloor$	-C	$\left[\Psi ight]$	$= \begin{bmatrix} 0 \end{bmatrix}$	M	$\left[\Psi ight]$	

Real Eigenproblem

- We use ARPACK
 - Public Domain eigensolver based on Arnoldi
 - Reverse Communication
 - At this time only SMP
 - MPP will be done in the next year
- Left hand side matrix has an easy inverse
- Requires factorization of real (symmetric or unsymmetric matrix) *K*
- Requires multiplications with C and M

Eigenmodes

- The matrices are real but the eigenmodes are complex
- D3EIGV database uses two states to hold the real part and then the imaginary part of the eigenmode.

How do I use this?

- For the most part the decisions of when to use the new eigensolver features are made by LSDYNA
 - User controls Rotational Dynamics
 - User controls Symmetric or Unsymmetric
 - LSDYNA controls the eigensolver
- If user selects unsymmetric all damping terms in the model are included in the eigenvalue problem

MCMS

- LSTC is implementing the AMLS algorithm for computing approximate eigenmodes.
- Useful for applications that want thousands of modes for Frequency Response computations
 - Less accurate than Lanczos
 - But far less computer resources
- Noise, Vibration, and Harshness is the target application
- We are being assisted by Dr. Chang-wan Kim, School of Mechanical Engineering, Konkuk University, Korea
- We will be using the acronym of Multilevel Component Mode Synthesis or MCMS

Fuel Tank FE model

- 61,488 shell elements
- 323,832 DOF
- Normal mode analysis
 - Lanczos vs. MCMS
- Modal frequency response analysis (SSD)

Fuel Tank FE Model

Door FE model

- 486,068 shell elements
- 2,915,562 DOF
- Normal mode analysis
 - Lanczos vs. MCMS
- Modal frequency response analysis (SSD)

Truck Cab FE model

- 49,390 shell elements
- 296,274 DOF
- Normal mode analysis
 - Lanczos vs. MCMS
- Modal frequency response analysis (SSD)

Truck Cab FE model

Simple Test Case

FRF Comparison

MCMS

- We have a serial implementation working
- But it still has issues to be resolved
- SMP version should be production ready sometime soon.

• Thanks for listening.