
14. LS-DYNA Forum 2016, Bamberg

Compression Methods for Simulation Models
in SDM Systems

Justus Richter1, Matthias Büchse2, Wolfgang Graf1, Marko Thiele2,
Clemens Löbner2, and Martin Liebscher2

1
Institut für Statik und Dynamik der Tragwerke, TU Dresden

2SCALE GmbH

1 Introduction

Models in Simulation Data Management (SDM) systems have grown tremendously in recent years (see
Fig. 1). At the same time, these models typically exhibit a great deal of redundancy. This is not being
fully exploited by established compression techniques, such as ZIP. In view of the size of state-of-the-art
SDM systems, data storage and transfer cause large costs, which makes more advanced compression
approaches necessary.

Therefore, we consider two such advanced compression approaches: Data deduplication on the one
hand exploits the mentioned redundancy, mesh compression on the other hand exploits the specific
mesh structure.

The first approach, data deduplication, reduces space by removing repetitive data patterns. Every pat-
tern is saved only once, and wherever it reappears, it is replaced by a link to its first occurrence. So far,
this approach has largely been applied to backup scenarios, where data is assumed to be immutable
and throughput is considerably more important than latency; or it has been applied to large-scale com-
puting with multiple nodes. In the SDM domain, however, we need random access to the data, including
deletion, and we usually deal with a single machine, even for the server. Therefore, existing solutions
cannot be readily applied.

We implemented a deduplicated storage system and incorporated it into SCALE’s SDM solution LoCo,
which runs on both Linux and Windows. In the process we solved challenges such as choice of parame-
ters, storage, deletion, data integrity, concurrency, deduplicated transfer, and encryption. We measured

Fig. 1: Model size and assembled simulations (absolute numbers withheld) over time.

c© 2016 Copyright by DYNAmore GmbH 1

14. LS-DYNA Forum 2016, Bamberg
����������	
�����	��������	�����������

�

�

�

�

�

�

��

��

��

��

��

��

���	
��

����

����������

�����

����������

�����	�	���

�����������

�����

�����������

�����	�	���

���

�

������
��	����

��������
��������������

�����

������
��	����

��������
��������������

�����

������	��
�������

�������
��������������

�����

������	��
�������

�������
��������������

�����
 �
�
!"
#
�
 �
��

$%
��
&

Fig. 2: Compression ratio improvements achieved using data deduplication.

runtime performance and deduplication gain (i.e., space saved compared to non-deduplicated storage)
on several datasets. In summary, the runtime performance is completely adequate for an SDM client
(around 50 MiB/s write and 150 MiB/s read) and promising for an SDM server. Figure 2 shows the
compression ratio improvements of data deduplication in comparison to the state of the art.

The second approach, mesh compression, exploits the known organisation of mesh data containing
vertices and connecting elements. We use a degree encoding algorithm, which traverses the mesh in
a determined manner and stores the element type, and the degree of vertices or edges. Provided this
information, it is possible to fully reconstruct the mesh.

In the general traversal process, each step starts by choosing a focus face among a set of incomplete
faces, which brings the algorithm to a new solid element to be processed. Focus expansion acknowl-
edges the implicit known faces of the solid element. In the end only relevant data of the solid element is
stored in data sequences.

This approach is combined with geometry prediction, which improves the compression by transforming
the vertices into suitable coordinates. To this end, the position of each vertex is predicted, based on the
already processed part of the mesh and only the offset between original and predicted coordinates is
stored.

Beside the presented algorithm for solid element meshes, our implementation contains also support

Fig. 3: Lossless compression for mesh data from a Chrysler Neon model (right) and different parts (left
and center): raw data (dark gray), zipped data (light gray), and data obtained from the proposed
algorithm (blue).

c© 2016 Copyright by DYNAmore GmbH 2

14. LS-DYNA Forum 2016, Bamberg

for shell and bar elements, so that all common element types are covered. In first applications quite
promising compression ratios around 2.5 could be observed without introducing any loss of information,
see Fig. 3. Although this is highly dependent on the regularity of the mesh and can be enhanced much
more by introducing quantization.

The following two sections will detail our implementation of data deduplication and mesh compression
in the context of SDM systems (Secs. 2 and 3, respectively). The final section will provide a summary
and an outlook, in particular, into combining the approaches (Sec. 4).

2 Data deduplication

2.1 Previous work

Paulo and Pereira [11] define “deduplication as a technique for automatically eliminating coarse-grained
and unrelated duplicate data.” Deduplication is not new: variants have been described as early as
1996 [16]. By now, many implementations exist, with various application scenarios in mind – cf. Ref. [11]
for a comprehensive overview. However, none of these implementations match our requirements.

For instance, most implementations address backup and archival scenarios, where data is assumed to
be immutable, and throughput is considerably more important than latency [11, Table 1]. Many imple-
mentations come packaged as a product, such as a network-attached storage or a file system. Other
systems are targeted at large-scale installations with multiple nodes, or their licence is unsuitable for
commercial purposes. In addition, no system covers deduplication of both storage and transfer.

The bottom line is that no off-the-shelf deduplication solution can be integrated into a single-node SDM
server (or client) application. However, as we shall see in the following, the techniques and systems
described in the literature provide a copious supply of valuable ideas and concepts.

Roughly speaking, the general approach of data deduplication consists of two major steps:

Chunking Partition an input file into chunks.

Indexing Look up in an index which chunks are already in store.

In a third, but less demanding step, add the new chunks to the store. In many cases, one ought to also
store a recipe for reconstructing the file from the chunks.

