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Introduction 

 Car crash 
 

=>  Battery crush 
=>  local short circuits 

=>  large localized current densities 
=>  Joule heating  

=>  temperature increase  
=>  thermal runaway  

=>  fire, explosion 

• Mechanical 
• EM 
• Thermal 

• CPM 



Case Study Development  

Assumptions 
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Crash 
Regulatory  

Crush 

Mechanics  

Time Scale 
> 10 s < 100 ms 

Deformation 

Mode 
Out-of-Plane Compression; 

In-Plane Compression 

Out-of-Plane or In-

Plane Compression; 

Bending; Shear 

• 3-D, transient finite element code needed to span these 

target applications 

• Models that resolve mechanical properties of individual layers 

have higher potential robustness to multiple deformation 

modes 

Solver 

Assumption 
Implicit Explicit to Implicit 

EM/thermal 

Time Scale 
ms to minutes 

Overcharge/External 

Short/Thermal Ramp 

> 10 s 

Internal Swelling;  

Separator Melting 

Implicit 

Out-of-Plane 

In-Plane 
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• Li-ion cell in an electric car 

 

• The distributed Randles circuit model 

 

• Validation on various electrical cycling 

experiments (“benign” use) 

 

• Presentation of external short cases 

 

• Presentation of internal short cases 

 

 

Outline 
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Cell Module Pack 

Dual-Packs 
Vehicle 

Cell (zoomed in z) Unit cell (zoomed in z) 

Li-ion cell 

20cm 

15cm 

180μm 
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• Li-ion cell in an electric car 

 

• The distributed Randles circuit model 
 

• Validation on various electrical cycling 

experiments (“benign” use) 

 

• Presentation of external short cases 

 

• Presentation of internal short cases 

 

 

Outline 



Distributed Equivalent 

Circuit  

(1st Order Randles) 

Negative 
(Anode) 

Positive 
(Cathode) Separator 

Discharge 
Li+ 
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• Current collectors transport 

electrons to/from tabs; modeled 

by resistive elements 

• Jelly roll (anode – separator – 

cathode) transports Li+ ions; 

modeled with Randle circuit 
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r0: Ohmic & kinetic 

r10 & c10: Diffusion 

u: Equilibrium voltage (OCV) 

rm: Current collectors 



Standard EM resistive 

solver 
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•  ϕ : potential 

• E = - grad(ϕ) : electric field 

• V = ϕ2 – ϕ1 : voltage 

• J = σ E : current density (σ = electric conductivity) 

• div (J) = 0 => Δ ϕ = 0  + boundary conditions 

 

(Δ ϕ)1 current flowing out at N1 

- (Δ ϕ)2 current flowing out at N2 

V= ϕ2 – ϕ1 : voltage between nodes 1 and 2 
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u 
r0 i 

Vc 

Introduction of randles circuits 

in resistive solver 

ϕ2 – ϕ1 = u - r0*I – Vc 

r0*i + ϕ2 – ϕ1  =  u - Vc  

i + (ϕ2 – ϕ1) / r0=  (u - Vc) / r0 

FEM solve: 

(S0 +  D) * ϕ = b 

Where  

• S0 is the Laplacian operator (nds x nds) 

• D has  

• 1/r0 at (N1,N1) and (N2,N2)  

• -1/r0 at (N1,N2) and (N2,N1)  

• 0 elsewhere 

• b has 

• 1/r0(u-vc) at N1 

• -1/r0(u-vc) at N2 

• 0 elsewhere 

ϕ2 ϕ1 Actualization of randle circuits: 

i= (S0 * ϕ)(N1) 

Vc(t+dt)=Vc(t)+dt*(i/c0-Vc(t)/r10/c10) 

soc(t+dt)=soc(t)-dt*i*cQ/Q 

u=u(soc) 

R 

Randle circuit 
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EM/thermal connection 
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Cu collector :  

EM+Thermal  

Anode :  

Thermal  

Separator:  

Thermal  

cathode :  

Thermal  

Al collector :  

EM+Thermal  

Randle circuit 

r0 * i
2  added to thermal 

ITdU/dT added to thermal  

T from thermal for  

r0, r10, c10 vs T 

Allow correct 

material mass,  

heat capacity and 

thermal conductivity 
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Electrochemical 

• Ordinary differential equations          

(Randles circuit model) 