The deduplication gain is the space saved by deduplication divided by the space required by the raw
data. This quantity depends on two factors: (a) the number of duplicates found and (b) the storage
overhead incurred by the index data structure. For instance, we may find more duplicates by using
smaller chunks, but then we need a bigger index (which may also pose problems with respect to latency
or throughput).

2.1.1 Chunking

The most simplest of chunking merely partitions the file into fixed-size chunks. The problem with this
method is that inserting or deleting bytes in the file will lead to completely new chunks.

A widely used alternative is content-defined chunking. Here we need five parameters: the minimum
chunk size, the maximum chunk size, the checksum method (such as the one from rsync [16] or Rabin-
Karp [9]), the window size w and the divisor d (both nonnegative integers). We proceed as follows.

We move a “sliding window” of size w over the input data, and at each position we compute the checksum
of the window. For the above-mentioned checksum methods, this computation can be done in constant
time: we only have to consider the byte that leaves the window and the byte that enters the window. The
current right-hand window boundary marks a chunk boundary if (a) the minimum-size requirement is
satisfied and the checksum is divisible by d , (b) moving the window further would violate the maximum-
size requirement, or (c) we reached the end of the file.

c© 2016 Copyright by DYNAmore GmbH 3

14. LS-DYNA Forum 2016, Bamberg

The divisor can be construed as a target chunk size, if we assume that the window checksums are more
or less evenly distributed.

2.1.2 Indexing

As noted in Ref. [11, Sec. 2.4], systems generally summarize the chunk content via a cryptographic hash
(such as SHA-1), and the hash values are used to query or update the index. In its classical form, the
index then is a mapping that associates, for each chunk in store, its hash value with its storage address.
This is also called a full index. In contrast, a partial index may keep only a subset of the chunks; this
saves index space and lookup time, but if a chunk is not present in the index, it may be added to the
store a second time, i.e., the deduplication is partial.

A more elaborate approach to partial deduplication is the sparse index [10]. Here chunks are grouped
together into segments, and each segment is represented by a sample of its chunk hashes. The sparse
index then is a mapping that associates each sampled hash value with storage information (manifest)
about the segment that contains the chunk data with that hash value. (A chunk can be referenced in
several segments, but the chunk data is stored in exactly one segment.)

For an incoming segment, one samples its chunk hashes in order to find and select matching segments
in the sparse index. Before the segment is stored, every chunk that occurs in any of the selected
segments is replaced by a reference. We note that this manner of deduplication is partial, for the new
segment can still contain a chunk that is present in some segment that did not get selected.

Ghosh [3] proposes a similar technique, but instead of sampling the hashes, he uses a similarity
sketch.

2.1.3 Challenges

Parameter values The choice of minimum chunk size, maximum chunk size, checksum method, win-
dow size, and divisor is not obvious, and it may depend on the characteristics of the data.

Storage and recipe Chunks should be stored in a way that facilitates reconstructing files; e.g., we might
store adjacent chunks in a file in adjacent locations, thereby reducing seeks. Depending on the
storage layout, a dedicated recipe may be necessary for reconstructing a file.

Deletion Before a chunk can be deleted, we have to make sure that it is not referenced any more. Com-
mon techniques to achieve this are reference counting as well as mark and sweep [5, Sec. 3.3].

Data integrity The data structure is more complex than a simple collection of files, and a damaged
chunk can affect a number of files.

Concurrency Files are no longer independent: the index acts as a synchronization barrier. The index
must be protected from concurrent access (in particular, if multiple processes are involved).

Deduplicated transfer We want to transfer only the chunks that the target side lacks, with a reasonable
amount of roundtrips (cf. rsync). The deduplicated representations on client and server have to be
compatible (support the same abstraction).

Encryption Storer et al. [13] show how to achieve end-to-end encryption for multiple parties via con-
vergent encryption. Their setting assumes a full index. It is unclear whether this approach is
compatible with, e.g., a sparse index.

c© 2016 Copyright by DYNAmore GmbH 4

14. LS-DYNA Forum 2016, Bamberg

parameter values considered value at optimal point

checksum method rsync, Rabin-Karp Rabin-Karp
minimum chunk size (bytes) 27, 28, ... , 213 212

maximum chunk size (bytes) 220 220

window size (bytes) 26, 27, ... , 29 26

divisor (target chunk size; bytes) 213, 214, ... , 223 214

Table 1: Restricted parameter space, optimized values.

2.2 Approach and implementation

Content-defined chunking (Sec. 2.1.1) is employed for its superior deduplication gain. In conjunction
with our deletion requirement, this decision has consequences for the index design: with variable-size
chunks, overwriting deleted chunks is not a viable option. For defragmentation, chunks must be moved,
and so the storage address is variable as well. Therefore, it cannot be used as a long-lived chunk
reference. Instead, we reference chunks via their hashes. This, in turn, forces us to use a full index.

When the index becomes prohibitively large, we permanently “freeze” (i.e., mark read only) the current
store and open a new one. In that case, our deduplication is partial, because new files are not dedupli-
cated against the frozen stores. This approach is trivial to implement and, provided that related files end
up within the same store, leads to reasonable deduplication gain and runtime performance.

2.2.1 Parameter values

In order to explore the parameter space, we considered a dataset of 436 GiB of uncompressed real-
world data (mostly simulation models). As objective function we used the function that maps every point
in the parameter space to the deduplication gain that is obtained by using the corresponding parameter
values to deduplicate our dataset. Our aim was to maximize the objective function.

However, this function is quite expensive to compute. Therefore, we first restricted the parameter space
as shown in Table 1. Second, we used a metamodel approach: we computed the objective function
on a 100-point random sample of the restricted parameter space and fitted a radial basis function to
that sample. Then we maximized the latter function, obtaining the values shown in Table 1. The whole
optimization problem was modelled and solved using LS-OPT [12].

2.2.2 Storage and recipe

Our abstraction for storing and retrieving chunks is the chunk store. This is a data structure that basically
maps chunk hashes (or, more generally, keys) to the respective chunk data, plus a reference count.

In addition to individual chunks, it supports named chunk sequences of bounded size and with arbitrary
ancillary data. Each chunk in such a sequence can be accessed individually via its key, but the se-
quence can also be read or written like a stream. The sequence is preserved on disk, so that seeks are
reduced. The sequence size is bounded to facilitate defragmentation. Finally, the chunk store supports
transactions for atomically adding or deleting multiple chunks.

When we chunk a file, we obtain a list of chunks. In order to reconstruct the file, we need the list of chunk
hashes, or recipe. Our abstraction supports three strategies for storing the chunks and the recipe:

Index chunk We can encode any sequence of chunk hashes in binary form and store that representa-
tion as a chunk in the chunk store. This kind of chunk we call index chunk. We store each chunk
individually, and we store the whole recipe as one index chunk.

Hierarchical index Since an index chunk is merely a special chunk, it can refer to other index chunks,
which gives rise to a hierarchical index. We factor parts of the recipe out as “subordinate” index
chunks; this approach can be likened to a deduplication of index chunks.

c© 2016 Copyright by DYNAmore GmbH 5

14. LS-DYNA Forum 2016, Bamberg

Chunk stream We store the incoming new chunks in named sequences, commencing a new sequence
whenever the size boundary is hit. With each sequence we store (as ancillary data) the corre-
sponding part of the recipe, thus accommodating references to existing chunks. We treat the list
of sequence names like an index chunk. The recipe is the concatenation of the partial recipes.

In order to implement the chunk store, we created the following concepts and mechanisms:

Flatstore A file of bounded size that is basically a concatenation of chunks, plus checksums. With the
exception of reference counts, flatstores can not be updated. Existing flatstores are opened read
only; new flatstores can be read from and appended to. Concurrent writes are not supported.

Composite flatstore Combines multiple flatstores to overcome their limitations: it removes the size
boundary, it can always be appended to, and it permits concurrent writes. Also, it encapsulates the
bulk of our defragmentation procedure (see Sec. 2.2.3).

Journal Provides transactions for atomically manipulating multiple reference counts.

Dictabase The dictabase maps chunk keys to flatstore addresses; currently we mainly use leveldb [1].

Dictabase locker Allows selectively locking the dictabase for given keys.

Put bluntly, “chunk store = composite flatstore + journal + dictabase + dictabase locker”.

In order to store a chunk with some key, we lock the dictabase for that key and look up the address. If the
lookup succeeds, we merely increase the reference count for the chunk. Otherwise, the data is written
to the composite flatstore, and the resulting address is put into the dictabase under said key. Finally, we
release the lock on the dictabase. The deletion of chunks is analogous, but the key is not removed from
the dictabase; this happens only at defragmentation.

In order to retrieve a chunk, we query the dictabase to obtain the address, and then we read the chunk
data from the composite flatstore. Note that there is no need to lock the dictabase for the key.

Technically, a new chunk is first stored at a reference count of zero, and then this count is increased by
one. Consequently, the journal allows atomically adding or removing multiple chunks.

2.2.3 Deletion

We use the reference counting facility provided by the chunk store to keep track of the number of times
that a chunk occurs in the stored recipes. That is, a chunk has a reference count of zero precisely when
there is no recipe that refers to it. Such a chunk is essentially garbage. In order to reclaim the space
occupied by garbage, we need to defragment the composite flatstore.

During defragmentation, the storage address of any chunk can change, and that has to be reflected in
the dictabase. Moreover, if the defragmentation process is interrupted, we have to make sure that the
composite flatstore and dictabase are left in a state that is consistent or easily made consistent.

For this reason, we do not defragment “in place”, but we copy chunks from one flatstore into a new
one. Before we start, we flag the old flatstore as “under defragmentation”. The new flatstore is only
incorporated into the composite flatstore when it is finished, and only then is the old flatstore deleted.
Finally, we update the dictabase.

Any interruption is easily detected: either we find a not-yet-incorporated new flatstore – then we delete
it and remove any defragmentation flags we find –, or we delete any flagged flatstore. Interruptions
during the dictabase update are not critical: the address of every copied chunk will be carried over the
next time the chunk store is opened (see Sec. 2.2.4). Remaining addresses of garbage chunks will be
detected easily (upon lookup) because the whole address space will have vanished together with the
old flatstore.

c© 2016 Copyright by DYNAmore GmbH 6

14. LS-DYNA Forum 2016, Bamberg

�����������	
��	����������

��

� ������	
��	�������

� �����	� �����������	
������

� ��������������������������������

�

��

���

���

���

���

���

���

���� ����������

������

�������������

��
��
�
�
��
�
��
�

���� �����
������!���

�����������

���������	
���

��������
���
�����

Fig. 4: File classes in deduplicated vault grouped by their individual deduplication gain.

2.2.4 Data integrity

There is a multitude of reasons why data integrity may be at risk: when the disk is full, files may be written
partially. Or when the power goes out, write buffers in the operating system do not make it onto the disk.
Or the application crashes in the midst of adding a file to the store, before the recipe is complete, leaving
behind a number of garbage chunks or even inaccurate reference counts.