• Finite element analysis 

Thermal 

Finite element analysis; 

3-D Heat diffusion with source 

terms 

Structural 

Finite element analysis; 

Nonlinear continuum mechanics 

EM/thermal/mechanical 

connections 



Contact for  

Internal Short Models 
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R 

R 

R 

R 

R 

R 

R 

Replace randle circuit by resistance rs 

Rs * i 
2 added to thermal 

Experiment + simulation 

(voltage, current, temperature)  

should give good models 

rs 

rs 



Scalar potential 

Randle SOC Randle r0 

Current density 

Randle circuits in  

LS-PREPOST 
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R(t) 
V(t) i(t) 

Connection to external 

circuits 

Isopotentials can be defined and connected: 

• The connectors do not need to be meshed. 

• Enables alignment of cell simulations with experimental conditions 

(low rate cycling, HPPC, continuous discharge, …). 
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C/10  

capacity tests 

HPPC tests 
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Experiment

Model
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• Li-ion cell in an electric car 

 

• The distributed Randles circuit model 

 

• Validation on various electrical cycling 

experiments (“benign” use) 
 

• Presentation of external short cases 

 

• Presentation of internal short cases 

 

 

Outline 
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Image Type 
Cathode 

Chemistry 
Dimensions 

Number of 

Elements 

 

A NMC/LMO 

195 mm  

x  

145 mm 

151k 

 

B NMC 

195 mm  

x  

125 mm 

153k 

Table 1: Cell characteristics for experimental benchmarking study.     

Benchmarking with 

experimental results 

• 2 types of cells 

• Various electrical cycling experiments 

• Quick tests : transient response 

• Longer tests: coupling between thermal and 

electrochemical 
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Multi-rate capacity test 

validation 
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Experiments on longer time scale => the temperature effects 

are more important 
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• Li-ion cell in an electric car 

 

• The distributed Randles circuit model 

 

• Validation on various electrical cycling 

experiments (“benign” use) 

 

• Presentation of external short cases 
 

• Presentation of internal short cases 

Outline 



External Short  

Model Setup 
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Short circuit resistance 

applied between A and B 

creates current pathway 

A B 

Inactive Components 

Cells and Bus Bar 



External Short  

Thermal Fringe Plot 
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• Average short resistance is 6.5 mOhm, equivalent to ~2 mm2 steel connection across 

terminals 

• Heat propagates from bus to cells; higher bus temperatures observed where cells are not 

connected. 

a) 
b) 
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Outer Cell

Bus

Inner Cell

External Short  

Circuit Validation 
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• Good agreement between numerical and measured data for electrical variables 

• Thermal predictions demonstrate agreement of 5-10 °C between numerical and 

experimental data (excluding >550 s for inner cell) 

Model Predicted Current versus Experiment Model Predicted (Dashed) Temperatures versus 

Experiment (Solid) 
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• Li-ion cell in an electric car 

 

• The distributed Randles circuit model 

 

• Validation on various electrical cycling 

experiments (“benign” use) 

 

• Presentation of external short cases 

 

• Presentation of internal short cases 
 

 

Outline 



Internal short case 3 

Cell Crush Case Study 
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• Thermal boundary conditions same as previous 

simulations 

• Failure criteria is unit cell compressive strain 

threshold 

• Randles circuits replaced by direct short once 

failure criteria is exceeded 

 

R = 100 Ω 

V = 0 

Mech + Electrical + Thermal  

tf = 50 μs 

dt = 0.2 μs 

Vz = -20 m/s 

Vz = 0 

Electrical + Thermal  

tf = 50 s 

dt = 1 s 

“Freeze” 

mechanics 

Boundary Conditions 
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Internal short case 3 

Short Circuit Characteristics 
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Summary 

• A three-dimensional finite element model has been developed for 

battery abuse case studies 

• The model is parameterized using benign experiments on cells 

and cell components 

• The model is available on solid and thick shells as a beta version 

• Validation activities are underway 
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Future Work 

• Add a “Battery packaging” in LS-PREPOST to easily create the 

models 

• Extend the model to composite thick shells 

• Develop higher-fidelity failure models and examine more complex 

loading conditions 

• Improve models for short resistance, based on comparisons with 

experiments 

• Replace empirical inputs with an increasingly analytical approach 