Naturally, we want to detect and handle any of these situations. To that end, flatstores include CRC-32
checksums for chunks and CRC-8 checksums for metadata. Any read operation is anticipated to be
partial. The composite flatstore detects incomplete defragmentation operations (see Sec. 2.2.3).

Upon opening the chunk store, we perform maintenance: we try to read any chunks that were newly
appended since the last “sync”, i.e., when the operating system buffers were forced on disk. If we find
an inconsistency, we truncate the respective flatstore. Also, we keep information in the dictabase about
the address space it covered at the last sync, and we update the dictabase should it miss any addresses.
Finally, we replay the journal transactions since the last sync, rolling back any incomplete transaction.

Each step is idempotent by design; therefore, maintenance can safely be repeated after an interrup-
tion.

2.2.5 Encryption

We use the authenticated model described in Ref. [13, Sec. 4.2]. Our main concern has been to protect
the local storage, and we only support one key pair: that of the (fictitious) local storage owner. For an
end-to-end encrypted deduplicated transfer, we would need a globally valid key pair per user.

2.3 Experiments and results

We implemented our deduplicated storage in Python (with the chunking in Cython), and we incorporated
it into the SDM client software LoCo [14], which runs on both Linux and Windows. Subjectively, no dif-
ference in the performance between the conventional and the deduplicated storage could be noticed.

Intuitively, it is clear that some files are more amenable to deduplication than others. More precisely,
if we partition the set of files in a data storage into classes and deduplicate each class on its own, we
obtain different deduplication gains. For our analysis, we selected the partition such that two files are in
the same class precisely when they have a chunk in common. On a real-world dataset with 260 K files,
292 GiB (zlib compressed), and a total deduplication gain of 75 %, we found 208 K classes.

These classes can be divided into three groups (see Fig. 4): almost 200 K classes consist of only
one file each; these make up 19.6 GiB. There are 8 K further classes whose individual gain is at most
75 %; these have 40 K files and 59.8 GiB in total. The remaining 323 classes consist of 20 K files
and 213.0 GiB. The three groups have total deduplication gains of 0 %, 35 %, and 93 %, respectively,
corresponding to deduplication rates of 1, 1.5, and 14, respectively.

c© 2016 Copyright by DYNAmore GmbH 7

14. LS-DYNA Forum 2016, Bamberg

In summary, the deduplication gain that can be achieved very much depends on the data at hand. For
instance, the first group contained a lot of preview images and no simulation models whatsoever, while
most simulation models were in the third group. Therefore, we surmise that a deduplication rate in the
range of 3 to 8 is possible for mixed SDM data; for pure simulation models 12 and more is possible.

3 Mesh compression

In this context meshes are the discretized geometry of the numerically simulated structures, which is
described by means of vertices (also called nodes) and elements connecting these vertices, such as
polygons or polyhedra.

Thus a mesh description combines two types of information, namely coordinates and connectivity. This
subdivision is reproduced by many file formats, e.g., input files for Finite Element Analysis. This is
illustrated in Table 2 for an LS-DYNA Keyword file. Here, the coordinate section (second column) defines
the spatial position of every vertex. Moreover, a unique vertex ID is explicitly assigned. The connectivity
section (third column) groups the given vertices into elements, by defining the element type and referring
to the associated vertex IDs.

As coordinates and connectivity represent rather different types of information, we consider their com-
pression independently in the following two sections.

3.1 Compression of coordinates: geometry prediction and quantization

For the compression of vertex coordinates, we consider entropy compression such as ZIP. This leads to
the problem that in typical SDM models, mesh coordinate data has a high entropy, which manifests in a
strongly fluctuating distribution (black curve in Fig. 5), To solve this problem, we precondition the data in
order to produce coordinates of a more predictable distribution (such as the blue curve in Fig. 5). In an
optional step, we also quantize the coordinate data into an appropriate format of controllable bit size.

Geometry prediction We use a convenient representation of the vertex coordinates to reduce their
entropy. For this purpose a specific coordinate system is chosen for each vertex, putting the origin
where the vertex is predicted to be (red dot in Fig. 6), based on a prediction rule which uses already
known information. That is, we represent the true vertex position by its offset vector (red arrow) with
respect to its predicted position. If the prediction rule is chosen appropriately, the resulting offsets exhibit
substantially lower entropy than the original coordinates (see the blue curve in Fig. 5 and resulting offsets
in Fig. 9).

Several choices for this prediction rule are possible, based on the considered element types. For purely
triangular meshes, Touma and Gotsman [15] introduced the so-called parallelogram rule to predict the
third vertex of a triangle by expanding an already known adjacent triangle to a parallelogram. This rule
gives good predictions if the triangle pair is fairly planar and convex. It is also applicable to predict the
fourth vertex of a quadrangle based on the other three vertices. A simple example of the application

mesh coordinates connectivity

1

2

3 4

5

*NODE *ELEMENT SHELL

1, 0.00, 0.21, 0.00 1, 1, 1, 2, 3

2, 1.51, 0.09, 0.00 2, 1, 2, 3, 4, 5

3, 1.39, 1.70, 0.00

4, 2.70, 2.02, 0.00

5, 3.12, 0.31, 0.00

Table 2: Decomposition of a mesh into coordinates and connectivity information, illustrated using the
LS-DYNA Keywords

c© 2016 Copyright by DYNAmore GmbH 8

14. LS-DYNA Forum 2016, Bamberg

Fig. 5: Frequency graph for x-coordinates of vertices (black curve) and target distribution (blue curve) for
a car model (Chrysler Neon)

of that rule is shown in Fig. 6. A generalization of the parallelogram rule to polygonal meshes is given
by Isenburg et al. [8], which uses the Fourier representation of polygons. As hexahedra consist of
quadrangles, Isenburg and Alliez [6] use the parallelogram rule to predict new vertices in such meshes.

For tetrahedral meshes, it was shown that they “are too irregular to predict vertex coordinates much
better than with the proximity information of the connectivity alone.” [4]. The center of a known triangle
is therefore used to predict the fourth vertex of the tetrahedron.

Quantization A further improvement of the compression ratio can be achieved by introducing a lossy
compression scheme, where the resolution of the coordinates is coarsened by transforming them into
integers of bit size n. The quantization qn of a 3-D vertex point xxx = (x1, x2, x3) is given by

qn,i : [xi ,min, xi ,max]→ {0, 1, ... , 2n − 1}, (i = 1, 2, 3), (1)

xi 7→ int
(

(2n − 1) · xi − xi ,min

xi ,max − xi ,min
+ 0.5

)
, (2)

where xi ,min and xi ,max are the extremal values of the i-coordinate over the whole dataset. Due to this
quantization the algorithm becomes lossy. Equation (2) implies, that the maximal error vanishes expo-

1

2

3 4

5

a) The triangle built by vertices
1, 2, and 3 is known.

1

2

3 4

5

b) Vertex 4 is predicted based
on the known triangle across
border elements.

1

2

3 4

5

c) Vertex 5 is predicted based
on the vertices 2, 3, and 4
sharing the same quadrangle.

Fig. 6: Prediction for a very simple polygon mesh using the parallelogram rule

c© 2016 Copyright by DYNAmore GmbH 9

14. LS-DYNA Forum 2016, Bamberg

a) Half-edge data structure for polygon meshes b) Generalized half-edge structure for solid element
meshes

Fig. 7: Mesh data structures

nentially with increasing bit size n,

|qn(xxx)− xxx |2 ≤ 1
2 · (2n − 1)

3∑
i=1

(xi ,max − xi ,min)2 ≤ const
2n . (3)

3.2 Compression of connectivity: degree encoding

3.2.1 Preliminaries

Degree encoding is a traversal algorithm, i.e. its basic idea is to go through the mesh in a predetermined
manner. While traversing the mesh, an encoding algorithm defines which local data is relevant to be
collected at each step. Given only the sequences of this collected data, the corresponding decoding
algorithm can resimulate the traversal, and thereby, reconstruct the original mesh.

Degree encoding determines where to continue the traversal on the basis of the known degree of edges
or vertices. The term degree is used here in the following meanings.

Edge degree The number of faces adjacent to a given edge.

Vertex degree The number of edges adjacent to a given vertex.

Dependant on the mesh characteristics, different approaches are suitable. Considering a mesh con-
sisting of polygon elements, all edge degrees are 2, so that degree encoding is based on the vertex
degree [7]. In Ref. [6] an algorithm is developed to compress hexahedron element meshes using the
edge degree.

In the following, (Secs. 3.2.2 and 3.2.3) we present a generalization of the hexaedric mesh compression
algorithm [6] which covers also tetrahedra and wedges. In addition, we also implemented a polygon
mesh compression algorithm adapted from Ref. [7]. The program is also able to handle bar elements.
Because they are assumed to be quite rare, the compression technique is kept simple. There is no
prediction; the only sequence the bar encoder writes, contains the quantized coordinates.

In addition we implemented graphical user interfaces, to visualize the state of processing (see Fig. 10).

3.2.2 Mesh data structure

To traverse the mesh efficiently without “searching” for neighbours each time we want to process the
next element, the adjacency relations between edges need to be accessible directly. That is why the
internal mesh representation is based on the half-edge data structure.

c© 2016 Copyright by DYNAmore GmbH 10

14. LS-DYNA Forum 2016, Bamberg

Fig. 8: Traversal steps for a simple cubic mesh, where unprocessed elements are displayed as gray
wireframe. At each step we show the current focus face (red), incomplete faces (light red), and
border faces (blue). Focus expansion is applied to green faces.

The common half-edge data structure is designed to represent a polygon mesh by vertices and directed
half-edges (see Fig. 7a). Each half-edge e is related to its starting vertex, its following half-edge enext
and its inverse half-edge einv.

It is necessary to extend the half-edge data structure, which is done similar to Ref. [6], so that it is
capable to represent solid element meshes. By splitting each face into two “half-faces”, half-edge is not
correct any more, because an edge usually gets split up more than once. To represent that extension in
the data structure the so-called spin-edge espin is introduced (see Fig. 7b). Furthermore a list is attributed
to each vertex containing all edges starting in that vertex. This list is built while traversing the mesh, so
that the order of these edges is equal in the process of encoding and decoding.

3.2.3 Degree encoding for solid element meshes

By traversing a mesh, there is an already processed region of the mesh and an unprocessed one. The
barrier between these two regions is called boundary. The edge or face, where the next element will be
added, is referred to as focus. Relevant information is mainly the type of newly encountered elements
and the position of new vertices. But it may also happen, that vertices of the new element are already
known laying on the boundary. In that case it is needed to explicitly describe how the boundary is joined.
Aiming for data with low entropy, a suitable choice of next focus means to avoid join operations.

The following nomenclature shall be established for meshes consisting of solid elements.

Border face A face, which is adjacent to only one solid element.

Border edge An edge, which is adjacent to at least one border face.

Slot count The number of unprocessed faces adjacent to a given edge.

Zero-slot A face, which is adjacent to a face in the boundary via an edge with slot count of zero.

The general traversal process is illustrated in Fig. 8 for a simple cubic mesh. Each step of the algorithm
starts by choosing a focus face (red) among the incomplete faces (light red). This choice is defined by the
traversing strategy. Then a new solid element is added to the processed region and the corresponding
data representation of that element is stored in different data sequences.

Traversing strategy Adding one solid element adds in general several new potential focus faces,
which means the traversing algorithm has to prioritize them to be processed one after another. The
strategy we applied, is given in Ref. [6]. The idea is to prefer faces with many zero-slots, because they
are the most complete. That way the creation of cavities, as intermediate state of the space growing
process, shall be avoided. If there is no face with zero-slots in the boundary, a face with one or more
border edges is chosen.

c© 2016 Copyright by DYNAmore GmbH 11

14. LS-DYNA Forum 2016, Bamberg

Each step of processing the mesh will add one further solid element, which is adjacent to the focus
face. Before any information is stored explicitly, the implicitly known information is exploited via focus
expansion. The focus gets extended by boundary faces, which are connected to the focus face through
an edge with slot count of zero and by that known to be part of the new element (green in Fig. 8). This
way only the data of new faces needs to be described explicitly.

Data representation of traversal The relevant information which encounters during the traversal is
consecutively appended to different sequences. In Table 3 the sequences and their content are listed,
which we explain in the following.

Apart from the typical entries for element configuration (HEXA, TETRA, WEDGE), the value ROOF is
chosen if the opposite face of the focus face in a hexahedron- or wedge-configuration is already known,
but none of the connecting faces in between. This cannot be detected by focus expansion and therefore
we need to describe explicitly which face of the boundary is the one, we should connect with.

In general there will be vertices in the new element, which are not known yet. Then the operation

ADD is executed and the difference between the quantized coordinates and their quantized prediction is
stored in the offset sequence. We employ two prediction rules mentioned in Sec. 3.1: For tetrahedra,
we use the center of the known face as in Ref. [4], while for hexahedra and wedges, we apply the
parallelogram rule as in Ref. [6].

For each new edge the edge degree is appended to the edge degree sequence. Following the rules
given in Ref. [6], we derive if the new edge is a border edge, and, if this derivation is not possible,
explicitly store this information in border.

If there is an edge, which is known as part of the boundary, but not as part of the currently processed
element, JOIN will be written into operation and some further specification into join operation. If one
of the vertices of the edge is known to be part of the currently processed element, we append either
LOCAL START or LOCAL END to join operation, depending on the position of the known vertex.
Otherwise we append GLOBAL to join operation.

To fully describe the join operation, we use the sequences edge slots, vertex-ID, and vertex position.
The join operation splits each joined edge into two parts, each having a different slot count. How to split
the existing slots into these two parts is written into edge slots. If the entry in join operation was
GLOBAL, one of the vertices has to be encoded explicitly, which is done by writing its position in the
offset sequence into vertex-ID. Knowing one vertex of the edge, the second vertex is encoded by the
edge’s position in the edge-list of the known vertex into the sequence vertex position.

When all elements are processed, the sequences get ciphered into binary streams, which are then
compressed via the Lempel-Ziv-Markov chain algorithm (LZMA) using its public domain implementation
LZMA SDK [2]. These compressed streams will be concatenated and written into a file after a header
containing some general information, e.g. the number of elements and the size of the quantization
space. When decompressing this procedure is reversed; at first the streams are split and unzipped,
then they get interpreted.

sequence content item size in bit

element configuration HEXA, TETRA, WEDGE or ROOF 2
wedge configuration orientation of wedge, when focus is quadrangle 1
operation ADD or JOIN 1
offset offset from the prediction of vertices 3 · n
edge degree edge degree minseq(degrees)
border if edge is border 1
join operation LOCAL START, LOCAL END or GLOBAL 2
edge slots where to split slots, when join minseq(slots)
vertex-ID starting vertex, when global join minseq(IDs)
vertex position position of edge in vertex’ edge-list minseq(positions)

Table 3: Specification of the sequences built during the traversal, minseq(seq) = int(log2(max(seq)) + 1)

c© 2016 Copyright by DYNAmore GmbH 12

14. LS-DYNA Forum 2016, Bamberg

Fig. 9: Normed frequency graph of quantized offsets (12 bit)

3.3 Results

The algorithm is applied to a real world model of a Chrysler Neon, which is publicly available by the
National Crash Analysis Center, Washington. We defined the raw data as reference for comparison as
follows. The coordinates are quantized with bit size n = 32, so uncompressed size equals storage of
coordinate as single precision float. The vertex-IDs are integers assumed to fit in 16 bit.

In Fig. 3 the results of lossless compression of the raw data are depicted for different parts of the mesh
in comparison with ZIP. The proposed algorithm contains degree encoding in its different specifications
for different mesh types as described in Sec. 3.2. While ZIP compresses the model parts to 79–86 % of
the raw size, our proposed algorithm achieves around 40 %. This reveals, that ZIP handles the specifics
when compressing mesh data far worse than our specialized algorithm.

In Sec. 3.1 we defined a target distribution to enhance the results of entropy compression. For com-
parison, the offset distribution of two different parts of the model is depicted in Fig. 9. For both parts,
the approximate symmetry with a central peak at zero is quite obvious, which verifies the prediction
algorithm. Compared to the bumper, the graph of the engine part exhibits additional substructures in the
tails and is less symmetric.

More detailed characteristics are presented in Table 4, applying the most common quantitation of com-
pression, the compression ratio, given by

CR =
raw size

compressed size
, (4)

separately on vertex coordinate data, connectivity data, and in total.

For ZIP, the compression ratio of coordinate data is independent of the element type, while connectivity
data shows some dependency. It is incapable to compress the coordinate data efficiently; nearly all
compression is done for connectivity data, which is of course independent of the chosen quantization.

Considering the proposed algorithm, comparing connectivity compression between solid and polygon
meshes is not meaningful as different algorithms are used. But coordinate compression is done quite
similar, which allows to conclude on the regularity of the element geometry. In this point there is no
outstanding difference, except from the engine part.

The maximal error introduced by the quantization with bit size n = 12 is 1
4096 of the model dimension,

i.e. about 1 mm for the full model and about 0.25 mm for the engine and bumper part. The compression
ratios of the proposed algorithm are increasing exponentially reducing n. Of course there is no infinite
increase and compressed data becomes more and more lossy.

c© 2016 Copyright by DYNAmore GmbH 13

14. LS-DYNA Forum 2016, Bamberg

Fig. 10: Graphical user interface showing an intermediate state while processing the solid parts of the
model of a Chrysler Neon. In the center is the not fully processed engine part.

c© 2016 Copyright by DYNAmore GmbH 14

14. LS-DYNA Forum 2016, Bamberg

front bumper engine all solid parts all shell parts all parts

no. of vertices 1,802 648 5,942 285,770 291,844

no. of elements 1,092 hexa 359 solid 2,856 solid 273,674 shell
2,856 solid

273,674 shell
66 bar

raw
32 bit

coordinate size 21.6 7.8 71.3 3,399.8 3,472.7
connectivity size 17.5 5.7 45.7 2,149.4 2,195.2
total size 39.1 13.5 117.0 5,578.6 5,697.3

ZIP
32 bit

CRcoordinate 1.03 1.00 1.02 1.02 1.02
CRconnectivity 1.75 1.71 1.70 1.46 1.46
CRtotal 1.26 1.20 1.21 1.16 1.16

ZIP
16 bit

CRcoordinate 2.03 1.99 2.09 2.11 2.11
CRconnectivity 1.75 1.71 1.70 1.46 1.46
CRtotal 1.89 1.84 1.92 1.81 1.81

pro-
posed
32 bit

CRcoordinate 1.46 1.23 1.59 1.58 1.58
CRconnectivity 30.18 8.61 20.24 39.81 39.03
CRtotal 2.53 1.90 2.47 2.52 2.52

pro-
posed
16 bit

CRcoordinate 3.93 2.93 4.68 5.35 5.34
CRconnectivity 30.18 8.61 20.24 39.81 39.03
CRtotal 6.31 3.93 6.53 8.09 8.06

pro-
posed
12 bit

CRcoordinate 6.37 4.07 7.74 11.60 11.51
CRconnectivity 30.18 8.61 20.24 39.81 39.03
CRtotal 9.56 5.02 10.10 16.07 15.89

Table 4: Compression ratio of parts of the Chrysler Neon model, sizes in kB

The front bumper part can be compressed much better than the engine, which is reflected in coordinate
and connectivity compression. The relatively poor compression of the engine part is not representative
for solid parts of the examined model. As the whole model consists mainly of shell elements, they are
dominating the compression characteristics.

There are several reasons that the front bumper has a much better compression ratio than the engine.
First, the smaller the mesh, the greater is the influence of the header on the compressed size. The
compressed size of an empty solid element mesh is 309 byte. Second, the front bumper is modelled
stringently with hexahedra and has no handles. That way the element configuration is always the same
and no join operation is needed. The engine part contains also some wedges. Its connectivity is much
more irregular and contains a handle, which enforces minimum one join operation. Third, also the
geometry is much more irregular for the engine part, whereof follows that the prediction cannot work as
fine as for the relatively smooth front bumper (cf. Fig. 9).

Using the degree encoding algorithm the connectivity of polygon meshes can be better compressed,
than the one of solid element meshes. Polygon meshes are compressed based on the vertex degree,
while solid element meshes employ their edge degrees, but both are compared to the raw data refer-
encing vertex-IDs. Euler’s polyhedron formula proves that the number of edges is always greater than
the number of vertices, which explains the less efficient solid element approach. But it is also counter-
productive to disassemble solid elements into polygons, because that introduces more redundancy into
the data.

The discussed dependency of connectivity compression on the mesh type becomes vice versa for ZIP.
As the degree of vertices in solid element meshes is higher in average than in polygon meshes, one
specific vertex-ID occurs more often in the raw connectivity data. Redundancy like this, is the working
point of entropy compression algorithms like ZIP.

Looking at the presented examples, it seems that connectivity compression is more efficient than coor-
dinate compression, which justifies the effort put into compression of connectivity. But one has to keep
in mind, that in general the coordinate compression is scaled by choosing an appropriate quantization

c© 2016 Copyright by DYNAmore GmbH 15

14. LS-DYNA Forum 2016, Bamberg

bit size n. If a larger loss is acceptable, n will be reduced, whereof follows a better compression of coor-
dinates. If the resolution is critical, n will be raised or quantization will be omitted, i.e. the compression
gets worse.

4 Summary and outlook

We considered two advanced compression techniques – data deduplication and mesh compression –
and how to apply them to SDM models. In both cases, there is no off-the-shelf solution that can be used
in the SDM scenario.

For data deduplication, we solved challenges such as choice of parameters, storage, deletion, data
integrity, and encryption. We implemented our procedure in Python and incorporated it into the SDM
client LoCo. The runtime performance is completely adequate for an SDM client. We measured the
deduplication gain on several datasets. We achieve a deduplication gain of 75 % for mixed SDM data
and 87–93 % for pure simulation models (which corresponds to deduplication rates of 4 and 8–14,
respectively).

For mesh compression, our implementation is capable to handle all common element types, i.e., hexa-
hedron, tetrahedron, wedge, shell and bar elements, while only the algorithm for meshes consisting of
solid elements is described in detail. In first applications using 12 bit quantization quite promising com-
pression ratios around 10 for solid element meshes, and greater for shell meshes, could be observed.

As the software is still in early development stage, it remains a future task to integrate mesh compression
in SDM and postprocessing systems. Furthermore compressing element and vertex properties (e.g.
stresses and strains) just like coordinates by quantization and prediction would be beneficial.

One can readily apply data deduplication to compressed meshes. However, it is possible that mesh
compression decreases the deduplication gain, as small changes in a mesh may result in big changes
in its compressed representation. In other words, changes may be amplified. In order to contain this
amplification, one might apply mesh compression to logical parts of the model (such as a metal sheet)
individually. In fact, the model is already partitioned into connected components during mesh compres-
sion. Ultimately, it is yet unclear whether mesh compression disrupts deduplication or not.

Acknowledgements

The work on data deduplication has been developed in the project VAVID (reference number: 01 IS
14005 C), which is partly funded by the German ministry of education and research (BMBF). Matthias
Büchse would like to thank Heinrich Kießling for his support with the implementation of a few features
and test cases.

The work on mesh compression was supported by the Federal Ministry for Economic Affairs and Energy
(BMWi) in the project “W-PostSDM”. The Neon crash model is courtesy of FHWA/NHTSA National Crash
Analysis Center.

References

[1] http://leveldb.org/.

[2] http://7-zip.org/sdk.html.

[3] M. Ghosh. Scaling Deduplication in Pcompress – Petascale in RAM. Apr. 2014. URL: https:
//moinakg.wordpress.com/2014/04/06/scaling-deduplication-in-pcompress-petascale-

in-ram/.

[4] S. Gumhold, S. Guthe, and W. Straßer. “Tetrahedral mesh compression with the cut-border ma-
chine”. In: In Proc. Visualization ’99. 1999, pp. 51–58.

c© 2016 Copyright by DYNAmore GmbH 16

http://leveldb.org/
http://7-zip.org/sdk.html
https://moinakg.wordpress.com/2014/04/06/scaling-deduplication-in-pcompress-petascale-in-ram/
https://moinakg.wordpress.com/2014/04/06/scaling-deduplication-in-pcompress-petascale-in-ram/
https://moinakg.wordpress.com/2014/04/06/scaling-deduplication-in-pcompress-petascale-in-ram/

14. LS-DYNA Forum 2016, Bamberg

[5] F. Guo and P. Efstathopoulos. “Building a High-performance Deduplication System”. In: Proceed-
ings of the 2011 USENIX Conference on USENIX Annual Technical Conference. USENIXATC’11.
Portland, Oregon: USENIX Association, 2011, pp. 25–25.

[6] M. Isenburg and P. Alliez. “Compressing Hexahedral Volume Meshes”. In: GRAPHICAL MODELS.
2002, pp. 284–293.

[7] M. Isenburg and P. Alliez. “Compressing Polygon Mesh Geometry with Parallelogram Prediction”.
In: IEEE Visualization (2002), pp. 141–146.

[8] M. Isenburg et al. “Geometry prediction for high degree polygons”. In: Proceedings of Spring
Conference on Computer Graphics. Budmerice, 2005, pp. 147–152.

[9] R. M. Karp and M. O. Rabin. “Efficient randomized pattern-matching algorithms”. In: IBM Journal
of Research and Development 31.2 (Mar. 1987), pp. 249–260.

[10] M. Lillibridge et al. “Sparse Indexing: Large Scale, Inline Deduplication Using Sampling and Lo-
cality”. In: Proceedings of the 7th Conference on File and Storage Technologies. FAST ’09. San
Francisco: USENIX Association, 2009, pp. 111–123.

[11] J. Paulo and J. Pereira. “A Survey and Classification of Storage Deduplication Systems”. In: ACM
Comput. Surv. 47.1 (June 2014), 11:1–11:30. ISSN: 0360-0300.

[12] N. Stander and A. Basudhar. “LS-OPT R© Status and Outlook”. In: 14th International LS-DYNA
Users Conference. Livermore Software Technology Corporation. Detroit, June 2016.

[13] M. W. Storer et al. “Secure Data Deduplication”. In: Proceedings of the 4th ACM International
Workshop on Storage Security and Survivability. StorageSS ’08. Alexandria, Virginia: ACM, 2008,
pp. 1–10. ISBN: 978-1-60558-299-3.

[14] M. Thiele, T. Landschoff, and A. J. Beck. “LoCo – An Innovative Process and Team Data Manage-
ment Solution for Simulation”. In: NAFEMS European Simulation Process and Data Management
Conference. 2015.

[15] C. Touma and C. Gotsman. “Triangle Mesh Compression.” In: Proceedings of Graphics Interface.
San Francisco, 1998, pp. 26–34.

[16] A. Tridgell and P. Mackerras. The rsync algorithm. Tech. rep. TR-CS-96-05. The Australian National
University, 1996.

c© 2016 Copyright by DYNAmore GmbH 17

	Introduction
	Data deduplication
	Previous work
	Chunking
	Indexing
	Challenges

	Approach and implementation
	Parameter values
	Storage and recipe
	Deletion
	Data integrity
	Encryption

	Experiments and results

	Mesh compression
	Compression of coordinates: geometry prediction and quantization
	Compression of connectivity: degree encoding
	Preliminaries
	Mesh data structure
	Degree encoding for solid element meshes

	Results

	Summary and outlook

